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ABSTRACT
Filters, such as Bloom, quotient, and cuckoo, save space by main-

taining an approximate representation of a set and occasionally

returning false positives. Filters play a critical role in building mod-

ern data-intensive applications and are used across various domains

such as databases, storage engines, computational biology, cyber-

security, and networks. There has been extensive research on filters

in the past few decades resulting in filters with much improved per-

formance and features. Yet modern data-intensive applications are

still designed around the limitations of traditional filters resulting

in complex designs and sub-optimal performance.

This tutorial aims to bring together researchers at the forefront

of filter data structure research to help the database community

learn about the recent advancements in the theory and practice of

filters. The tutorial will cover real-world case studies of redesigning

applications using the modern filter APIs to achieve simplicity and

improved application performance. The tutorial will further help

uncover the open research problems, both in theory and systems,

and increase interaction among researchers to tackle those problems.

CCS CONCEPTS
• Theory of computation→Data structures design and anal-
ysis; Bloomfilters and hashing.
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1 INTRODUCTION
Filters, such as Bloom [15], quotient [13, 35, 45, 46, 75, 77], and

cuckoo [18, 49] filters, maintain an approximate representation of

a set or a multiset. The approximate representation saves space by

allowing queries to occasionally return a false positive. For a given

false-positive rate 𝜀: a membership query to a filter for set 𝑆 returns

present for any 𝑥 ∈ 𝑆 , and returns absent with probability at least
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1−𝜀 for any 𝑥 ∉𝑆 . A filter for a set of size 𝑛 uses space that depends

on 𝜀 and 𝑛 but is much smaller than explicitly storing all items of 𝑆 .

Filters offer performance advantages when they fit in cache but

theunderlyingdatadoesnot. Filters arewidelyused indatabases, net-

works, storage systems, machine learning, computational biology,

andotherareas [6, 17, 19, 25, 26, 40, 41, 47, 50, 57, 78, 81, 88, 89, 94, 104].

For example, in databases, filters are used to summarize the contents

of on-disk data, query optimization, and table joins [9, 10, 20, 29, 30,

32, 58, 59, 80, 94, 100, 101]. In networks, they are used to summarize

cachecontents, implementnetwork routing, andmaintainprobabilis-

ticmeasurements [19]. In computational biology, theyareused to rep-

resent huge genomic data sets compactly [4, 5, 25, 73, 74, 76, 78, 88].

Filters can be broadly classified according to the operations they

support. Static filters do not support insertions or deletions and are
built on a set of items that are known at the time of construction. Ex-

amples of these filters includeXORfilters [52] andRibbonfilters [44].

Semi-dynamic filters support insertions but no deletions. Such fil-
ters include the Bloom filter [15] and Prefix filter [48]. For the most

part, staticandsemi-dynamicfiltersareonlysuitable for representing

immutable data (e.g., files in an LSM-tree or keys in a join operation).

In contrast, dynamic filters, such as cuckoo and quotient filters,
support both insertions and deletions. In fact, quotient filters support

a wide number of features including the abilities to (1) efficiently

scale out of RAM, (2) resize dynamically, (3) count the number of

times each input itemoccurs (representmultisets), (4) handle skewed

inputdistributions (whichare common inDNAsequencingandother

real-world datasets), (5) associate small valueswith keys, a variant of

filters calledmaplets, and (6) scale with the number of threads (i.e.,

achieve high concurrency). Recent advances such as InfiniFilter [35]

allow dynamic filters to expandmore efficiently and indefinitely.We

will discuss various modern data-intensive applications that have

evolved to take advantage of these features.

Recently, researchers have introduced adaptive filters [12, 63,
68, 96]. Adaptive filters, such as the adaptive quotient filter [12, 96],

telescoping filter [63], and adaptive cuckoo filter [68], update their

structure upon detecting a false positive to avoid repeating the same

errors in the future. Furthermore, the Adaptive quotient filter is

monotonically adaptive, which means that the performance and

false-positive probability guarantees continue to hold even for ad-

versarial workloads.

Range filters [1, 43, 51, 102, 103], on the other hand, are a gener-
alization of the classic point filtering problem to allow an interval as

the filter input. Currently, range filters are mainly used in databases

to quickly determine whether a given key range is empty to avoid

unnecessary disk I/Os for a range query.

1.1 Goals
The primary goal of the tutorial is to bring together researchers who

are at the forefront of filter data structure research and make the

https://doi.org/10.1145/3626246.3654681
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communities (theory, systems, and applications) aware of the recent

developments. Thiswill further help uncover the open research prob-

lems, both in theory and systems, and increase interaction among

researchers to tackle those problems.

The talks fromexpertswill help researchers understand the recent

advancements in filter theory and practice. Especially, the advanced

API supported by modern filters compared to traditional filters such

as Bloom filters. This will make the audience aware of modern ways

of using filters in their applications and how they can reap the full

potential of filters to achieve performance and scalability. For ex-

ample, systems developers still use Bloom filters in traditional ways

leaving performance on the table. Using modern filters (such as

fingerprinting-based and adaptive filters) with advanced features

canhelp reducedevelopment time andalso simplify systempipelines.

Finally, this tutorial will help foster new collaborations between

researchers doing filter data structure research and also between

core data structure researchers and application/systems researchers.

1.2 Duration and format
The tutorial duration is 3 hours. The tutorial will be organized as a

combination of research talks and a panel discussion. The research

talkswill help give a brief overview of filter data structures and state-

of-the-art researchacrossvarious fronts, suchasmaplets, expandable

filters, range filters, GPU filters, etc. We will also cover the modern

filter API and how researchers can integrate filters into their applica-

tions. The tutorial will cover how various application domains (ma-

chine learning, computational biology, storage, databases) use filters.

2 TYPES OF FILTERS
Filter data structures can be broadly classified into static, semi-
dynamic, and dynamic. Static filters approximately represent a set

of items that must be known before building the filter. Examples of

these filters include XOR filters [52] and Ribbon filters [44]. Semi-
dynamic filters such as Bloom [15] and Prefix filters [48] support

insertions without knowing the set of keys in advance. However, the

set size must be known in advance to provide a guarantee over the

false positive rate. As such, semi-dynamic filters are also typically

only used for representing static key sets.

In contrast, dynamic filters approximately represent a set of items

that do not need to be known before the construction. Dynamic

filters have seen much more advancement in recent years as appli-

cations often do not know the set of items in advance. Examples of

dynamic filters are quotient filters [13, 35, 45, 46, 71, 75] and cuckoo

filters [18, 49]. This tutorial will cover in detail the mechanics and

trade-offs of these filters and their many variants.

A dynamic filter is known to require 𝑛 log𝜀−1 + Ω(𝑛) bits. For
example, the quotient filter uses 𝑛log𝜀−1+2.125𝑛 bits [75] and the
cuckoo filter uses 𝑛log𝜀−1+3𝑛 bits [49]. When 𝜀 has typical values

such as 2
−8

or 2
−16

, then the overhead of 2.125𝑛 bits increases the

space by 25% (resp. 12.5%), compared to the a filter that uses𝑛log𝜀−1.
(Note that a Bloom filter uses 1.44𝑛log𝜀−1, so it beats a modern filter

for space only in non-practical cases where 𝜀 is close to one.)

2.1 Fingerprint-based dynamic filters
Most dynamic filters are fingerprint-based. They compactly and ex-

actly store small, lossy fingerprints in a table using quotienting [71].

In quotienting, a 𝑝-bit fingerprintℎ(𝑥) is divided into two parts: the
first 𝑞 bits ℎ0 (𝑥) is called the quotient and the remaining 𝑟 =𝑝−𝑞
bitsℎ1 (𝑥) is called the remainder . The quotient is stored implicitly

and only the remainder is stored explicitly to save space.

Quotient filters [13, 45, 46, 75, 77] use Robin Hood hashing (a

variant of linear probing) to store the remainders in a linear table.

To resolve soft collisions (i.e., when two fingerprints share the same

quotient but have different remainders) it uses 2-3 extra metadata

bits
1
to resolve collisions and efficiently performqueries. The cuckoo

filter [18, 49] on the other hand uses a 4-way associative table to

store remainders and 3 metadata bits. It employs cuckoo hashing to

resolve collisions. Each item is hashed to two locations in the table

and it performs kicking to make space for the new incoming item.

Other variants such as the Crate [14] and Prefix [48] filters chain

hash buckets to resolve collisions.

2.2 Expandable filters
In many applications that use filters, the data size grows over time.

This creates a need for filters that can expand alongwith the data. For

example, many modern log-structured key-value stores employ an

in-memory maplet to map the location of each data entry in storage

[7, 21, 38, 82]. As the data size grows, themapletmust expand tomap

a greater number of keys and their storage locations. In the networks

community, expandable filters have recently been pointed out as

pivotal for supporting black lists and multicast routing [97]. In the

architecture community, expandable filters have been proposed to

implement page tables [87].

The difficulty common to all filters with respect to expanding

is that they store hashed representations of keys rather than the

original keys themselves. Hence, an original key cannot be rehashed

when expanding, as done with a regular hash table. The obvious

workaround is to scan the original data and construct a filter with

greater capacity from scratch. However, the cost of traversing the

whole data set can be prohibitive. Another possibility is to pre-

allocate a very large filter in advance, but thiswastes a lot ofmemory

from the get-go and restricts the ultimate set size the filter can repre-

sent. Yet another option is to create a chain (i.e., a linked list) of filters,

and to add new filters to this chain as the data grows. Some works

propose to add fixed-size filters to this chain [24, 53, 54], while others

propose adding filters of geometrically increasing capacities [2, 98].

Either way, this approach increases query costs as all filters along

the chain potentially need to be searched during a query [2, 72, 98].

A few recent filters conceptually form a hash ring of buckets to

support elastic expansion [65, 99]. The issue is that queries, deletes,

and insertions all become logarithmic as a search tree has to be

searched to find a given entry’s bucket.

Quotient filters provide limited support for expansion: it is possi-

ble todouble their capacity and sacrificeonebit fromeachfingerprint

to uniformly map it to the expanded hash table. The problem is that

the fingerprints shrink as the data grows, and this increases the

false positive rate (FPR). Eventually, the fingerprint bits run out, at

which point the filter returns a positive for every query, and it cannot

continue expanding.

1
The original quotient filter [13] uses 3 metadata bits, the counting quotient filter [75]

uses 2.125 metadata bits, and the vector quotient filter [77] uses 2.914 metadata bits.
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Inspired by a theoretical construction [72], Taffy Cuckoo filter [8]

allows expanding up to a knownuniverse sizewhilemaintaining fast

queries and a stable FPR, though it does not support deletes. The core

idea is to use a hash table that supports variable-length fingerprints

by augmenting each slot with self-delimiting unary padding. This

allows sacrificing a bit from every existing fingerprint to uniformly

map it to a larger hash table during expansion, while still setting

long fingerprints to new entries inserted after expansion. InfiniFilter

[35] improves on these ideas by supporting deletes and expanding

up to an unbounded universe size, though queries are not constant

time. Themore recent Aleph Filter [34] improves on InfiniFilter with

a constant time guarantee on all operations.

2.3 Adaptive filters
Anadaptive filter is a filter that returnsTruewithprobability atmost

𝜀 for every negative query, regardless of answers to previous queries.

For a dictionary using an adaptive filter, any sequence of 𝑛 negative

queries will result in 𝑂 (𝜀𝑛) false positives, with high probability.

This gives a strong guarantee on the number of (expensive) negative

accesses that the dictionary will need to make to disk. This is true

even if the queries are selected by an adaptive adversary.

Adaptive filters are a generalization of traditional filters that en-

able filters to be employed for a diverse set of problems. Prior work

has considered each of these problems separately and consequently

has developeddistinct approaches basedon traditional filters to solve

each of them. Examples include cascading Bloom filters [91], static

XOR filters [83], seesaw counting filters [64], telescoping filters [63],

and adaptive cuckoo filters [68]. All these filter variants turn out to

be suboptimal in terms of performance and accuracy guarantees.

Bender et al. [11, 12] define the notion of an adaptive filter, which

offers strong guarantees on the number of false positives that an

application will see, even with a skewed or adversarial query distri-

bution, and present the broom filter, which meets their definition.

Bender et al. [11] analyzed the performance of broomfilters [12]
on queries that obey Zipfian distributions. Lee et al. [63] proposed

telescoping filters to address the skewed query distribution problem.

Mitzenmacher et al. [68] proposed adaptive cuckoofilters to solve the

skewed-query-distribution problem. Recently, Wen et al. [96] pro-

posed a practical implementation of the adaptive quotient filter that

ismonotonically adaptive and offers strong performance guarantees.

2.4 Maplets
Across applications ranging from genomics [67] to storage engines

[7, 21, 28, 38, 82], it is desirable to associate a small value to each key

in a filter. Such key-value filters are referred to as maplets [28]. A

query to an existing key in amaplet must return the value associated

with this target key and potentially a few additional arbitrary values.

Furthermore, most maplets return arbitrary value/s when queried

for a non-existing key. It is the responsibility of the application to

deal with the noise in the query result (e.g., by doing extra work

to check which is the real value). Existing maplets can be classified

with respect to the average number of values returned for positive

vs. negative queries, i.e., the expected positive result size (PRS) and

the expected negative result size (NRS).

Bloomier filter [22] can be thought of as a XOR filter [52] that

stores fixed-width values rather than fingerprints in the hash table

slots. While it supports updates to values associated with existing

keys, it does not support insertions of new data entries. Its PRS and

NRS are both 1.

The more recent cuckoo and quotient filters can be easily trans-

formed into maplets by extending each slot in the hash table to also

store a value alongside the key’s fingerprint [28, 38]. Such maplets

have a PRS of 1 + 𝜀 and a NRS of 𝜀. They support dynamic inser-

tions and deletions, and they can be made expandable as shown in

Section 2.2. Quotient filter-based maplets are extensively used in

genomic applications for building inverted string indexes [3–5, 73].

Recent storage engines have pioneered the design of dynamic

maplets with PRS of 1 to bound tail latency. They do so by detecting

and eliminating fingerprint collisions on the insertion path. SlimDB

employs an auxiliary dictionary that stores the full keys of insertions

that collided with existing fingerprints [82]. In contrast, the Pliops

Delta Hash table is a maplet that resolves fingerprint collisions by

succinctly encoding the indexesof thefirst differentiatingbits among

all fingerprints that coincide within a hash table bucket [39].

Some maplets require storing multiple values or even variable-

sized values per key [38, 73]. Quotient filters are adept at this because

theiruseof linearprobingallows storingvariable-sizedentries across

adjacent slots, and as many values as required within a run.

2.5 Range filters
Range filtering is a generalization of the classic point filtering prob-

lem to allow an interval as the filter input. It is also known as the

𝜀-approximate range emptiness problem [51]: given a set S, how to

determine the “emptiness” of an interval 𝐼 = [𝑎,𝑏] (i.e., [𝑎,𝑏]∩𝑆 =∅?)
with a false positive probability<𝜀?Goswami et al. [51] gave aworst-

case space lower bound for any data structure (i.e., a range filter) ca-

pable of answering the range emptiness queries:Ω(𝑛lg(𝐿/𝜀))−𝑂 (𝑛)
bits, where 𝑛 is the number of points in set 𝑆 , and 𝐿 is the maximum

interval length allowed. Currently, range filters are mainly used in

LSM-tree-based storage engines (e.g., RocksDB) to reduce unneces-

sary I/Os for range queries (e.g., SELECT * FROM T WHERE T.year
BETWEEN 2020 AND 2024).

The Adaptive Range Filter (ARF) [1] introduced in Hekaton [43]

is considered the first attempt to build a practical range filter. ARF

encodes the entire integer key space using a binary tree. ARF only

works well with a stable or repeating integer workloads. However,

the high training overhead prevents ARF from solving the general

range filtering problem efficiently.

The first general-purpose range filter is the Succinct Range Filter

(SuRF) [102, 103]. SuRF stores the unique prefixes of the keys in the

set using a trie structure. The trie is encoded with space close to the

information-theoretic lower bound. SuRF then uses additional bits

from each key’s (hashed) suffix to strike trade-offs between space

and false-positive rate (FPR). Although SuRFpioneers the research of

practical range filters and achieves impressive speedup on RocksDB,

it has major limitations. First, SuRF lacks a theoretical guarantee for

the space and range query FPR. An adversarial workload (e.g., each

pair of keys produces a unique long prefix) can destroy SuRF’s space

efficiency. Second, SuRF is a static data structure, which limits its

use in applications that require updating the filter frequently.

Proteus [60] improves SuRF’s design by combining the Fast Suc-

cinct Trie (FST) used in SuRF with a prefix Bloom filter. The FST in
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Proteus only stores each key prefix up to a uniform length 𝑙1, while

the Bloomfilter records the existence of all the key prefixes of length

𝑙2> 𝑙1. Proteus requires query samples to determine the parameters

(i.e., l1 and l2) to achieve an optimal false positive rate under a mem-

ory budget. Therefore, it must maintain a query cache and rebuild

itself upon a workload shift to provide robust performance.

Rosetta [66]addressesSuRF’sfirst limitationbyarrangingahierar-

chy of Bloomfilters forming a segment tree conceptually. The Bloom

filter at each level records all the key prefixes of the corresponding

length. A querying range is decomposed into dyadic intervals, where

the Bloom filter covering each interval is probed (recursively down

the subtree if necessary) to determine the emptiness of that dyadic

interval. Rosetta provides a theoretical guarantee for space and is

robust against the above adversarial workload for point and short-

rangequeries.As the querying rangegets larger, Rosetta’s FPRgrows

rapidly and eventually provides no filtering. Another major limita-

tion of Rosetta is its high CPU overhead. The benefit of trading CPU

efficiency for better FPRmaydiminish asmodernSSDsget faster [38].

Besides Rosetta, Bloom-filter-based solutions also include REn-

coder [95] and bloomRF [69]. REncoder reduces Rosetta’s compu-

tational overhead by leveraging the bit locality within the Bloom fil-

ters. The Sparse Numerical Array-Based Range Filters (SNARF) [92]

adopts the “learned” approach to solve the range filtering problem.

SNARF models the keys’ cumulative distribution function (CDF) us-

ing linear splines and thenmaps the keys according to the estimated

CDF to a sparse bit array. A range query returns false if its mapped

interval in the bit arrays has no bit set. The length of the bit array

controls the false positive rate of the filter.

Themost recent Grafite [31] proposes a practical implementation

of the algorithm introduced inGoswami et al. [51]. It hashes the keys

using a hash function that preserves the locality of the keys while

having a small collision probability. The hash codes are sorted and

encoded using the classic Elias-Fano code. Compared to the prior

solutions, Grafite exhibits a more robust performance under work-

loads with high correlations between keys and queries. Compared

to SuRF, Grafite fixes SuRF’s vulnerability to adversarial workloads

but sacrifices the ability to handle non-integer keys. Grafite is also

a static structure. A dynamic and expandable range filter is still an

unsolved problem.

2.6 Counting filters
Counting filters generalize traditional point filters tomultisets. They

support insert,qery, and delete operations, except a query for

an item 𝑥 returns the number of times that 𝑥 has been inserted. A

counting filter may have an error rate 𝛿 . Queries return true counts

with probability at least 1−𝛿 .Whenever a query returns an incorrect

count, it must always be greater than the true count.

The counting Bloom filter (CBF) is an early example of a counting

filter. The CBF was originally described as using fixed-sized coun-

ters, which means that counters could saturate. This could cause the

counting Bloom filter to undercount. Once a counter is saturated, it

can never be decremented by any future delete, and so after many

deletes, a counting Bloom filter may no longer meet its error limit

of 𝛿 . Both issues can be fixed by rebuilding the entire data structure

with larger counters whenever one of the counters saturates.

Thed-leftBloomfilter [16]offers the same functionalityasa count-

ing Bloom filter and uses less space, generally saving a factor of two

ormore. It uses d-left hashing and gives better data locality.However,

it is not resizable and the false-positive rate depends on the block size

used in building the data structure. The spectral Bloom filter [27] is

another variant of the counting Bloom filter that is designed to sup-

port skewed input distributions space-efficiently. The spectral Bloom

filter saves spacebyusingvariable-sizedcounters. It offers significant

space savings, compared to a plain counting Bloom filter, for skewed

input distributions. However, like other Bloom filter variants, the

spectral Bloom filter has poor cache locality and cannot be resized.

The counting quotient filter (CQF) [75] is a space-efficient and

scalable counting filter that offers good performance on arbitrary

input distributions, including highly skewed distributions. The CQF

is based on the quotient filter and uses a variable-length encoding for

counters to achieve asymptotically optimal space for encoding coun-

ters. The variable-length encoding also enables theCQF to efficiently

handle highly-skeweddistributions often seen in real-world datasets.

2.7 Static filters (XOR/Ribbon)
In some applications of filters, such as log-structured merge trees

(LSMs) [20, 32], where filters are used to speed up membership

queries (but not successor queries), the set forwhich the filter is built

is known ahead of time. Since static filters can, in theory, be smaller

than dynamic filters, and since RAM is usually not big enough to fit

all the filters needed to achieve performance in an LSM, the question

becomes: are there static filters that achieve nearly 𝑛log𝜀−1 bits of
space, while being reasonably fast to build and very fast to query?

Researchers have developed so-called algebraic filters that com-

pute a representation of the set to be filtered. The XOR filter was

the first of such filters, and it achieves 1.22𝑛log𝜀−1 bits. The XOR+
filter achieves 1.08𝑛log𝜀−1+0.5𝑛 bits, which is better for realistic 𝜀.
The ribbon filter improves this bound to 1.005𝑛log𝜀−1+0.008𝑛 bits,
under certain assumptions and has better construction and query

times. The ribbon filter is available in the LSM tree-based RocksDB.

It is potentially useful when space is at an absolute premium, though

its query times remain slower than the fast competing filters.

2.8 Exploiting the query distribution
A recent class of filters exploits knowledge of the query workload to

improve the false positive rate and/or space. To operate, these filters

require a sample of historical queries as input. They can then train a

classifier to predict the likelihood of each potential key being queried

and the probability of its existence in the dataset [61, 79]. Such a

classifier can then be used to learn to predict a positive outcome for

frequently accessed positive keys and thereby avoid having to insert

them into a regular filter to save space. In contrast, stackedfilters [42]

exploit knowledge of frequently queried non-existing keys to insert

them into a hierarchy of additional filters and thereby exponentially

decrease the false positive rate when querying for them.

3 APPLICATIONS
3.1 Storage engines & databases
A storage engine is the component of a database system that lays

out data on a storage device, rendering it with structure. Most mod-

ern storage engines organize data loosely in storage to optimize for
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data ingestion. At the same time, they employ in-memory filters or

maplets to facilitate queries. In particular, LSM-tree [70] is a write-

optimizeddata structure that is nowthe coreofmanystorage engines

and KV-stores (e.g., RocksDB, Cassandra, HBase, SplinterDB, etc).

It works by flushing incoming data as small sorted files to storage

and gradually sort-merging them. Typically, there is a Bloom filter

in memory for each file to allow point queries to skip files that do

not contain the target entry. As each file is immutable once created,

however, any static filter is applicable in this context. Furthermore,

the requirement of LSM-trees to support range queries kick-started

the line of research on range filters, which we discuss in Section 2.5.

Filtersenabledeeperoptimizationopportunities forLSM-trees [85].

Monkey [32, 33] assigns smaller false positive rates to filters of

smaller files to reduce query cost from 𝑂 (𝜀 · lg𝑁 ) to 𝑂 (𝜀) I/Os by
causing the sum of false positive rates to converge with respect to

the number of files in the system. The Dostoevsky [36] and LSM-

Bush [37] systems further harness this technique to compact smaller

filesmore lazilywhile setting theirfilters lower falsepositive rates.By

so doing, they reduce write-amplification from𝑂 (lg𝑁 ) to𝑂 (lglg𝑁 )
without harming query cost or the memory footprint [36, 37].

Yet another strand of work replaces the multiple filters of an LSM-

tree with a single maplet that maps each key in the system to the file

in which corresponding data entry resides. SlimDB [82] pioneered

this approach to eliminate false positives using an auxiliary dictio-

nary that resolves all fingerprint collisions. Chucky [38] reduces the

memory footprint for such maplets by compressing file identifiers

usingHuffman coding. SplinterDB [28] employs amaplet for a collec-

tion of files rather than a filter for each individual file to significantly

reduce query CPU overheads. GRF [93] is a recent global range filter

for LSM-tree utilizing SNARF [92].

Circular logs are another class of recent storage engines that op-

timize for write ingestion even more than LSM-trees. A circular log

flushes all application insertions/updates/deletes as log records into

an append-only file in storage, and it occasionally garbage-collects

this log to remove obsolete entries [7, 21, 39]. To efficiently find

entries in this log, there is a maplet in memory to map each entry in

the log. It is crucial for thesemaplets to support updates, deletes, and

expansion to reflect modifications and additions to the underlying

data. It is also crucial for these maplets to exhibit high performance

and low false positive rates. Interestingly, no system that we are

aware of uses maplets that meet these requirements, and so we ex-

pect recent and ongoing research on maplets to significantly impact

this area in the coming years.

Filter data structures are also widely used to process selective

equality joins. A common approach is to build a filter over quali-

fied join keys from the smaller table [62]. When the larger table is

scanned,we can check its join keys against this filter to preemptively

discard rows with non-matching join keys in the smaller table. This

helps reduce the number and sizes of join partitions to improve both

CPU utilization and I/Os.

3.2 Computational biology
Filters are extensively used to represent large genomic data in the

formof𝑘-mers (length-𝑘 substrings). Representing the genomic data

as 𝑘-mers enables applications to efficiently perform sequence-level

searches and genomic assembly over the sequences.

Solomon and Kingsford [88] first introduced the experiment dis-

covery problem where a search for a query set 𝑞 of 𝑘-mers must

return all the experiments with a fractionΘ of the set 𝑞 is present.

They introduced the sequence Bloom tree (SBT) [55, 88], a binary

tree of Bloom filters. The leaves of the SBT represent individual

sequencing experiments, and the associated Bloom filter holds the𝑘-

mers present in this experiment. The Bloom filter of an interior node

𝑛 represents the (approximate) set of 𝑘-mers present in the leaves of

the subtree rooted at 𝑛. Given the false positives in the Bloom filters

the SBT index also has false positives in the final results.

Mantis [3–5, 73] takes an inverted-index approach to support fast

and efficient sequence-level searches. Mantis proved to be smaller,

faster, and exact compared to the SBT which is an approximate in-

dex. Subsequent versions Mantis improved upon the scalability and

indexed up to 40K experiments from the SRA comprising of more

than 100TB of sequencing data. Mantis uses the counting quotient

filter [75] as a maplet to map𝑘-mers to the collection of experiments

in which the 𝑘-mer appears. Each 𝑘-mer is associated with a unique

bit vector of length equal to the number of experiments. Addition-

ally, the quotient filter allows for an exact mapping by employing

fingerprints that match the original key size.

Bloom and quotient filters have been used to compactly represent

de Bruijn graphs. In a de Bruijn graph, each node is a 𝑘-length subse-

quence from the underlying biological samples, and two nodes are

connected via an edge if they share a (𝑘−1)-length subsequence. Pell
et al. [78] introduced a probabilistic representation of the de Bruijn

graph using a Bloom filter to represent the underlying set of 𝑘-mers.

Though this representation admits false positives in the edge set,

they observe that this has little effect on the large-scale structure of

the graph until the false positive rate becomes very high (i.e., ≥ 0.15).

Building upon this probabilistic representation, Chikhi and Rizk [25]

introduce an exact de Bruijn graph representation that couples a

Bloom-filter-based approximate de Bruijn graph with an exact table

storing critical false positive edges.Chikhi andRizk’s deBruijngraph

representation exploits the fact that there are very fewedges connect-

ing true-positive 𝑘-mers to false-positive 𝑘-mers in the Bloom filter

representation of the 𝑘-mers set. Such edges are called critical false
positives. They observe that eliminating these critical false positives

is sufficient to provide an exact (navigational) representation.

Subsequently, Salikhov et al. [84] improved the memory require-

ments even further by replacing the exact table with a cascading

Bloomfilter. The cascading Bloomfilter stores an approximate set us-

ing a combination of an approximate (i.e., Bloom filter-based) repre-

sentationof the set anda smaller table to record the relevant false pos-

itives. This construction can be applied recursively to substantially

reduce the amount of memory required to represent the original set.

deBGR [76] generalizes the filter-based de Bruijn graph represen-

tation to theweighteddeBruijngraph.deBGRrepresentation isbased

upon the CQF [75] which itself provides an approximate representa-

tion of the weighted de Bruijn graph. Observing certain abundance-

related invariants that hold in an exact weighted de Bruijn graph,

Pandey et al. devised an algorithm that uses this approximate data

representation to iteratively self-correct approximation errors in the

structure. Amajor benefit of the deBGR approach is thatweighted de

Bruijn graph construction requires considerably less memory than

what is required by other tools, and the working memory is close

to the final memory required by the structure. Hence, the whole
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process can be done in a space-efficient manner. The deBGR repre-

sentation allows for the assembly of larger and more complicated

transcriptomes on smaller and less expensive computers (machines

provisioned for large transcriptome assembly often have upwards of

1TB of RAM). Moreover, given the capabilities enabled by the CQF

the de Bruijn graph representation is (at least partially) dynamic,

allowing 𝑘-mers to be removed from deBGR and the resulting data

structure efficiently updated. This capability is important to enable

simplifications of the de Bruijn graph that are typically carried out

prior to assembly (e.g., tip removal and bubble popping).

3.3 Networking and cybersecurity
Filters have been extensively used in networking and cybersecurity

applications [19]. Malicious websites pose a major threat to internet

users. For example, merely visiting a malicious URL may cause a

user’s web browser to be hijacked [90]. Users may also be actively

tricked into downloading harmful material or sharing sensitive in-

formation like passwords or credit card numbers. Since URLs are

long [56] and abundant [86], an effective way for a router to block

malicious URLs is to store them as the yes list of a filter [64].

Oneway to address this variability in false positive cost is to store

important false positives in a no list so that they are never blocked

and so they do not pay the URL-verification penalty. Chazellete et

al. [23] introduced the Bloomier filter which solves the yes/no list

problem. Li et al. [64] present the Seesaw Counting Filter (SSCF),

which implements a yes/no list filter specifically for the malicious

URL blocking problem. Reviriego et al. [83] present the Integrated

Filter which also implements a no list. Both focus on the case where

the no list is static and known ahead of time. The SSCF has an exten-

sion for adding no list items dynamically, but it is not guaranteed

to prevent false positives by doing so and can also introduce false

negatives. Recently,Wen et al. [96] show that the yes/no list problem

can be efficiently solved by employing adpative filters in both the

static and dynamic case.

4 INTENDEDAUDIENCE
The filter tutorial is intended for both core data structure and data-

base researchers as well as the researchers building production ap-

plications in industry. Researchers working on core indexing data

structures and database internalswill learn the latest advances in the

theory and practice of modern filters. Application developers and in-

dustry experts will learn about the latest filter API and performance

on modern hardware. They will further learn about case studies

from real-world use cases where feature-rich filters are employed

and the kind of performance impacts they have achieved. We will

also discuss use cases from computational biology and databases

where the applications are redesigned around the extended API and

performance of modern filters to achieve higher performance and

simplicity. The proposed tutorial will enable database researchers at

SIGMOD to learn about all the advancements in filters in one place.
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6 FILTER TUTORIAL FROM SPAA 2023
One of the authors of the current proposal (Prashant Pandey) or-

ganized a workshop on filter data structures at SPAA 2023 (Sym-

posium on Parallelism in Algorithms and Architectures). All the

talks were recorded and are available at: https://prashantpandey.

github.io/workshop/. The main goals of the workshop was to bring

together researchers at the forefront of data structure research and

help uncover the open research questions.

The format of the workshop included seven talks from experts in

the fieldworking on core filter data structures and also researchers in

application domains. The talks included recent advancements in the

theoryandpracticeoffilters suchas staticfilters, infinitely-resizeable

filters,maplets, adaptivefilters,GPUfilters, andapplicationsoffilters

in computational biology.

The insights gained from the previous workshop on filters have

motivated the design and proposal of the current tutorial on fil-

ters. The current tutorial involves four leading experts on filter data

structures to cover the depth and breadth of research on filter data

structures. The current teamwill present an overview of filters along

with the recent advancements in the theory of filters. We will then

cover themajor filter variants, such as range, counting, and adaptive

filters. We will also discuss how to redesign application using the

modern filter API.
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