From Filters to Hash Tables Rethinking Core Data Structures for Scalable Performance

Prashant Pandey, Northeastern University, Boston USA https://prashantpandey.github.io/

Scalability challenges ft. Twitter

Professor Computer Science and Comp Bio. Johns Hopkins University for one figure

 \bigcirc

 $\bigcirc 1$

2

Sequence Read Archive (SRA) is growing rapidly

SRA contains a lot of biological diversity information

Q: What if I find, e.g., a new disease-related gene, and want to see if it appeared in other experiments?

Scalability is a critical bottleneck in data science

SRA contains a lot of biological diversity information

This renders what is otherwise an immensely valuable public resource *largely inert*!

Efficient scaling needs efficient data movement

Gholami, Yao, Kim, Hooper, Mahoney, Keutzer IEEE Micro 2024

My goal as a researcher is to build scalable data systems with strong theoretical guarantees

Three approaches to build scalable data systems

Compress it

Goal: make data smaller to fit inside fast memory

Goal: organize data in a I/O friendly way

Organize it

Distribute it

Goal: distribute data & reduce inter-node communication

Vertically integrated research **COMPRESS ORGANIZE DISTRIBUTE LSM-Mantis Genomic Data Metagenomic BIOINFORMATICS 22** Learning (RDM) **Processing Toolchain** Assembler **IPDPS 23** (Squeakr, deBGR, Mantis, (MetaHipMer*) IPDPS 21, ACDA 23 **Rainbowfish**) Variation Graph **BIOINFORMATICS 17,18** VariantStore **ISMB 17, RECOMB 18, 19 Genome Biology 21** Cell Systems 18 **Anomaly detection** Graph system **Distributed KV** File System (LERT) (Terrace, BYO) (IONIA) (B^etrFS)

Dictionary data structures

- Queries
 - Predecessor/Successor
 - Range queries
 - Membership
- Updates
 - Insertions
 - Deletions

Dictionary data structures

- Queries
 - Predecessor/Successor
 - Range queries
 - Membership
- Updates
 - Insertions
 - Deletions

IcebergHT [SIGMOD 2023] Pandey, Bender, Conway, Farch-Colton, Kuszmaul, Tagliavini, Johnson

Hash tables are everywhere!

Built into many languages...

And performance is critical to many applications

Built into many software packages...

Hash table performance criteria

Hash table performance has a three-way trade off between insertion speed, query speed, and space

Hash table design mechanism

Stability

Items don't move after insertion

Low associativity

Map each item to a small number of locations

Space efficiency

Minimum overhead from pointers or over provisioning

Fast queries

Achieving all three is a long-standing open problem in hash table design

For example: linear probing

Stable

• Associativity
$$\approx \frac{\log N}{(1-\alpha)^2}$$
 ($\alpha = \text{load f}$

• E.g., N = 1Billion, $\alpha = 95\%$, associativity = 12000

Must choose between low associativity and space efficiency

For example: cuckoo hashing

- Low associativity: queries must check only 2 cache lines
- Space efficient, load factor > 95%
- But not stable

Insertion performance drops significantly due to excessive kicking at high load factors

Other hashing schemes:

- Other hashing schemes also lack one or more of these properties
- Chaining: not low associativity
- **Robin hood:** not stable and not low associativity at high load factors
- Hopscotch: not stable

Quadratic probing: not stable and not low associativity at high load factors

Single choice hashing (Balls n Bins)

Theorem: if you throw N balls into N bins, the fullest bin will have $\Theta(\log N/\log \log N)$ balls W.H.P.

Two choice hashing (Balls n Bins)

Theorem: if you throw N balls into N bins using minimum of two choices, the fullest bin will have $\Theta(\log \log N)$ balls W.H.P.

Two choice hashing provides asymptomatic improvement

Two choice hashing for hash tables

Theorem: if you throw N balls into N/log N bins using minimum of two choices, the fullest bin will have $\log N + \log \log N + O(1)$ balls W.H.P.

- By Berenbrink, Czumaj, Steger, Vöcking 2000

An almost solution: two choice hashing

- 2-choice hashing: hash to two buckets and put item in emptier bucket
- Stable: no kicking
- Low associativity: $O(\log N)$
- Space efficient: load factor 1 o(1)

Problem: it does not hold when we delete items

Opportunity: theorem does hold with deletions if average bucket occupancy is O(1)

Iceberg hashing (Single + Two choice hashing)

- **Iceberg theorem**: if you throw Nballs into $N/\log N$ bins of size $\log N + o(\log N)$, the number of overflow balls will be $h_0(k)$ $O(N/\log N)$
- Idea: use single-choice front yard to absorb most items
- Backyard has average occupancy of O(1)

Problem: buckets in the front yard span many cache lines, so queries must load many cache lines.

Iceberg hashing: metadata to reduce associativity

Problem: buckets in the front yard span many cache lines, so queries must load many cache lines.

Solution: store a fingerprint table.

IcebergHT implementation

- Highly concurrent operations
- IcebergHT supports in-place resizing; reduces peak memory usage
 - Multi-threaded resizes are implemented using distributed reader-writer locks
- Crash safety is trivial
 - Using CLWB; no need for a fence between key & value writes
 - Metadata stays in DRAM and is reconstructed during recovery

PMEM performance: operation throughput

Performance using 16 threads for PMEM hash tables. Iceberg outperforms state-of-the-art hash tables across all operations.

PMEM performance: space efficiency

IcebergHT offers higher space efficier CLHT (chaining) hash tables.

5	Space efficiency
	85%
	69%
	33%

IcebergHT offers higher space efficiency compared to Dash (extendible) and

DRAM performance: operation throughput

Performance using 16 threads for DRAM hash tables.

Iceberg outperforms state-of-the-art hash tables for insertions and offers similar performance to CLHT for queries.

IcebergHT deletes are slower.

DRAM performance: space efficiency

IcebergHT can achieve high space efficiency and maintain insertion throughput. CLHT space efficiency drops quickly. CuckooHT insertion throughput drops at high load factor.

BP-Tree [VLDB 2023] Xu, Li, Wheatman, Marneni, Pandey

External memory model for dictionaries

- How computations work [AV88]:
 - Data is transferred in blocks between levels
 - The number of block transfers dominate the running time
- Goal: minimize number of block transfers
 - Performance bounds are parameterized by block size B, memory size M, and data size N

- B/B+-trees [BM72] are ubiquitous:
 - In memory indexing [ZCO+15]
 - Databases [K§
 - Filesystems [F What does B stands for in B-trees?

Cost of operations in B-trees

Insert Search $O(log_B N/M)$ I/Os

B-trees: trade-off between search and inserts

Insert $O(log_B N/M)$ I/Os Search

B-trees are asymptotically optimal for point operations [BF03]

In this talk: trade-off between point and range operations in in-memory B-trees

Long range scans are critical in applications

Real-time analytics [PTPH12]

Graph processing [DBGS22, PWXB21]

Range scan in a B-tree

How to choose the node size?

B-trees show a trade-off in point-range operations

Large nodes speed up range scans at the cost of point inserts

Supporting fast range scans without sacrificing point update/query performance is a long-standing open problem in B-tree design

Our results: BP-tree [VLDB 2023]

Concurrent C++
implementation

TLX B-tree [Bingman18]

Masstree [MKM12]

OpenBW Tree [WPL+18]

Empirical evaluation using YCSB [CST+10] workloads Extended YCSB to include long range scans

Range operations Point operations

1.3X faster 0.95X — 1.2X faster

- 30X faster 0.94X — 7.4X faster
- 1.2X 1.6X faster

2.5X faster

Larger nodes improve range scan performance

Small nodes

Large nodes

Larger nodes cause overhead to maintain order

BP-tree design principles

Affine model for performance [BCF+19]

Large leaf nodes

Lazy ordering in leaf nodes

BP-tree design

BP-tree design

Buffered Partitioned Array: a special data structure for leaves

Insert (22)

Blocks

and at an and the second se

Insert (27)

and an antistic to the second s

Blocks

and an and the second sec

Blocks

Performance YCSB workloads

BP tree matches on point operations while being 2X faster for range scans

BP-trees takeaways

- I/O models (External memory and Affine) apply to in-memory indexes
- Relaxing ordering constraint in leaf nodes can help overcome traditional tradeoffs
- BP-tree supports fast range scans (OLAP) an optimal point updates/ queries (OLTP)

Source code:https://github.com/wheatman/BP-Tree

Ongoing research:

GPU-accelerated vector databases

Dynamic/Scalable GPU memory management

Energy efficient data management

Concluding remarks

- We need to develop new algorithmic paradigms to better leverage modern hardware
- future data analyses challenges

https://prashantpandey.github.io/

Acknowledgements:

Data systems backed by strong theoretical guarantees are key to tackle

