From Filters to Hash Tables

Rethinking Core Data Structures for Scalable Performance

T T e e

Prashant Pandey, Northeastern University, Boston USA
https://prashantpandey.github.io/

Scalability challenges ft. Twitter

e e ——— e —— e ———

@ Camille Marchet and 3 others liked | Professor Bioinformatics
| and Comp Bio. |
_ The University of Edinburgh |

: ‘“\ Mick W@tson
@BioMickWatson

Bioinformatics over the years:

1990s: doing a BLAST search
2000s: analysing 30 microarrays
201O nalysmg 6Tb of NGS\

‘
|

12:57 AM - 2/12/21 -

117 Retweets 9 Quote Tweets 697 Likes

Professor Computer
Science and Comp Bio. | O 11 Q) i)
Johns Hopkins University |

q ~ Michael Schatz @mike_schatz - 2h
— Replymg to ©

Sequence Read Archive (SRA) is growing rapidly

SRA contains a lot of biological diversity information

SRA growth
) — Open Access Bytes
1016-
1015_
[
o
14 _
'}?J 10
o)
o
=
0 1013 -
N
T;
1012_
1011_
https://www.ncbi.nim.nih.gov/sra/docs/sragrowth/
A D O . 09O NTDHEHOD 0N DO O N AN
Q" O N NN N YN N YN DY NV N O L
AW A A A AR AR AR AR AR AR AR AD AR AR AR AR AN AP
Years

Q: What if | find, e.g., a new disease-related gene, and want to see if it appeared in other experiments?

3

Scalabillity is a critical bottleneck in data science

SRA contains a lot of biological diversity information
SRA growth

] — Open Access Bytes

'—l

o
[
(o)}

.—l

o
ot
(8]

’—l

o
Pt
o

Size (Log-Scale)
'—l
=

.—l

o
[
N

o
(-
bt
lllll A I---

https://www.ncbi.nim.nih.gov/sra/docs/sragrowth/

N A A
v»araa
A AR AR AR AN AD

This renders what is otherwise an immensely valuable public resource largely inert!

4

Efficient scaling needs efficient data movement

Scaling of Peak hardware FLOPS, and Memory/Interconnect Bandwidth

H100
A100 -4
1000000-1 HW FLOPS: 60000x /20 yrs (3.0x/2yrs) - °_ ~
DRAM BW: 100x / 20 yrs (1.6x/2yrs) o © | TPUV4
Interconnect BW: 30x / 20 yrs (1.4x/2yrs) KNL | g™
K40 ‘ $
® o %
10000 ® GTX5809 g
3 o |) ®
— @ |
¢ o, e
o) ® e ©
Q i ® HBM2E
E 100 [tanium 2 I _ ® HBM ° HTZ .’ e
Z l GDDRS5 o ® .
GDDR4 @ ®e @ NVLink 4.0
| GDDR3 ® o | PCle 5.0
R10000¢ @ NVLink 1.0
1- PS ® o PCle 3.0
. PCle 2.0
Pentium Il Xeon PCle 1.0a
0.0l IIIIIIIIIIIIIIIIIII,IIIIIIIIIII'IIIIlllrlllrIllrlllllllrlllrIllrIII|IIII|IIIIIIIIIIIIII|1IIIIIIIIIIIIIIIIIIIIllllllIllllll
1996 1999 2002 2005 2008 2011 2014 2017 2020 2023
YEAR

Memory wall

Gholami, Yao, Kim, Hooper, Mahoney, Keutzer IEEE Micro 2024

My goal as a researcher is to build scalable data
systems with strong theoretical guarantees

Three approaches to build scalable data systems

=)

Compress it Organize it Distribute it

Goal: make data smaller to fit Goal: organize data in a I/0 Goal: distribute data & reduce
inside fast memory friendly way iInter-node communication

VertiCaI Iy integ ra'ted researCh COMPRESS ORGANIZE DISTRIBUTE

)

Applications

Data
structures

LSM-Mantis |
BIOINFORMATICS 22 |

Genomic Data
Processing Toolchain |
(Squeakr, deBGR, Mantis, |

Rainbowfish)
BIOINFORMATICS 17,18
ISMB 17, RECOMB 18, 19
Cell Systems 18

Metagenomic
Assembler

(MetaHipMer?)
IPDPS 21, ACDA 23

' Distributed Graph

Learning (RDM)
IPDPS 23

e e

Variation Graph

VariantStore
Genome Biology 21

- = e e

Distributed KV

(IONIA)
FAST 24

Anomaly detection
| (LERT)
. SIGMOD 20, TODS 21

File System
(BetrFS)

| Graph system |

(Terrace, BYO)
SIGMOD 21, VLDB 24

FAST 15, 16,
TOS 16,17

= — e = —— =

Sketches
ESA 18, APOCS
23, ISMB 19

Learned

Indexes
ACDA 25

| Filters
‘SIGMOD 17, 21, 24

VLDB 23, SPAA
19, TOPC 21

* Queries
* Predecessor/Successor
 Range queries
 Membership
 Updates
* |nsertions

e Deletions

* Queries
* Predecessor/Successor
 Range queries
 Membership

B-tree

 Updates
Hash table

e |nsertions

e Deletions

10

lcebergHT [SIGMOD 2023]
Pandey, Bender, Conway, Farch-Colton, Kuszmaul, Tagliavini, Johnson

Hash tables are everywhere!

e ——— e === e J—— e e e — = = e e

Built into many languages... Built into many software packages...

& redis &
i

And performance is critical to many applications

12

Insertion speed

\“Space

Query speed

Hash table performance has a three-way trade off between insertion speed,
query speed, and space

13

Hash table design mechanism

Stability Low associativity Space efficiency
ltems don’t move after Map each item to a small Minimum overhead from
insertion number of locations pointers or over provisioning

f Fast queries ‘ Low space

14

f Fast insertion

Achieving all three Is a long-standing open
problem In hash table design

For example: linear probing

e Stable

L log N K — o
. Associativity & ——— (a = load factor)

(1 —-a)?
 E.g., N =1Billion, a = 95%, associativity = 12000

Must choose between low associativity and space efficiency

16

For example: cuckoo hashing

 Low associativity: queries must check only 2 2 |l b | c
cache lines

p /,\ W
O 7 N
7

e Space efficient, load factor > 95%

e But not stable

Insertion performance drops significantly due to excessive kicking at high load
factors

17

Other hashing schemes:

* Other hashing schemes also lack one or more of these properties

* Chaining: not low associativity

 Robin hood: not stable and not low associativity at high load factors
* Hopscotch: not stable

 Quadratic probing: not stable and not low associativity at high load factors

18

Single choice hashing (Balls n Bing

e —— e —_— =

N balls

Theorem: if you throw N balls into N
bins, the fullest bin will have

O(og N/loglog N) balls W.H.P.

19

{wo cholice hashing (Balls n Bins)

. . . ————————

N balls

Theorem: if you throw N balls into N
bins using minimum of two choices,

the fullest bin will have ®(log log N)
palls W.H.P.

Pick 2 random bins |
| Place ball in the emptier bin !

20

Two choice hashing provides asymptomatic improvement

Asymptotic Behavior of logN/loglogN and loglogN
| —— logN / loglogN
| loglogN
4
|
|
\
5 -
)
3
> r
54
5
-
-
L
3 -
2 ~
N - < o o '~ ©
S S S S S S S
N (log scale)

21

Theorem: if you throw N balls into

N/log N bins using minimum of two
choices, the fullest bin will have

log N+ loglog N + O(1) balls W.H.P.

Pick 2 random bins |
| Place ball in the emptier bin !

- By Berenbrink, Czumaj, Steger, Vocking
2000

22

An almost solution: two choice hashing

 2-choice hashing: hash to two buckets and
put item in emptier bucket

o Stable: no kicking

» Low associativity: O(log N)

| buckets

» Space efficient: load factor 1 — o(1) hitk) g

Problem: it does not hold when we delete items =)
log N +loglog N + O(1)

slots \ —————

| Afew cachelines for
| most practical purposes |

Opportunity: theorem does hold with deletions if
average bucket occupancy is O(1)

23

* |ceberg theorem: if you throw N

lceberg hashing (Single + Two choice hashing)

Front yard

balls into N/log N bins of size

log N + o(log N), the number of
overflow balls will be

O(N/log N) ol

. ,

Idea: use single-choice front yard to

absorb most items

Backyard has average occupancy of

O(1)

Problem: buckets in the front yard span many cache

lines, so queries must load many cache lines.

24

log N + o(log N) slots

B N/logN
| buckets

Back yard

loglog N + O(1) slots

Overflow
(Almost never used)

—>[_|

Front yard Back yard

I/-W\ e
Q B N/logN
NS | b Overflow
| uckets
Fingerprints | (Almost never used)

= |]

hik) AV

- i
Cacheline
64 Bytes @
64 slots 8 slots
16 Cache lines 2 cache lines

Problem: buckets in the front yard span many cache

lines, so queries must load many cache lines. Solution: store a fingerprint table.

25

lcebergHT implementation

* Highly concurrent operations
* |cebergHT supports in-place resizing; reduces peak memory usage

 Multi-threaded resizes are implemented using distributed reader-writer
locks

* Crash safety is trivial
* Using CLWB; no need for a fence between key & value writes

 Metadata stays in DRAM and is reconstructed during recovery

26

PMEM performance: operation throughput

—_— B e

B B icebergHT I M Dash § M CLHT

— 80 n
RS i _
= 1 60
= -
= 1 40
o0 i
= |
é 20
0
Insertion Deletion Pos Query Neg Query

Performance using 16 threads for PMEM hash tables.

lceberg outperforms state-of-the-art hash tables across all operations.

27

PMEM performance: space efficiency

Hash tables Space efficiency

lcebergHT 85%

Dash 69%

CLHT 33%

lcebergHT offers higher space efficiency compared to Dash (extendible) and
CLHT (chaining) hash tables.

28

@ 100 | 1150
§ 80 |-
2 60| 1100
fb : |
§ 40 I 1 50
ﬁ 20

0 0

Insertion Deletion Pos Query Neg Query

Performance using 16 threads for DRAM hash tables.

lceberg outperforms state-of-the-art hash tables for insertions and offers similar performance
to CLHT for queries.

lcebergHT deletes are slower.

29

DRAM performance: space efficiency

20

—@®— ICEBERGHT —¢— Cuckoo
5 T | —A— TBB —a— CLHT-LB-RES

10 *

Throughput (M/s)

0 01 02 03 04 05 06 07 08 0.9

Space efficiency

lcebergHT can achieve high space efficiency and maintain insertion throughput.

CLHT space efficiency drops quickly.
CuckooHT insertion throughput drops at high load factor.

30

BP-Tree [VLDB 2023]
Xu, LI, Wheatman, Marneni, Pandey

External memory model for dictionaries

« How computations work [AV88]:

* Data is transferred in blocks between levels

 The number of block transfers dominate the running time
* Goal: minimize number of block transfers

* Performance bounds are parameterized by block size B, memory size M, and data size N

0L

BLEMLLLLLL

Memory

32

B-tree: a classic dictionary data structure

 B/B+-trees [BM72] are ubiquitous: BI '
* In memory mdexmg [ZCO+15] |

» Databases [K< -

* Filesystems [F What does B stands for in B-trees? O(logpN)
Boeing, balanced, between, broad, bushy, Beyer? 'VOTS

e ——— e — e ——— ————— e — —— — f— —_——

...~Bchildren... _®» & ... ~Bchildren...

33

Cost of operations in B-trees

Insert

Search

} O(logzgNIM) 1/0s -l- """""

(2 -

34

Search/Update path

B-trees: trade-off between search and inserts

Search | ———
| Write-optimized: |
LSM-trees, Be- E

Insert

} O(logzgNIM) 1/0s

Search

O(loggNIM)de- =

O(loggN/IM) Insert

B-trees are asymptotically optimal for point operations [BF03]

35

In this talk: trade-off between point and
range operations in In-memory B-trees

Long range scans are critical in applications

znnl
=: 0\

Real-time analytics Graph processing
[PTPH12] [DBGS22, PWXB21]

Range scan in a B-tree

| Dominates for {

'Range scan of size K
Range scan is optimal in the external memory model

38

How to choose the node size?

B-trees show a trade-off in point-range operations

| | |

@} Default node size: __ 1.5 | | —@— Insert —®— Find —— Range query -
= 1024 Bytes T ——

f—

=8 4| o *
N &

N

S B

w H _ _ _ //*:

- ~ —

S . F

O | 1‘ 1

Z | >2Xslower | —*

]{ range scans |
?F ‘

~
(
|
!
|
|

| | | |
28 29 210 211 212 213 214 215 216

Node size (bytes)

Large nodes speed up range scans at the cost of point inserts

40

Supporting fast range scans without
sacrificing point update/query performance Is
a long-standing open problem in B-tree design

Our results: BP-tree [VLDB 2023]

LT
&"_.' Concurrent C++
S.C implementation
rlLh

TLX B-tree [Bingman18]

Masstree [MKM12]

OpenBW Tree [WPL+18]

Empirical evaluation using YCSB [CST+10] workloads

Extended YCSB to include long range scans

Point operations

0.95X — 1.2X faster

0.94X — 7.4X faster

1.2X — 1.6X faster

42

Range operations

1.3X faster

30X faster

2.5X faster

f
f
f

Larger nodes improve range scan performance

Small nodes Large nodes

y
' : ' ; i g ¥ & i &
i i :
. ‘ g i ‘i ¥ | ¥ | ¥ 1 ¥ f
b i ' — ,’,,“ H ST i - - xA o - — ‘k w— if — ‘, T— 3y ,A: - ,,,‘(
l“

| reduce random |
“ access

laccess on new |
| node |

43

Larger nodes cause overhead to maintain order

Small nodes

Large nodes

BP-tree design principles

4T

Lazy ordering In
leaf nodes

Affine model for
performance Large leaf nodes

IBCF+19]

45

BP-tree design

o s e

46

BP-tree design

47

Buffered Partitioned Array

48

Buffered Partitioned Array

Insert (22)

49

Buffered Partitioned Array

Log Header Blocks

e e e EEEE——

Insert (22)

50

Buffered Partitioned Array

Log Header Blocks

Insert (27)

51

Buffered Partitioned Array

Log Header Blocks

e e e EEEE——

i -] i]) -] i -] -] i -] 3 i : h h 4 h
! t ' ' ' i i i L 4 4 " i t
i | i | | | | i H i
¥ \ \ i i i + i i t i i

52

Buffered Partitioned Array

Log Header Blocks

S Z e S

H -) h) h -) h - i - i h - § 3 § h i - i h } i b i - i o i i : - i - i i - 9 h
' ' i v (+ \ L ((+ (t
i { H | H | i t H i
¥ \ \ i i i + i i t i i

Sort log and count /
;‘ number of items in l
‘ ,"

each block

w‘

53

Buffered Partitioned Array

Log Header Blocks

S Z e S

H -) h) h -) h - i - i h - § 3 § h i - i h } i b i - i o i i : - i - i i - 9 h
' ' i v (+ \ L ((+ (t
i { H | H | i t H i
¥ \ \ i i i + i i t i i

Sort log and count /
;‘ number of items in l
‘ ,"

each block

w‘

54

Buffered Partitioned Array

Log Header Blocks

e e e EEEE——

Insert (27)

Sort and
redistribute all |
items

mber of items in |

;‘ nu
| each block

55

Buffered Partitioned Array

Log Header Blocks

e e e EEEE——

56

Normalized Performance

1.25
1.00
0.75
0.50
0.25
0.00

BP tree matches on point operations while being 2X faster for range scans

—_— ———r e —————— e — —

Performance wor

B BP-Tree [B--Tree

1.02
0.95 0.96

-

50% Find/ 50%
Insert

1.04

loads

B Masstree [Bwiree

1.05

0.03 0.03
95% Find/ 5% 100% Find 95% Short 100% Long 100% Long
Insert Range/ 5% Insert Range lteration Range Map

/L

Y
Original (OLTP)

57

/

Y
Added (OLAP)

BP-trees takeaways

* |/O models (External memory and Affine) apply to in-memory indexes

* Relaxing ordering constraint in leaf nodes can help overcome traditional
tradeoffs

 BP-tree supports fast range scans (OLAP) an optimal point updates/
queries (OLTP)

O @
3 0 Q0
Source code:https://github.com/wheatman/BP-Tree

58

Ongoing research:

%
2 o7

GPU-accelerated Dynamic/Scalable GPU Energy efficient data
vector databases memory management management

59

 We need to develop new algorithmic paradigms to better leverage
modern hardware

 Data systems backed by strong theoretical guarantees are key to tackle
future data analyses challenges

https://prashantpandey.github.io/

&SI, U.S. DEPARTMENT OF

3 A
| W £ &)
‘é % 'L%‘%\I 5 g
\\ = %}
R O
O (>
ZATES O%

Acknowledgements:

60

61

