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From Filters to Hash Tables
Rethinking Core Data Structures for Scalable Performance
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Sequence Read Archive (SRA) is growing rapidly
SRA contains a lot of biological diversity information

Q: What if I find, e.g., a new disease-related gene, and want to see if it appeared in other experiments?

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/
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Scalability is a critical bottleneck in data science

This renders what is otherwise an immensely valuable public resource largely inert!

SRA contains a lot of biological diversity information

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

Current search indexes 
~100 TB 
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Efficient scaling needs efficient data movement

Gholami, Yao, Kim, Hooper, Mahoney, Keutzer IEEE Micro 2024

Memory wall
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My goal as a researcher is to build scalable data 
systems with strong theoretical guarantees



Three approaches to build scalable data systems

Organize it

Goal: organize data in a I/O 
friendly way

Distribute it

Goal: distribute data & reduce 
inter-node communication 

Goal: make data smaller to fit 
inside fast memory

Compress it
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Vertically integrated research

Data 
structures

Systems

Applications

Genomic Data 
Processing Toolchain 

(Squeakr, deBGR, Mantis, 
Rainbowfish) 

BIOINFORMATICS 17,18 
ISMB 17, RECOMB 18, 19 

Cell Systems 18

LSM-Mantis 
BIOINFORMATICS 22

Variation Graph 
VariantStore 

Genome Biology 21

Metagenomic 
Assembler 

(MetaHipMer*) 
IPDPS 21, ACDA 23

Distributed Graph 
Learning (RDM) 

IPDPS 23

File System 
(BetrFS)  

FAST 15, 16,  
TOS 16, 17

Anomaly detection 
(LERT) 

SIGMOD 20, TODS 21

Graph system 
(Terrace, BYO) 

SIGMOD 21, VLDB 24

Distributed KV 
(IONIA)  
FAST 24

Filters 
SIGMOD 17, 21, 24

Sketches 
ESA 18, APOCS 

23, ISMB 19

Hash tables 
SIGMOD 23, 25

B-trees 
VLDB 23, SPAA 

19, TOPC 21

GPU DS 
PPoPP 23, 24

COMPRESS ORGANIZE DISTRIBUTE 

Adaptive 
Filters 

SIGMOD 25
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Learned 
Indexes  
ACDA 25



• Queries 


• Predecessor/Successor


• Range queries


• Membership


• Updates


• Insertions


• Deletions

Dictionary data structures
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• Queries 


• Predecessor/Successor


• Range queries


• Membership


• Updates


• Insertions


• Deletions

Dictionary data structures

Hash table} B-tree}
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IcebergHT [SIGMOD 2023]

Pandey, Bender, Conway, Farch-Colton, Kuszmaul, Tagliavini, Johnson
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Hash tables are everywhere!

 
 

Built into many languages… Built into many software packages…

And performance is critical to many applications
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Hash table performance criteria

Three-way 
trade-off Space

Insertion speed

Query speed

Hash table performance has a three-way trade off between insertion speed, 
query speed, and space
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Hash table design mechanism

Low associativity

Map each item to a small 

number of locations

Fast queriesFast insertion

Stability

Items don’t move after 

insertion

Space efficiency 
Minimum overhead from 

pointers or over provisioning

Low space 
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Achieving all three is a long-standing open 
problem in hash table design
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For example: linear probing 

• Stable


• Associativity   (  = load factor)


• E.g., N = 1Billion,  = 95%, associativity = 12000

≈
log N

(1 − α)2
α

α

a
b
c

K
h(k)

Must choose between low associativity and space efficiency
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For example: cuckoo hashing

• Low associativity: queries must check only 2 
cache lines 


• Space efficient, load factor > 95%


• But not stable

Insertion performance drops significantly due to excessive kicking at high load 
factors

Kick z

Kick p
a b c
d e f g

h i j z

l m o p

h0(k)

h1(k)

K
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Other hashing schemes:

• Other hashing schemes also lack one or more of these properties


• Chaining: not low associativity


• Robin hood: not stable and not low associativity at high load factors


• Hopscotch: not stable


• Quadratic probing: not stable and not low associativity at high load factors
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Theorem: if you throw N balls into  
bins, the fullest bin will have 

 balls W.H.P.

N

Θ(log N/log log N)

Single choice hashing (Balls n Bins)

….

N balls

 binsN
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Theorem: if you throw N balls into  
bins using minimum of two choices, 
the fullest bin will have  
balls W.H.P.


N

Θ(log log N)

Two choice hashing (Balls n Bins)

….

Pick 2 random bins 
Place ball in the emptier bin

N balls

 binsN
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Two choice hashing provides asymptomatic improvement



Theorem: if you throw N balls into 
 bins using minimum of two 

choices, the fullest bin will have 
 balls W.H.P.


- By Berenbrink, Czumaj, Steger, Vöcking  
2000

N/log N

log N + log log N + O(1)

Two choice hashing for hash tables

….

Pick 2 random bins 
Place ball in the emptier bin

N balls

 binsN/log N
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An almost solution: two choice hashing

• 2-choice hashing: hash to two buckets and 
put item in emptier bucket 


• Stable: no kicking


• Low associativity: 


• Space efficient: load factor 

O(log N)

1 − o(1)

h0(k)

h1(k)

K 

buckets
N/log N

 
slots

log N + log log N + O(1)

Problem: it does not hold when we delete items


Opportunity: theorem does hold with deletions if 
average bucket occupancy is O(1)
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A few cachelines for 
most practical purposes



Iceberg hashing (Single + Two choice hashing)

• Iceberg theorem: if you throw  
balls into  bins of size 

, the number of 
overflow balls will be 

N
N/log N

log N + o(log N)

O(N/log N) h1(k)

h2(k)

K

h0(k)

K



buckets
N/log N

 slotslog N + o(log N )  slotslog log N + O(1)

Front yard Back yard

Overflow 
(Almost never used)

• Idea: use single-choice front yard to 
absorb most items


• Backyard has average occupancy of 
O(1)

Problem: buckets in the front yard span many cache 
lines, so queries must load many cache lines.
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Iceberg hashing: metadata to reduce associativity

Problem: buckets in the front yard span many cache 
lines, so queries must load many cache lines.

h1(k)

h2(k)

K

h0(k)

K



buckets
N/log N

 slots

16 Cache lines 

64  slots

2 cache lines

8

Front yard Back yard

Overflow 
(Almost never used)

Solution: store a fingerprint table.

Fingerprints

Cacheline

64 Bytes

Use AVX512 
to query 
metadata
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IcebergHT implementation

• Highly concurrent operations


• IcebergHT supports in-place resizing; reduces peak memory usage


• Multi-threaded resizes are implemented using distributed reader-writer 
locks


• Crash safety is trivial


• Using CLWB; no need for a fence between key & value writes


• Metadata stays in DRAM and is reconstructed during recovery
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PMEM performance: operation throughput

Performance using 16 threads for PMEM hash tables.


Iceberg outperforms state-of-the-art hash tables across all operations.
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PMEM performance: space efficiency

IcebergHT offers higher space efficiency compared to Dash (extendible) and 
CLHT (chaining) hash tables.

Hash tables Space efficiency

IcebergHT 85%

Dash 69%

CLHT 33%
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DRAM performance: operation throughput

Performance using 16 threads for DRAM hash tables.

Iceberg outperforms state-of-the-art hash tables for insertions and offers similar performance 
to CLHT for queries.

IcebergHT deletes are slower.
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DRAM performance: space efficiency

IcebergHT can achieve high space efficiency and maintain insertion throughput.

CLHT space efficiency drops quickly.

CuckooHT insertion throughput drops at high load factor.
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BP-Tree [VLDB 2023]

Xu, Li, Wheatman, Marneni, Pandey
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• How computations work [AV88]: 

• Data is transferred in blocks between levels


• The number of block transfers dominate the running time


• Goal: minimize number of block transfers 

• Performance bounds are parameterized by block size B, memory size M, and data size N

Cache

Memory

M B

B

External memory model for dictionaries
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• B/B+-trees [BM72] are ubiquitous: 


• In memory indexing [ZCO+15]


• Databases [K98]


• Filesystems [RBM13]

B Pivots

… ~ B children …

B Pivots

… ~ B children …

B Pivots

… ~ B children …

~ N/B leaves

O(logBN)

B-tree: a classic dictionary data structure

What does B stands for in B-trees? 
Boeing, balanced, between, broad, bushy, Beyer?
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Cache

Memory

O(logBM)

O(logBN/M)

Search/Update path

O(B)

Insert

Search } O(logBN/M) I/Os

Cost of operations in B-trees
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B-trees are asymptotically optimal for point operations [BF03]

Insert

Search } O(logBN/M) I/Os

B-trees: trade-off between search and inserts

Optimal tradeoff 
curve

O(logBN/M)

O(logBN/M)

Search

Insert

Write-optimized: 
LSM-trees, Be-

Tree
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In this talk: trade-of between point and 
range operations in in-memory B-trees
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Real-time analytics 
[PTPH12]

Long range scans are critical in applications

Graph processing 
[DBGS22, PWXB21]
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Range scan in a B-tree

Range scan of size K

Cache

Memory

O(logBM)

O(logBN/M)
O(B)

Range scan O(logBN/M + K/B) I/Os

Dominates for 
short ranges

Dominates for 
long ranges

Range scan is optimal in the external memory model
38



How to choose the node size?
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B-trees show a trade-off in point-range operations

Large nodes speed up range scans at the cost of point inserts

Default node size: 
1024 Bytes

}
>2X slower 
range scans
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Supporting fast range scans without 
sacrificing point update/query performance is 

a long-standing open problem in B-tree design
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Our results: BP-tree [VLDB 2023]

Concurrent C++ 
implementation

Masstree [MKM12]

OpenBW Tree [WPL+18]

TLX B-tree [Bingman18] 0.95X — 1.2X faster

0.94X — 7.4X faster

1.2X — 1.6X faster

1.3X faster

30X faster

2.5X faster

Point operations

Empirical evaluation using YCSB [CST+10] workloads

Extended YCSB to include long range scans

Range operations
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Larger nodes improve range scan performance

Small nodes Large nodes

Random 
access on new 

node

Larger nodes 
reduce random 

access
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Larger nodes cause overhead to maintain order

Shift

Insert

Small nodes Large nodes

Shift

Insert

Larger nodes 
increase shift  

size

44



BP-tree design principles

Lazy ordering in 
leaf nodesLarge leaf nodes

Affine model for 
performance 

[BCF+19]
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BP-tree design
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BP-tree design

Buffered Partitioned Array:  
a special data structure for leaves
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Buffered Partitioned Array

25 8 7 15 19 89 13 8 17 32 50 93 95

Log Header Blocks
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Buffered Partitioned Array

25 8 7 15 19 89 13 8 17 32 50 93 95

Log Header Blocks

Insert (22)
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Buffered Partitioned Array
Log Header Blocks

Insert (22)

25 8 22 7 15 19 89 13 8 17 32 50 93 95
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Buffered Partitioned Array
Log Header Blocks

25 8 22 7 15 19 89 13 8 17 32 50 93 95

Insert (27)
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Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95
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Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Sort log and count 
number of items in 

each block
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Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Sort log and count 
number of items in 

each block

2+0=2 1+0=1 2+3=5 2+0=2
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Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Sort log and count 
number of items in 

each block

2+0=2 1+0=1 2+3=5 2+0=2

Sort and 
redistribute all 

items
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Buffered Partitioned Array
Log Header Blocks

7 17 25 50 8 13 19 22 27 32 89 93 95
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Performance YCSB workloads

BP tree matches on point operations while being 2X faster for range scans
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BP-trees takeaways 

• I/O models (External memory and Affine) apply to in-memory indexes


• Relaxing ordering constraint in leaf nodes can help overcome traditional 
tradeoffs


• BP-tree supports fast range scans (OLAP) an optimal point updates/
queries (OLTP)

Source code:https://github.com/wheatman/BP-Tree
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Ongoing research:

GPU-accelerated 
vector databases

Dynamic/Scalable GPU 
memory management

Energy efficient data 
management



Concluding remarks

• We need to develop new algorithmic paradigms to better leverage 
modern hardware 


• Data systems backed by strong theoretical guarantees are key to tackle 
future data analyses challenges

https://prashantpandey.github.io/
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