
Prashant Pandey, Northeastern University, Boston USA
https://prashantpandey.github.io/

From Filters to Hash Tables
Rethinking Core Data Structures for Scalable Performance

1

Scalability challenges ft. Twitter
Professor Bioinformatics

and Comp Bio.
The University of Edinburgh

Professor Computer
Science and Comp Bio.

Johns Hopkins University

2

Sequence Read Archive (SRA) is growing rapidly
SRA contains a lot of biological diversity information

Q: What if I find, e.g., a new disease-related gene, and want to see if it appeared in other experiments?

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

3

Scalability is a critical bottleneck in data science

This renders what is otherwise an immensely valuable public resource largely inert!

SRA contains a lot of biological diversity information

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

Current search indexes
~100 TB

4

5

Efficient scaling needs efficient data movement

Gholami, Yao, Kim, Hooper, Mahoney, Keutzer IEEE Micro 2024

Memory wall

6

My goal as a researcher is to build scalable data
systems with strong theoretical guarantees

Three approaches to build scalable data systems

Organize it

Goal: organize data in a I/O
friendly way

Distribute it

Goal: distribute data & reduce
inter-node communication

Goal: make data smaller to fit
inside fast memory

Compress it

7

Vertically integrated research

Data
structures

Systems

Applications

Genomic Data
Processing Toolchain

(Squeakr, deBGR, Mantis,
Rainbowfish)

BIOINFORMATICS 17,18
ISMB 17, RECOMB 18, 19

Cell Systems 18

LSM-Mantis
BIOINFORMATICS 22

Variation Graph
VariantStore

Genome Biology 21

Metagenomic
Assembler

(MetaHipMer*)
IPDPS 21, ACDA 23

Distributed Graph
Learning (RDM)

IPDPS 23

File System
(BetrFS)

FAST 15, 16,
TOS 16, 17

Anomaly detection
(LERT)

SIGMOD 20, TODS 21

Graph system
(Terrace, BYO)

SIGMOD 21, VLDB 24

Distributed KV
(IONIA)
FAST 24

Filters
SIGMOD 17, 21, 24

Sketches
ESA 18, APOCS

23, ISMB 19

Hash tables
SIGMOD 23, 25

B-trees
VLDB 23, SPAA

19, TOPC 21

GPU DS
PPoPP 23, 24

COMPRESS ORGANIZE DISTRIBUTE

Adaptive
Filters

SIGMOD 25

8

Learned
Indexes
ACDA 25

• Queries

• Predecessor/Successor

• Range queries

• Membership

• Updates

• Insertions

• Deletions

Dictionary data structures

9

• Queries

• Predecessor/Successor

• Range queries

• Membership

• Updates

• Insertions

• Deletions

Dictionary data structures

Hash table} B-tree}
10

IcebergHT [SIGMOD 2023]

Pandey, Bender, Conway, Farch-Colton, Kuszmaul, Tagliavini, Johnson

11

Hash tables are everywhere!

Built into many languages… Built into many software packages…

And performance is critical to many applications

12

Hash table performance criteria

Three-way
trade-off Space

Insertion speed

Query speed

Hash table performance has a three-way trade off between insertion speed,
query speed, and space

13

Hash table design mechanism

Low associativity

Map each item to a small

number of locations

Fast queriesFast insertion

Stability

Items don’t move after

insertion

Space efficiency
Minimum overhead from

pointers or over provisioning

Low space

14

Achieving all three is a long-standing open
problem in hash table design

15

For example: linear probing

• Stable

• Associativity (= load factor)

• E.g., N = 1Billion, = 95%, associativity = 12000

≈
log N

(1 − α)2
α

α

a
b
c

K
h(k)

Must choose between low associativity and space efficiency

16

For example: cuckoo hashing

• Low associativity: queries must check only 2
cache lines

• Space efficient, load factor > 95%

• But not stable

Insertion performance drops significantly due to excessive kicking at high load
factors

Kick z

Kick p
a b c
d e f g

h i j z

l m o p

h0(k)

h1(k)

K

17

Other hashing schemes:

• Other hashing schemes also lack one or more of these properties

• Chaining: not low associativity

• Robin hood: not stable and not low associativity at high load factors

• Hopscotch: not stable

• Quadratic probing: not stable and not low associativity at high load factors

18

Theorem: if you throw N balls into
bins, the fullest bin will have

 balls W.H.P.

N

Θ(log N/log log N)

Single choice hashing (Balls n Bins)

….

N balls

 binsN

19

Theorem: if you throw N balls into
bins using minimum of two choices,
the fullest bin will have
balls W.H.P.

N

Θ(log log N)

Two choice hashing (Balls n Bins)

….

Pick 2 random bins
Place ball in the emptier bin

N balls

 binsN

20

21

Two choice hashing provides asymptomatic improvement

Theorem: if you throw N balls into
 bins using minimum of two

choices, the fullest bin will have
 balls W.H.P.

- By Berenbrink, Czumaj, Steger, Vöcking
2000

N/log N

log N + log log N + O(1)

Two choice hashing for hash tables

….

Pick 2 random bins
Place ball in the emptier bin

N balls

 binsN/log N

22

An almost solution: two choice hashing

• 2-choice hashing: hash to two buckets and
put item in emptier bucket

• Stable: no kicking

• Low associativity:

• Space efficient: load factor

O(log N)

1 − o(1)

h0(k)

h1(k)

K

buckets
N/log N

slots

log N + log log N + O(1)

Problem: it does not hold when we delete items

Opportunity: theorem does hold with deletions if
average bucket occupancy is O(1)

23

A few cachelines for
most practical purposes

Iceberg hashing (Single + Two choice hashing)

• Iceberg theorem: if you throw
balls into bins of size

, the number of
overflow balls will be

N
N/log N

log N + o(log N)

O(N/log N) h1(k)

h2(k)

K

h0(k)

K

buckets
N/log N

 slotslog N + o(log N) slotslog log N + O(1)

Front yard Back yard

Overflow
(Almost never used)

• Idea: use single-choice front yard to
absorb most items

• Backyard has average occupancy of
O(1)

Problem: buckets in the front yard span many cache
lines, so queries must load many cache lines.

24

Iceberg hashing: metadata to reduce associativity

Problem: buckets in the front yard span many cache
lines, so queries must load many cache lines.

h1(k)

h2(k)

K

h0(k)

K

buckets
N/log N

 slots

16 Cache lines

64 slots

2 cache lines

8

Front yard Back yard

Overflow
(Almost never used)

Solution: store a fingerprint table.

Fingerprints

Cacheline

64 Bytes

Use AVX512
to query
metadata

25

IcebergHT implementation

• Highly concurrent operations

• IcebergHT supports in-place resizing; reduces peak memory usage

• Multi-threaded resizes are implemented using distributed reader-writer
locks

• Crash safety is trivial

• Using CLWB; no need for a fence between key & value writes

• Metadata stays in DRAM and is reconstructed during recovery

26

PMEM performance: operation throughput

Performance using 16 threads for PMEM hash tables.

Iceberg outperforms state-of-the-art hash tables across all operations.

27

PMEM performance: space efficiency

IcebergHT offers higher space efficiency compared to Dash (extendible) and
CLHT (chaining) hash tables.

Hash tables Space efficiency

IcebergHT 85%

Dash 69%

CLHT 33%

28

DRAM performance: operation throughput

Performance using 16 threads for DRAM hash tables.

Iceberg outperforms state-of-the-art hash tables for insertions and offers similar performance
to CLHT for queries.

IcebergHT deletes are slower.

29

DRAM performance: space efficiency

IcebergHT can achieve high space efficiency and maintain insertion throughput.

CLHT space efficiency drops quickly.

CuckooHT insertion throughput drops at high load factor.

30

BP-Tree [VLDB 2023]

Xu, Li, Wheatman, Marneni, Pandey

31

• How computations work [AV88]:

• Data is transferred in blocks between levels

• The number of block transfers dominate the running time

• Goal: minimize number of block transfers

• Performance bounds are parameterized by block size B, memory size M, and data size N

Cache

Memory

M B

B

External memory model for dictionaries

32

• B/B+-trees [BM72] are ubiquitous:

• In memory indexing [ZCO+15]

• Databases [K98]

• Filesystems [RBM13]

B Pivots

… ~ B children …

B Pivots

… ~ B children …

B Pivots

… ~ B children …

~ N/B leaves

O(logBN)

B-tree: a classic dictionary data structure

What does B stands for in B-trees?
Boeing, balanced, between, broad, bushy, Beyer?

33

Cache

Memory

O(logBM)

O(logBN/M)

Search/Update path

O(B)

Insert

Search } O(logBN/M) I/Os

Cost of operations in B-trees

34

B-trees are asymptotically optimal for point operations [BF03]

Insert

Search } O(logBN/M) I/Os

B-trees: trade-off between search and inserts

Optimal tradeoff
curve

O(logBN/M)

O(logBN/M)

Search

Insert

Write-optimized:
LSM-trees, Be-

Tree

35

In this talk: trade-of between point and
range operations in in-memory B-trees

36

Real-time analytics
[PTPH12]

Long range scans are critical in applications

Graph processing
[DBGS22, PWXB21]

37

Range scan in a B-tree

Range scan of size K

Cache

Memory

O(logBM)

O(logBN/M)
O(B)

Range scan O(logBN/M + K/B) I/Os

Dominates for
short ranges

Dominates for
long ranges

Range scan is optimal in the external memory model
38

How to choose the node size?

39

B-trees show a trade-off in point-range operations

Large nodes speed up range scans at the cost of point inserts

Default node size:
1024 Bytes

}
>2X slower
range scans

40

Supporting fast range scans without
sacrificing point update/query performance is

a long-standing open problem in B-tree design

41

Our results: BP-tree [VLDB 2023]

Concurrent C++
implementation

Masstree [MKM12]

OpenBW Tree [WPL+18]

TLX B-tree [Bingman18] 0.95X — 1.2X faster

0.94X — 7.4X faster

1.2X — 1.6X faster

1.3X faster

30X faster

2.5X faster

Point operations

Empirical evaluation using YCSB [CST+10] workloads

Extended YCSB to include long range scans

Range operations

42

Larger nodes improve range scan performance

Small nodes Large nodes

Random
access on new

node

Larger nodes
reduce random

access

43

Larger nodes cause overhead to maintain order

Shift

Insert

Small nodes Large nodes

Shift

Insert

Larger nodes
increase shift

size

44

BP-tree design principles

Lazy ordering in
leaf nodesLarge leaf nodes

Affine model for
performance

[BCF+19]

45

BP-tree design

46

BP-tree design

Buffered Partitioned Array:
a special data structure for leaves

47

Buffered Partitioned Array

25 8 7 15 19 89 13 8 17 32 50 93 95

Log Header Blocks

48

Buffered Partitioned Array

25 8 7 15 19 89 13 8 17 32 50 93 95

Log Header Blocks

Insert (22)

49

Buffered Partitioned Array
Log Header Blocks

Insert (22)

25 8 22 7 15 19 89 13 8 17 32 50 93 95

50

Buffered Partitioned Array
Log Header Blocks

25 8 22 7 15 19 89 13 8 17 32 50 93 95

Insert (27)

51

Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

52

Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Sort log and count
number of items in

each block
53

Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Sort log and count
number of items in

each block

2+0=2 1+0=1 2+3=5 2+0=2

54

Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Sort log and count
number of items in

each block

2+0=2 1+0=1 2+3=5 2+0=2

Sort and
redistribute all

items

55

Buffered Partitioned Array
Log Header Blocks

7 17 25 50 8 13 19 22 27 32 89 93 95

56

Performance YCSB workloads

BP tree matches on point operations while being 2X faster for range scans

57

BP-trees takeaways

• I/O models (External memory and Affine) apply to in-memory indexes

• Relaxing ordering constraint in leaf nodes can help overcome traditional
tradeoffs

• BP-tree supports fast range scans (OLAP) an optimal point updates/
queries (OLTP)

Source code:https://github.com/wheatman/BP-Tree
58

59

Ongoing research:

GPU-accelerated
vector databases

Dynamic/Scalable GPU
memory management

Energy efficient data
management

Concluding remarks

• We need to develop new algorithmic paradigms to better leverage
modern hardware

• Data systems backed by strong theoretical guarantees are key to tackle
future data analyses challenges

https://prashantpandey.github.io/

Acknowledgements:

60

61

