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Sequence Read Archive (SRA) is growing rapidly

SRA contains a lot of biological diversity information

SRA growth
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Q: What if | find, e.g., a new disease-related gene, and want to see if it appeared in other experiments?
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Scalabillity is a critical bottleneck in data science

SRA contains a lot of biological diversity information
SRA growth
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This renders what is otherwise an immensely valuable public resource largely inert!
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Efficient scaling needs efficient data movement

Scaling of Peak hardware FLOPS, and Memory/Interconnect Bandwidth
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My goal as a researcher is to build scalable data
systems with strong theoretical guarantees



Three approaches to build scalable data systems
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Compress it Organize it Distribute it

Goal: make data smaller to fit Goal: organize data in a I/0 Goal: distribute data & reduce
inside fast memory friendly way iInter-node communication
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Applications

Data
structures

LSM-Mantis |
BIOINFORMATICS 22 |

Genomic Data
Processing Toolchain |
(Squeakr, deBGR, Mantis, |

Rainbowfish)
BIOINFORMATICS 17,18
ISMB 17, RECOMB 18, 19
Cell Systems 18

Metagenomic
Assembler

(MetaHipMer?)
IPDPS 21, ACDA 23

' Distributed Graph

Learning (RDM)
IPDPS 23
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Variation Graph

VariantStore
Genome Biology 21
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Distributed KV

(IONIA)
FAST 24

Anomaly detection
| (LERT)
. SIGMOD 20, TODS 21

File System
(BetrFS)

| Graph system |

(Terrace, BYO)
SIGMOD 21, VLDB 24

FAST 15, 16,
TOS 16,17
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Sketches
ESA 18, APOCS
23, ISMB 19

Learned

Indexes
ACDA 25

| Filters
‘SIGMOD 17, 21, 24

VLDB 23, SPAA
19, TOPC 21




* Queries
* Predecessor/Successor
 Range queries
 Membership
 Updates
* |nsertions

e Deletions




* Queries
* Predecessor/Successor
 Range queries
 Membership

B-tree

 Updates
Hash table

e |nsertions

e Deletions
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lcebergHT [SIGMOD 2023]
Pandey, Bender, Conway, Farch-Colton, Kuszmaul, Tagliavini, Johnson



Hash tables are everywhere!
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Built into many languages... Built into many software packages...

& redis &
i

And performance is critical to many applications
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Insertion speed

\“Space

Query speed

Hash table performance has a three-way trade off between insertion speed,
query speed, and space
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Hash table design mechanism

Stability Low associativity Space efficiency
ltems don’t move after Map each item to a small Minimum overhead from
insertion number of locations pointers or over provisioning

f Fast queries ‘ Low space
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f Fast insertion




Achieving all three Is a long-standing open
problem In hash table design



For example: linear probing

e Stable

L log N K — o
. Associativity & ——— (a = load factor)

(1 —-a)?
 E.g., N =1Billion, a = 95%, associativity = 12000

Must choose between low associativity and space efficiency
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For example: cuckoo hashing

 Low associativity: queries must check only 2 2 |l b | c
cache lines

p /,\ W
O 7 N
7

e Space efficient, load factor > 95%

e But not stable

Insertion performance drops significantly due to excessive kicking at high load
factors
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Other hashing schemes:

* Other hashing schemes also lack one or more of these properties

* Chaining: not low associativity

 Robin hood: not stable and not low associativity at high load factors
* Hopscotch: not stable

 Quadratic probing: not stable and not low associativity at high load factors
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Single choice hashing (Balls n Bing
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N balls

Theorem: if you throw N balls into N
bins, the fullest bin will have

O(og N/loglog N) balls W.H.P.
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{wo cholice hashing (Balls n Bins)

. . . ————————

N balls

Theorem: if you throw N balls into N
bins using minimum of two choices,

the fullest bin will have ®(log log N)
palls W.H.P.

Pick 2 random bins |
| Place ball in the emptier bin !
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Two choice hashing provides asymptomatic improvement

Asymptotic Behavior of logN/loglogN and loglogN
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Theorem: if you throw N balls into

N/log N bins using minimum of two
choices, the fullest bin will have

log N+ loglog N + O(1) balls W.H.P.

Pick 2 random bins |
| Place ball in the emptier bin !

- By Berenbrink, Czumaj, Steger, Vocking
2000
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An almost solution: two choice hashing

 2-choice hashing: hash to two buckets and
put item in emptier bucket

o Stable: no kicking

» Low associativity: O(log N)

| buckets

» Space efficient: load factor 1 — o(1) hitk) g

Problem: it does not hold when we delete items =)
log N +loglog N + O(1)

slots \ —————

| Afew cachelines for
| most practical purposes |

Opportunity: theorem does hold with deletions if
average bucket occupancy is O(1)
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* |ceberg theorem: if you throw N

lceberg hashing (Single + Two choice hashing)

Front yard

balls into N/log N bins of size

log N + o(log N), the number of
overflow balls will be

O(N/log N) ol

. ,

Idea: use single-choice front yard to

absorb most items

Backyard has average occupancy of

O(1)

Problem: buckets in the front yard span many cache

lines, so queries must load many cache lines.
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log N + o(log N) slots

B N/logN
| buckets

Back yard

loglog N + O(1) slots

Overflow
(Almost never used)
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Front yard Back yard

I/-W\ e
Q B N/logN
NS | b Overflow
| uckets
Fingerprints | (Almost never used)

= | ]

hik) AV

- i
Cacheline
64 Bytes @
64 slots 8 slots
16 Cache lines 2 cache lines

Problem: buckets in the front yard span many cache

lines, so queries must load many cache lines. Solution: store a fingerprint table.
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lcebergHT implementation

* Highly concurrent operations
* |cebergHT supports in-place resizing; reduces peak memory usage

 Multi-threaded resizes are implemented using distributed reader-writer
locks

* Crash safety is trivial
* Using CLWB; no need for a fence between key & value writes

 Metadata stays in DRAM and is reconstructed during recovery
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PMEM performance: operation throughput

—_— B e

B B icebergHT I M Dash § M CLHT

— 80 n
RS i _
= 1 60
= -
= 1 40
o0 i
= |
é 20
0
Insertion Deletion Pos Query Neg Query

Performance using 16 threads for PMEM hash tables.

lceberg outperforms state-of-the-art hash tables across all operations.
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PMEM performance: space efficiency

Hash tables Space efficiency

lcebergHT 85%

Dash 69%

CLHT 33%

lcebergHT offers higher space efficiency compared to Dash (extendible) and
CLHT (chaining) hash tables.
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Performance using 16 threads for DRAM hash tables.

lceberg outperforms state-of-the-art hash tables for insertions and offers similar performance
to CLHT for queries.

lcebergHT deletes are slower.
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DRAM performance: space efficiency

20

—@®— ICEBERGHT —¢— Cuckoo
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Space efficiency

lcebergHT can achieve high space efficiency and maintain insertion throughput.

CLHT space efficiency drops quickly.
CuckooHT insertion throughput drops at high load factor.
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BP-Tree [VLDB 2023]
Xu, LI, Wheatman, Marneni, Pandey



External memory model for dictionaries

« How computations work [AV88]:

* Data is transferred in blocks between levels

 The number of block transfers dominate the running time
* Goal: minimize number of block transfers

* Performance bounds are parameterized by block size B, memory size M, and data size N

0L

BLEMLLLLLL

Memory
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B-tree: a classic dictionary data structure

 B/B+-trees [BM72] are ubiquitous: BI '
* In memory mdexmg [ZCO+15] |

» Databases [K< -

* Filesystems [F What does B stands for in B-trees? O(logpN)
Boeing, balanced, between, broad, bushy, Beyer? 'VOTS

e ——— e — e ——— ————— e — —— — f— —_——

...~Bchildren... _®» & ... ~Bchildren...
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Cost of operations in B-trees

Insert

Search

} O(logzgNIM) 1/0s -l- """""

(2 -

34

Search/Update path



B-trees: trade-off between search and inserts

Search | ———
| Write-optimized: |
LSM-trees, Be- E

Insert

} O(logzgNIM) 1/0s

Search

O(loggNIM)de- =

O(loggN/IM)  Insert

B-trees are asymptotically optimal for point operations [BF03]

35



In this talk: trade-off between point and
range operations in In-memory B-trees



Long range scans are critical in applications

znnl
=: 0\

Real-time analytics Graph processing
[PTPH12] [DBGS22, PWXB21]




Range scan in a B-tree

| Dominates for {

'Range scan of size K
Range scan is optimal in the external memory model
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How to choose the node size?



B-trees show a trade-off in point-range operations
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Large nodes speed up range scans at the cost of point inserts
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Supporting fast range scans without
sacrificing point update/query performance Is
a long-standing open problem in B-tree design



Our results: BP-tree [VLDB 2023]

LT
&"_.' Concurrent C++
S.C implementation
rlLh

TLX B-tree [Bingman18]

Masstree [MKM12]

OpenBW Tree [WPL+18]

Empirical evaluation using YCSB [CST+10] workloads

Extended YCSB to include long range scans

Point operations

0.95X — 1.2X faster

0.94X — 7.4X faster

1.2X — 1.6X faster
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Range operations

1.3X faster

30X faster

2.5X faster

f
f
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Larger nodes improve range scan performance

Small nodes Large nodes

y
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| reduce random |
“ access

laccess on new |
| node |
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Larger nodes cause overhead to maintain order

Small nodes

Large nodes




BP-tree design principles

4T

Lazy ordering In
leaf nodes

Affine model for
performance Large leaf nodes

IBCF+19]
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BP-tree design

o s e
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BP-tree design
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Buffered Partitioned Array
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Buffered Partitioned Array

Insert (22)
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Buffered Partitioned Array

Log Header Blocks

e e e EEEE——

Insert (22)
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Buffered Partitioned Array

Log Header Blocks

Insert (27)
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Buffered Partitioned Array

Log Header Blocks

e e e EEEE——

i - ] i ] ) - ] i - ] - ] i - ] 3 i : h h 4 h
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i | i | | | | i H i
¥ \ \ i i i + i i t i i
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Buffered Partitioned Array

Log Header Blocks

S Z e S

H - ) h ) h - ) h - i - i h - § 3 § h i - i h } i b i - i o i i : - i - i i - 9 h
' ' i v ( + \ L ( ( + ( t
i { H | H | i t H i
¥ \ \ i i i + i i t i i

Sort log and count /
;‘ number of items in l
‘ ,"

each block

w‘
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Buffered Partitioned Array

Log Header Blocks

S Z e S

H - ) h ) h - ) h - i - i h - § 3 § h i - i h } i b i - i o i i : - i - i i - 9 h
' ' i v ( + \ L ( ( + ( t
i { H | H | i t H i
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Sort log and count /
;‘ number of items in l
‘ ,"

each block

w‘
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Buffered Partitioned Array

Log Header Blocks

e e e EEEE——

Insert (27)

Sort and
redistribute all |
items

mber of items in |

;‘ nu
| each block
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Buffered Partitioned Array

Log Header Blocks

e e e EEEE——
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Normalized Performance
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BP tree matches on point operations while being 2X faster for range scans
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BP-trees takeaways

* |/O models (External memory and Affine) apply to in-memory indexes

* Relaxing ordering constraint in leaf nodes can help overcome traditional
tradeoffs

 BP-tree supports fast range scans (OLAP) an optimal point updates/
queries (OLTP)

O @
3 0 Q0
Source code:https://github.com/wheatman/BP-Tree
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Ongoing research:

%
2 o7

GPU-accelerated Dynamic/Scalable GPU Energy efficient data
vector databases memory management management
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 We need to develop new algorithmic paradigms to better leverage
modern hardware

 Data systems backed by strong theoretical guarantees are key to tackle
future data analyses challenges

https://prashantpandey.github.io/
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