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De Bruijn graphs are ubiquitous 

Sequence search

Short/Long reads  
transcriptome assembly

Long reads error correctionRaw 
sequencing 

data

A de Bruijn graph is the data representation at the 
heart of a lot of sequence analyses.

[Pevzner et al. 2001, Zerbino and Birney, 2008, Simpson et al. 2009, Grabherr et al. 2011, Compeau et al. 2011, Schulz 
et al. 2012, Chang et al. 2015, Kannan et al. 2016, Liu et al. 2016, Carvalho et al. 2016, Salmela et al. 2016, Koren et al. 

2017]    

De Bruijn graph
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De Bruijn graph (dBG)

An edge is a length-k string connecting its two k-1 substrings.

(k-1)-length Prefix (k-1)-length Suffix

Edge



De Bruijn graph (dBG)

CACTGAACTCACTGACTCA
CACTG 
 ACTGA 
  CTGAA 
   TGAAC 
    GAACT 
     AACTC
      ACTCA 
       CTCAC
       ... 
 

A k-mer is a substring of length k. 
Here, k is 5.

A read is a string of bases over 
the DNA alphabet A, C, T, and 
G. 



Read 1: ….CAAAAT….
Read 2: ….CAAAAC….

CAAA AAAA

AAAT

AAAC

CAAAA AAAAT

AAAAC

De Bruijn graph (dBG)



Annotated De Bruijn graphs
• Topology-only de Bruijn graphs are not adequate 

for downstream applications. 

• Abundance information of each k-mer is critical 
for transcriptome assembly. 

• Information about samples in which a k-mer is 
present in a union de Bruijn graph of multiple 
samples is critical for variant discovery.



Read 1: ….CAAAAT….
Read 2: ….CAAAAC….

CAAA AAAA

AAAT

AAAC

CAAAA, 2 AAAAT, 
1

AAAAC, 1

Weighted de Bruijn graph 
(WdBG)

A weighted de Bruijn graph associates each edge (k-mer) its 
abundance in the underlying dataset.



Sample 1: ….CAAAAT….
Sample 2: ….CAAAAC….

CAAA AAAA

AAAT

AAAC

CAAAA, [1,1] AAAAT, 
[1,

0]

AAAAC, [0,1]

Colored de Bruijn graph 
(CdBG)

A colored de Bruijn graph is a union graph of multiple 
samples, where the identity of each sample is retained by 

coloring those edges present in a sample.



de Bruijn graphs store only k-mers, memory usage 
scales with the number of unique k-mers.

Measuring annotated dBG 
representation

    Human genome (few Billion k-mers): >100 GB
Soil metagenomes (few Million species): Few TBs

Beefy server machines are needed to perform 
weighted de Bruijn graph analysis.



• A compact representation of annotated de Bruijn graphs. 

• It would enable transcriptome assembly on machines 
with less resources. 

• It would also enable assembly of fundamentally large 
datasets that wasn’t possible before on a single machine. 

• It would also enable sequence-level searches and 
variation detection on all of the available RNA-seq 
experiments in SRA.

In this talk



dBG as a set
Set

TCCG
CCGC 
CCGA
CGCT
AGCT

de Bruijn graph(Edges)

CCG

TCC

CGC

CGA

GCT

AGC

CCGA

TC
CG

CCGC

CGCT AG
CT



Approximate Membership Query 
(AMQ)

• An AMQ is a lossy representation of a set.
• Operations: inserts and membership queries. 
• Compact space:

• Often taking < 1 byte per item.
• Comes at the cost of occasional false positives.

AMQ

insert(X)

yes/no

isMember(X)



Probabilistic de Bruijn graph 
[Pell et al. 2012]

CCG

TCC

CGC

CGA

GCT

AGC
AAT

GAG

AGT

CCGA

TC
CG

CCGC

CGCT AG
CT

GAGC

CGAG GAGT

AAAT

AAA

Topological errors

Bloom filter

TCCG
CCGC 

CCGA

CGCT

AGCT

GAGC

CGAG

GAGT

AAAT

Representing a dBG using a Bloom filter.



Probabilistic de Bruijn graph 
[Pellow et al. 2016]

CCG

TCC

CGC

CGA

GCT

AGC

GAG

AGT

AAT

AAA

CCGA

TC
CG

CCGC

CGCT AG
CT

GAGC

CGAG

Topological errors

Bloom filter

TCCG
CCGC 

CCGA

CGCT

AGCT

GAGC

CGAG

GAGT

AAAT

Showed how to exploit redundancy in k-mers to reduce the false-positive 
rate of the Bloom filter without increasing the space.



Exact de Bruijn graph 
[Chikhi and Rizk 2013] and [Salikhov et al. 2013] 

CCG

TCC

CGC

CGA

GCT

AGC

GAG

AGT

CCGA

TC
CG

CCGC

CGCT AG
CT

GAGC

CGAG

Critical false-positive k-mers

Bloom filter

TCCG
CCGC 
CCGA
CGCT
AGCT
GAGC
CGAG
GAGT
AAAT

Hash table

GAGC
CGAG

They showed how to convert a probabilistic representation into an exact one 
using a small and exact auxiliary data structure.

AAT
AAAT

AAA



WdBG as a multiset
MultiSet

TCCG, 2
CCGC, 9 
CCGA, 6
CGCT, 5
AGCT, 2

Weighted de Bruijn graph(Edge, Abundance)

CCG

TCC

CGC

CGA

GCT

AGC

CCGA, 6

TC
CG

, 2

CCGC,9

CGCT, 5 AG
CT

, 2



Counting filters: AMQs for multisets

• A counting filter is a lossy representation of a multiset.
• Operations: inserts, count, and delete.
• Generalizes AMQs

• False positives ≈ over-counts.
• Counting quotient filter

Counting
filter

insert(X)

count

getCount(X)

delete(X)



• Smaller than many non-counting AMQs
• Bloom, cuckoo [Fan et al., 2014], and quotient [Bender et al., 2012] 

filters.
• Uses variable-sized counters to handle skewed data sets 

efficiently.

• Good cache locality
• Deletions
• Dynamically resizable
• Mergeable

The counting quotient filter
[Pandey et al. SIGMOD 2017]



Squeakr  
[Pandey et al. BIOINFORMATICS 2017]

CCG

TCC

CGC

CGA

GCT

AGC

GAG

AGT

CCGA, 6

TC
CG

, 4
CCGC, 9

CGCT, 5 AG
CT, 

4

GAGC, 2

CGAG, 1 GAGT, 1
AAT

AAAT, 1

AAA

Topological errors

Abundance error
Counting 

quotient filter

TCCG, 4
CCGC, 9 

CCGA, 6

CGCT, 5

AGCT, 4

GAGC, 2

CGAG, 1

GAGT, 1

AAAT, 1

Approximate weighted de Bruijn graph.



• An exact representation of the weighted de Bruijn graph. 

• An algorithm that uses counts in the approximate 
representation in an AMQ to iteratively self-correct 
approximation errors. 

• It corrects both kinds of errors, abundance and 
topological errors and supports membership 
queries. 

• It takes 18-28% more space than the approximate 
representation and has no errors.

deBGR  
[Pandey et al. ISMB 2017]



A weighted de Bruijn graph 
invariant

Total incoming abundance = Total outgoing abundance

Read 1: ….CAAAAT….
Read 2: ….CAAAAC….

CAAA AAAA

AAAT

AAAC

CAAAA, 2 AAAAT
, 1

AAAAC, 1



A weighted de Bruijn graph 
invariant

Total incoming abundance = Total outgoing abundance*

*After accounting for read starts and ends.

CAAA
Start reads: 0 
End reads: 0

AAAC
Start reads: 0 
End reads: 0

CAAAA, 2 AAAAC, 1AAAA
Start reads: 0 
End reads: 1



WdBG representation in deBGR
Read 1: CAAAAT

Read 2: CAAAAC

CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

AAAC
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 1

AAAAC, 1Edge Abundance

CAAAA 2

AAAAT 1

AAAAC 1

Node Start reads

CAAA 2

Node End reads

AAAT 1

AAAC 1



CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

AAAC
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0 
End reads: 0 

CGTA
Start reads: 0 
End reads: 0

CCGTA, 1

WdBG representation in deBGR

Edge Abundance

CAAAA 2

AAAAT 2

AAAAC 1

CCGTA 1

Node Start reads

CAAA 2

Node End reads

AAAT 1

AAAC 1



Error correction

CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

AAAC
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0 
End reads: 0 

CGTA
Start reads: 0 
End reads: 0

CCGTA, 1



CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

AAAC
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0 
End reads: 0 

CGTA
Start reads: 0 
End reads: 0

CCGTA, 1 0

Error correction



Error correction

CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

AAAC
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0 
End reads: 0 

CGTA
Start reads: 0 
End reads: 0

CCGTA, 1 0



Error correction

CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

AAAC
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0 
End reads: 0 

CGTA
Start reads: 0 
End reads: 0

CCGTA, 1 0



Error correction

AAAC
Start reads: 0 
End reads: 1

CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0 
End reads: 0 

CGTA
Start reads: 0 
End reads: 0

CCGTA, 1 0



CCGTA, 1 0

Error correction

AAAC
Start reads: 0 
End reads: 1

CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0 
End reads: 0 

CGTA
Start reads: 0 
End reads: 0



CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

AAAC
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0 
End reads: 0 

CGTA
Start reads: 0 
End reads: 0

CCGTA, 1 0

Error correction



CCGTA, 1 0

CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

AAAC
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0 
End reads: 0 

CGTA
Start reads: 0 
End reads: 0

Error correction



CAAA
Start reads: 2 
End reads: 0

AAAA
Start reads: 0 
End reads: 0

AAAT
Start reads: 0 
End reads: 1

AAAC
Start reads: 0 
End reads: 1

CAAAA, 2 AAAAT
, 2

 1 

AAAAC, 1

CCGT
Start reads: 0 
End reads: 0 

CGTA
Start reads: 0 
End reads: 0

CCGTA, 1 0

Error correction



Error correction algorithm
• We use a standard work queue algorithm. 

• We bootstrap with a set C of edges for which we know the 
abundance is correct. 

• We then expand the set C of edges using the weighted de 
Bruijn graph invariant. 

• Please refer to the paper for exact set of rules for error 
correction. 

• Running time: O(n・log(n) / log(1/4ε)).



Datasets
Dataset Size #k-mer 

instances #Distinct k-mers

GSM984609 26 GB 19,662,773,330 1,146,347,598

GSM981256 22 GB 16,470,774,825 1,118,090,824

GSM981244 43 GB 37,897,872,977 1,404,643,983

SRR1284895 33 GB 26,235,129,875 2,079,889,717
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Number of errors in deBGR: 0 !



Conclusion
• Abundance information is important for many data 

analyses. 

• But the abundance information can be used to remove 
effectively all the errors in an approximate weighted de 
Bruijn graph representation. 

• The basic ideas behind our error-correction technique 
may also be useful for compactly representing weighted 
graphs by exploiting other domain-specific invariants. 

https://github.com/splatlab/







De Bruijn graph (dBG)

In graph theory, an n-dimensional de Bruijn graph of m symbols 
is a directed graph representing overlaps between sequences of 
symbols.
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The counting quotient filter (CQF) 
[Pandey et al. SIGMOD 2017]

• A replacement for the (counting) Bloom filter.

• Space and computationally efficient.

• Uses variable-sized counters to handle skewed 
data sets efficiently.

CQF space ≤ BF space + O(∑ log c(x))
x∈S

}
Asymptotically optimal



• Smaller than many non-counting AMQs
• Bloom, cuckoo [Fan et al., 2014], and quotient [Bender et 

al., 2012] filters.
• Good cache locality
• Deletions
• Dynamically resizable
• Mergeable

Counting quotient filter (CQF)



Quotienting: An alternative to Bloom filters 

•  Store fingerprint compactly in a hash table.
•  Take a fingerprint h(x) for each element x.

•  Only source of false positives:
•  Two distinct elements x and y, where h(x) = h(y).
•  If x is stored and y isn’t, query(y) gives a false positive.

       h(x)x



Storing compact fingerprints

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

q rb(u)

b(x) t(x)

t(u)

 

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index



Storing compact fingerprints

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?

q rb(u)

b(x) t(x)

t(u)
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Storing compact fingerprints

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
Linear probing.

q rb(u)

b(x) t(x)

t(u)

 t(v)
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6

h(x)

b(v)

t(v)

2q

Tag
Bucket index



Storing compact fingerprints

q rb(u)

b(x) t(x)

t(u)

 t(v)

0

1

2

3

4

5

6

h(x)

b(v)

t(v)

2q

Does t(v) belongs to 
bucket 4 or 5 ?

• The home bucket for 
   t(u) and t(v) is 4.

Tag
Bucket index



• CQF uses two metadata bits to resolve collisions and 

identify the home bucket.

• The metadata bits group tags by their home bucket.

• Metadata scheme supports efficient inserts/deletes.

1 1

t(u) t(v) t(w) t(x) t(y)

Resolving collisions in the CQF



• Metadata scheme tells us the run of slots holding contents 

of a bucket.

• We can encode contents of buckets however we want.

• The original quotient filter used repetition (unary).

1 1

t(u) t(u) t(u) t(u) t(x) t(y)

Encoding counts



• We want to count in binary, not unary.

• Idea: use some of the space for tags to store counts.

• Issue: determine which are tags and which are counts 

without using even one “control” bit.

1 1

t(u) 4 t(x) 1 t(y) 1

Encoding counts

4 copies of t(u)
}



Performance: In memory

• The CQF insert performance in RAM is similar to that of state-of-
the-art non-counting AMQs.

• The CQF is significantly faster at low load factors and slightly slower 
on high load factors.

Inserts lookups



Performance: Skewed datasets

❑ The CQF outperforms the CBF by a factor of 6x-10x on both inserts 
and lookups.

Inserts lookups






