
Courtesy: Kin Sum Liu and https://www.wordclouds.com/

Fast and Space-Efficient Maps
for Large Datasets

Prashant Pandey
Stony Brook University, NY

Advisors: Michael A. Bender and Rob Johnson

Thesis overview: data structures
Data structures

SIGMOD ‘17 ESA ‘18

Thesis overview: file system

SIGMOD ‘17 ESA ‘18

FAST ‘16, TOS 16FAST ‘15, TOS 15

File systems

Bε-tree

Data structures

Thesis overview: computational biology

SIGMOD ‘17 ESA ‘18

FAST ‘16, TOS 16FAST ‘15, TOS 15 ISMB ‘17, BIOINFORMATICS ‘17, WABI ‘17,
RECOMB ‘18, Cell Systems ‘18

File systems Computational biology

Bε-tree

Data structures

Thesis overview: computational biology

SIGMOD ‘17 ESA ‘18

FAST ‘16, TOS 16FAST ‘15, TOS 15 ISMB ‘17, BIOINFORMATICS ‘17, WABI ‘17,
RECOMB ‘18, Cell Systems ‘18

File systems Computational biology

Bε-tree

Data structures

Thesis overview: streaming

SIGMOD ‘17 ESA ‘18

FAST ‘16, TOS 16FAST ‘15, TOS 15 ISMB ‘17, BIOINFORMATICS ‘17, WABI ‘17,
RECOMB ‘18, Cell Systems ‘18

File systems StreamingComputational biology

Bε-tree

Data structures

Cascade filter

Thesis overview: streaming

SIGMOD ‘17 ESA ‘18

FAST ‘16, TOS 16FAST ‘15, TOS 15 ISMB ‘17, BIOINFORMATICS ‘17, WABI ‘17,
RECOMB ‘18, Cell Systems ‘18

File systems StreamingComputational biology

Bε-tree

Data structures

Cascade filter

• An AMQ is a lossy representation of a set.
• Operations: inserts and membership queries.
• Compact space:

• Often taking < 1 byte per item.
• Comes at the cost of occasional false positives.

AMQ

insert(X)

yes/no

isMember(X)

Approximate Membership Query (AMQ)

YXW

query(W) query(U) query(Z)

YES NO YES

The Bloom filter is a bit array + k hash functions.

Bloom filters

1 0 1 1 0 1

YXW

query(W) query(U) query(Z)

YES NO YES false positive

Bloom filters have one-sided errors

The Bloom filter has a bounded false-positive rate.

1 0 1 1 0 1

Storage systems

NetworkingStreaming applications

Computational biology

Databases

Bloom filters are ubiquitous

Application often must work around Bloom
filter limitations.

Limitations Workarounds
No deletions Rebuild

No resizes Guess, rebuild if wrong

No enumeration (merging) ???

No values Combine with another data
structure

Application often must work around Bloom
filter limitations.

Limitations Workarounds
No deletions Rebuild

No resizes Guess, rebuild if wrong

No enumeration (merging) ???

No values Combine with another data
structure

Bloom filter limitations increase complexity,
waste space, and hurt application performance.

● A replacement for the (counting) Bloom filter.

● Space and computationally efficient.

● Can be used as a map for small key-value pairs.

● Uses variable-sized counts/values.

The Quotient filter (QF)

QF space ≤ BF space + O(∑ |v(x)|)

• Store fingerprint compactly in a hash table.
• Take a fingerprint h(x) for each element x.

• Only source of false positives:
• Two distinct elements x and y, where h(x) = h(y).
• If x is stored and y isn’t, query(y) gives a false positive.

 h(x)x

Quotienting: an alternative to Bloom
filters[Knuth. Sorting and Searching volume 3, ‘97]

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

q rb(x)

b(x) t(x)

t(x)

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index

Storing fingerprints compactly

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?

q rb(x)

b(x) t(x)

t(x)

0

1

2

3

4

5

6

h(x)

b(y)

t(y)

2q

Tag
Bucket index

Storing fingerprints compactly

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing.

q rb(x)

b(x) t(x)

t(x)

t(y)

0

1

2

3

4

5

6

h(x)

b(y)

t(y)

2q

Tag
Bucket index

Storing fingerprints compactly

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing.
● O(1) metadata bits per slot.

q rb(x)

b(x) t(x)

t(x)

t(y)

0

1

2

3

4

5

6

h(x)

b(y)

t(y)

2q

Tag
Bucket index

Storing fingerprints compactly

● Good cache locality

● Efficient scaling out-of-RAM

● Deletions

● Enumerability/Mergeability

● Resizing

Quotienting enables many features in the QF

Quotient filters (QF) use comparable space
to Bloom filters (BF)

Bloom filters: ~1.44log2(1/ε) bits/element.
Quotient filters: ~2.125 + log2(1/ε) bits/element.

Bloom filters: ~1.44log2(1/ε) bits/element.
Quotient filters: ~2.125 + log2(1/ε) bits/element.

Quotient filters (QF) use comparable space
to Bloom filters (BF)

Bloom filters: ~1.44log2(1/ε) bits/element.
Quotient filters: ~2.125 + log2(1/ε) bits/element.

 The QF requires less space than the BF for any
false-positive rate less than 1/64

Quotient filters (QF) use comparable space
to Bloom filters (BF)

● The QF insert performance in RAM is similar to that of the state-of-the-art
non-counting AMQ.

● The QF query performance is significantly fast at low load-factors and slightly
slower at higher load-factors.

Performance: In memory

Inserts Lookups

● The QF insert performance in RAM is similar to that of the state-of-the-art
non-counting AMQ.

● The QF query performance is significantly fast at low load-factors and slightly
slower at higher load-factors.

Performance: In memory

Inserts

 The QF performance is better or competitive to
other non-counting AMQs

Lookups

• Quotient filters store h(x) exactly.

• To store x exactly, use an invertible hash function.

● For n elements and p-bit hash function:

 Space usage: ~p-log2n bits/element.

 h(x)x

Quotient filters can also be exact

h-1(x)

• b(x) = location in the hash table
• t(x) = tag stored in the hash table
• v(x) = value stored in the hash table

● Can store variable-length values.
● O(1) extra metadata bits per slot.

q rb(x)

b(x) t(x)

t(y)

v(y)

v(y)

t(x)

v(x)

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index

Storing key-value pairs

Thesis overview: cascade filter

SIGMOD ‘17 ESA ‘18

FAST ‘16, TOS 16FAST ‘15, TOS 15 ISMB ‘17, BIOINFORMATICS ‘17, WABI ‘17,
RECOMB ‘18, Cell Systems ‘18

File systems StreamingComputational biology

Bε-tree

Data structures

Cascade filter

Quotient filters scale out-of-RAM

A G L M

RAM

FLASH

● Each operation, insert or lookup, can cost 1 I/O.

● However, a Bloom filter takes K I/Os for each operation.

N

P0 P2 P2 P3

lookup(A) Insert(G) Insert(L) lookup(M)

Cascade filter uses write-optimization
[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok ‘12]

3

0

2

1

RAM

FLASH

log(N/M)

● The cascade filter is a write-optimized data structure and efficiently scales

out of RAM.

● It greatly accelerates insertions at some cost to queries.

N

QF

3

0 C D F

2

1

RAM

FLASH

log(N/M)

● Items are first inserted into the in-memory QF.

● When the in-memory QF reaches maximum load factor it flushes.

● Levels grow exponentially in size.

N

Cascade filter uses write-optimization
[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok ‘12]

3

0

2

1 C D F

RAM

FLASH

log(N/M)

● During a flush, find the smallest i such that the items in l
0
, . . . , l

i
 can be

merged into level i.

N

Cascade filter uses write-optimization
[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok ‘12]

3

0 H J A

2

1 C D F

RAM

FLASH

log(N/M)

N

Cascade filter uses write-optimization
[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok ‘12]

3

0

2 A C D F H J

1

RAM

FLASH

log(N/M)

N

Cascade filter uses write-optimization
[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok ‘12]

3 A B C D E F G H I J K L

0

2 A C D F H J

1 C D F

RAM

FLASH

log(N/M)

N

Cascade filter: insertions

Number of I/Os per item:

3 A B C D E F G H I J K L

0

2 A C D F H J

1 C D F

RAM

FLASH

log(N/M)

N

Cascade filter: lookups

Number of I/Os per item:

lookup(G)

Thesis overview: streaming

SIGMOD ‘17 ESA ‘18

FAST ‘16, TOS 16FAST ‘15, TOS 15 ISMB ‘17, BIOINFORMATICS ‘17, WABI ‘17,
RECOMB ‘18, Cell Systems ‘18

File systems StreamingComputational biology

Bε-tree

Data structures

Cascade filter

Open problem from Sandia National Lab

● A high-speed stream of key-value pairs arriving over time.

● Too large to fit in RAM. We can use SSD.

● Goal: report any key as soon as it appears 24 times without

any errors.

● This is called the online event-detection problem in CS

literature. (Will cover literature in the next couple of slides.)

● Defense systems for cyber security[Berry et al. 09, Kezunovic 06, Litvinov 06],

physical systems, such as water or power distribution[Sceller et al. 17, Raza

et al. 13, Yan et al. 09].

● Automated systems take defensive action for every reported

event.

● No false positives.

Why Sandia cares about this problem

https://homeandkitchenaz.wordpress.com/2015/05/03/the-benefits-of-installing-a-power-monitoring-system/

● Given stream of N items, report items whose frequency ≥ φN.

● General solution is “hard” in small space (i.e., Ω(N) words) and

so people give approximation algorithms. (But remember that

Sandia doesn’t want approximations.)

● For Sandia application, φN is a constant (i.e., 24) and so φ is

very very small.

The heavy hitters problem (HH(k))
[Cormode et al. 05]

● Find all items with count ≥ φN, none with count < (φ−ε)N

● Related problem: estimate each frequency with error ±εN

● There is a rich literature that offers optimal solutions in RAM,

i.e., for large ε. (But remember that Sandia doesn’t want

approximations.)

The approximate heavy hitters problem
(ε-HH(k))

RAM

Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.
16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen
et al. 16, Manku et al. 02.

Can we use the cascade filter?

● Cascade filter supports fast insertions (< 1 I/O per item).

● But they do not help with queries (log(N/M) I/Os per item).

● I will tell you in the next few slides how we modify the

cascade filter to solve the online event-detection problem.

3

0

2

RAM

FLASH
Cascade filter

A solution for online event-detection must
have:

Existing Cascade filter We want

Fast insertions

Scalability

Be exact

Reporting timely

● A solution to the online event-detection problem must support
all of the above features.

Online event-detection problem
[Bender, Berry, Farach-Colton, Johnson, Kroeger, Pandey, Phillips, Singh, ‘18]

● Time-stretch filter: online event-detection with a bounded
delay.

● Popcorn filter: online event-detection immediate reporting.

I/Os per item

I/Os per item

We are much better than 1 I/O per item. Thus, effectively the
same cost as the cascade filter, but queries are faster.

Time-stretch filter

A time-stretch of 𝛼, we must report an element a no later than time

I1 + (1 + α)FT, where I1 is the time of the first occurrence of a, and

FT is the flow time of a.

Birthtime
(I1)

T-th occurrence
(IT)

Report time
(IR)

Timeline

Time-stretch filter

2

0

1

RAM

FLASH
log(N/M)

● Item can not go to level i until it is at least riM time steps old.

N

Time-stretch filter

2

0

1

RAM

FLASH
log(N/M)

● The QF at each level is split into l = (𝛼+1)/𝛼 equal sized bins, here l = 2.

● Flushes are performed at the granularity of bins and follow a fixed

round-robin schedule for flushing bins.

● Each item inserted at level i spends at least riM/𝛼 time steps.

N

Popcorn filter

A count-stretch of ⍵, we must report an element a no later than

when the count of a is ⍵T. In immediate reporting ⍵ = 1 & 𝛼 = 1.

Birthtime T-th occurrence Report count
CR

Timeline

Popcorn filter

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

RAM

FLASH

N

log(N/M)

lookup(I)

● To achieve immediate reporting, we need to perform multiple I/Os for every

new item arriving in the RAM QF.

Popcorn filter: immediate reporting

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

RAM

FLASH

N

log(N/M)

lookup(I)

● We can avoid a bunch of unnecessary I/Os if we can upper bound the total

instances on disk of an item.

Lookup

Popcorn filter: count stretch

2 A,1 B,1 C,1 D,1 E,1 F,1 G,1 H,1 I,2 J,1 K,1 L,1

0 I,1

1 B,1 E,1 F,1 I,4 J,1 L,1

RAM

FLASH

N

log(N/M)

● The maximum count stretch ⍵ would be:

Results from this part

● Implement the time-stretch filter and popcorn filter.

● Multi-threaded/deamortized version of the time-stretch and

popcorn filter.

● Evaluate:

○ Timeliness guarantees

○ I/O performance

○ Insertion throughput

○ Scalability with multiple threads

Multithreading/Deamortization

2

0

1

RAM

FLASH

Cones

We divide the filter into multiple smaller filters called cones, where each cone
consists of same number of levels and growing exponentially.

Multithreading/Deamortization

2

0

1

RAM

FLASH

Threads

Cones

Each thread operates by first taking a lock at the cone and then performing the
insert operation.

Local CQF

Multithreading/Deamortization

2

0

1

RAM

FLASH

Local CQF Local CQF Local CQF

Threads

Cones

If there is contention, the thread then inserts the item in its local buffer and
continues.

Timely reporting validation

Num age bits Num bins Alpha value

1 2 1

2 4 1.33

3 8 1.14

4 16 1.06

● This is the relationship between the number of bins and the 𝛂

value in the time-stretch filter.

Time stretch: timely reporting validation

#bins: 4

● The time-stretch filter reports all items within the maximum
allowed time stretch for time stretch 1.33.

Time stretch: timely reporting validation

#bins: 2 #bins: 4

#bins: 8 #bins: 16

● The time-stretch filter reports all items within the maximum
allowed time stretch for all the four time stretch values.

Count stretch: timely reporting validation

That popcorn filter has two on-disk levels with thresholds 2 and 4.

● The popcorn filter reports all items within the maximum
allowed count stretch.

Time stretch: I/O cost

● The time-stretch filter empirically performs similar amount of

I/Os as given by the theoretical bounds.

Count stretch: I/O cost

● The popcorn filter empirically performs similar amount of I/Os

as given by the theoretical bounds.

Time stretch: Insertion throughput

● The insertion throughput of the time-stretch filter is going down

as we decrease the time-stretch.

Count stretch: Insertion throughput

● The insertion throughput of the popcorn filter with immediate
reporting is lower because of random I/Os for lookups.

Time stretch: scalability with threads

● The insertion throughput is going up with increasing number of

threads.

Count stretch: scalability with threads

● The insertion throughput is going up with increasing number of

threads.

Conclusion

Source code: https://github.com/splatlab/

● Space-efficient and fast compact

data structures can help solve big

data problems across subfields.

● We need to redesign applications to

get complete benefits of today’s

feature-rich AMQs.

QFDatabases

Sequence
Search
Index

Stream
Analysis

Key-value
Stores

QF on
GPUs

Deduplic-
ation

Graph
represen-

tation
Assembler
(SPAdes)

Time-stretch filter

2

0 0

1 0

RAM

FLASH

● We store an age value of log(l) bits with each level and item

● At initialization time, every level gets an age 0.

● Here, we have 1-bit age, i.e., 0, 1.

N

Time-stretch filter

2

0 0 C0 D1

1 0

RAM

FLASH

● When an item arrives at a level it gets the current age of the level.

● We trigger a flush when a bin is full.

N

Reporting threshold: 2

Time-stretch filter

2

0 1 C0 D1

1 0

RAM

FLASH

● We increment the age of all levels that are flushing before the flush.

● Every item with the same age as the current age of level is flushable.

● Schedule: every r-th flush goes to the r-th level.

N

FLUSH 0
Levels

involved

Reporting threshold: 2

Time-stretch filter

2

0 1 C0 D1 H2 J3

1 0

RAM

FLASH

● We increment the age of the level before a flush.

● Every item with the same age as the current age of level is flushable.

N

Reporting threshold: 2

Time-stretch filter

2

0 0 C0 D1 H2 J3

1 1

RAM

FLASH

N

FLUSH 1

Levels
involved

Reporting threshold: 2

Time-stretch filter

2

0 0 H2 J3

1 1 C0 D1

RAM

FLASH

N

FLUSH 1

Levels
involved

Reporting threshold: 2

Time-stretch filter

2

0 0 C4 F5 H2 J3

1 1 C0 D1

RAM

FLASH

N

Reporting threshold: 2

Time-stretch filter

2

0 1 C4 F5 H2 J3

1 1 C0 D1

RAM

FLASH

N

FLUSH 2
Levels

involved

Reporting threshold: 2

Time-stretch filter

2

0 1 C4 F5

1 1 C0 D1 H2 J3

RAM

FLASH

N

FLUSH 2
Levels

involved

Reporting threshold: 2

