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de Bruijn graphs are ubiquitous 

de Bruijn graph

Sequence search

Short/Long reads  
transcriptome assembly

Long reads error correctionRaw 
sequencing 

data

A de Bruijn graph is the data representation at the 
heart of a lot of sequence analyses.



de Bruijn graph (dBG)
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A k-mer is a substring of length k. 
Here, k is 5.

A read is a string of bases over 
the DNA alphabet A, C, T, and 
G. 
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de Bruijn graph (dBG)

An edge is a k-mer connecting its two k-1 substrings.

Read: ….CAAAA….

Prefix (k-1)-mer Suffix (k-1)-mer

k-mer



Read 1: ….CAAAAT….
Read 2: ….CAAAAC….

CAAA AAAA

AAAT

AAAC

CAAAA AAAAT

AAAAC

de Bruijn graph (dBG)



Weighted de Bruijn graphs
• Topology-only de Bruijn graphs are not adequate 

for transcriptome assembly. 

• Abundance information of each k-mer is critical 
for transcriptome assembly.



Weighted de Bruijn graphs
• Topology-only de Bruijn graphs are not adequate 

for transcriptome assembly. 

• Abundance information of each k-mer is critical 
for transcriptome assembly.

Weighted de Bruijn graphs pose an extra 
obligation and opportunity.



Read 1: ….CAAAAT….
Read 2: ….CAAAAC….
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AAAT

AAAC
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Weighted de Bruijn graph 
(WdBG)

A weighted de Bruijn graph associates each edge (k-mer) its 
abundance in the underlying dataset.



de Bruijn graphs store only k-mers, memory usage 
scales with the number of unique k-mers.

Measuring dBG representation

    Human genome (few Billion k-mers): >100 GB
Soil metagenomes (few Million species): Few TBs

Beefy server machines are needed to perform 
weighted de Bruijn graph analysis.



WdBG as a multiset
MultiSet
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Past work on Probabilistic dBG 
representation

• Pell et al. 2012: Represented dBG using a 
Bloom filter.
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Past work on Probabilistic dBG 
representation

• Chikhi and Rikz 2013 and Salikhov et al. 2013: 
They showed how to convert a probabilistic 
representation into an exact one using a small 
and exact auxiliary data structure.

• Pell et al. 2012: Represented dBG using a 
Bloom filter.

• Pellow et al. 2016: Showed how to exploit 
redundancy in k-mers to reduce the false-
positive rate of the Bloom filter without increasing 
the space.



Counting filters

Counting
filter

insert(X)

count
getCount(X)

delete(X)

• A counting filter is a lossy representation of a multiset.
• Operations: inserts, count, and delete.
• Generalizes AMQs

• False positives ≈ over-counts. 
• Counting quotient filter[Pandey et al. 2017]



Probabilistic weighted de 
Bruijn graph[Pandey et al. 2017]
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• An exact representation of the weighted de Bruijn graph. 

• An algorithm that uses counts in the approximate 
representation in an AMQ to iteratively self-correct 
approximation errors. 

• It corrects both kinds of errors, abundance and 
topological errors and supports membership queries. 

• It supports deletion of k-mers from the structure. 

• It takes 18-28% more space than the approximate 
representation and has no errors.

This paper: deBGR



A weighted de Bruijn graph 
invariant

Total incoming abundance = Total outgoing abundance
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A weighted de Bruijn graph 
invariant

Total incoming abundance = Total outgoing abundance*

*After accounting for read starts and ends.

CAAA
Start reads: 0 
End reads: 0

AAAC
Start reads: 0 
End reads: 0

CAAAA, 2 AAAAC, 1AAAA
Start reads: 0 
End reads: 1



WdBG representation in deBGR
Read 1: CAAAAT

Read 2: CAAAAC
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Error correction
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Error correction
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Error correction algorithm
• We use a standard work queue algorithm. 

• We bootstrap with a set C of edges for which we know the 
abundance is correct. 

• We then expand the set C of edges using the weighted de 
Bruijn graph invariant. 

• Please refer to the paper for exact set of rules for error 
correction. 

• Running time: O(n・log(n) / log(1/4ε)).



Datasets
Dataset Size #k-mer 

instances #Distinct k-mers

GSM984609 26 GB 19,662,773,330 1,146,347,598

GSM981256 22 GB 16,470,774,825 1,118,090,824

GSM981244 43 GB 37,897,872,977 1,404,643,983

SRR1284895 33 GB 26,235,129,875 2,079,889,717
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Number of errors in deBGR: 0 !



Conclusion
• Abundance information in important for many data 

analyses. 

• But abundance information is also useful for providing 
higher de Bruijn graph structural guarantees.   

• We show that the abundance information can be used 
to remove effectively all the errors in an approximate 
weighted de Bruijn graph representation.

https://github.com/splatlab/debgr


