
deBGR: An Efficient and
Near-Exact Representation of
the Weighted de Bruijn Graph

Prashant Pandey

Stony Brook University, NY, USA

De Bruijn graphs are ubiquitous

Sequence search

Short/Long reads
transcriptome assembly

Long reads error correctionRaw
sequencing

data

A de Bruijn graph is the data representation at the
heart of a lot of sequence analyses.

[Pevzner et al. 2001, Zerbino and Birney, 2008, Simpson et al. 2009, Grabherr et al. 2011, Compeau et al. 2011, Schulz
et al. 2012, Chang et al. 2015, Kannan et al. 2016, Liu et al. 2016, Carvalho et al. 2016, Salmela et al. 2016, Koren et al.

2017]

De Bruijn graph

0010 0101
00101

De Bruijn graph (dBG)

An edge is a length-k string connecting its two k-1 substrings.

(k-1)-length Prefix (k-1)-length Suffix

Edge

De Bruijn graph (dBG)

CACTGAACTCACTGACTCA
CACTG
 ACTGA
 CTGAA
 TGAAC
 GAACT
 AACTC
 ACTCA
 CTCAC
 ...

A k-mer is a substring of length k.
Here, k is 5.

A read is a string of bases over
the DNA alphabet A, C, T, and
G.

Read 1: ….CAAAAT….
Read 2: ….CAAAAC….

CAAA AAAA

AAAT

AAAC

CAAAA AAAAT

AAAAC

De Bruijn graph (dBG)

De Bruijn graph-based assembly
Read 1: CACTGAACTC
Read 2: ACTGACTCA

ACT
ACTG

CTG TGA
CTGA

GAA

GAC

AACTGAA
GAAC

TGAC

CAC
CACT

ACT
AACT

ACT

CTC TCA
CTCA

GACT

ACTC

CTC
ACTC

De Bruijn graph-based assembly

Non-branching paths in the graph (i.e., contigs) are input to
downstream assembly processes.

CTC

ACT
ACTG

CTG TGA
CTGA

GAA

GAC

AACTGAA
GAAC

TGAC

CAC
CACT

ACT
AACT

ACT

CTC TCA
CTCA

GACT

ACTC

ACTC

Read 1: CACTGAACTC
Read 2: ACTGACTCA

De Bruijn graph-based assembly

 CACTGA CACTGA
 TGAACT
 TGACTCA
 Genome: …CACTGAACTCACTGACTCA…

CTC

ACT
ACTG

CTG TGA
CTGA

GAA

GAC

AACTGAA
GAAC

TGAC

CAC
CACT

ACT
AACT

ACT

CTC TCA
CTCA

GACT

ACTC

ACTC

Transcriptome assembly
• Topology-only de Bruijn graphs are not adequate

for transcriptome assembly.

• Abundance information of each k-mer is critical
for transcriptome assembly.

Read 1: ….CAAAAT….
Read 2: ….CAAAAC….

CAAA AAAA

AAAT

AAAC

CAAAA, 2 AAAAT,
1

AAAAC, 1

Weighted de Bruijn graph
(WdBG)

A weighted de Bruijn graph associates each edge (k-mer) its
abundance in the underlying dataset.

Weighted de Bruijn graph
(WdBG)

A weighted de Bruijn graph associates each edge (k-mer) its
abundance in the underlying dataset.

Read 1: ….CAAAAT….
Read 2: ….CAAAAC….

CAAA AAAA

AAAT

AAAC

CAAAA, 2 AAAAT,
1

AAAAC, 1

Weighted de Bruijn graphs pose an extra
obligation and opportunity.

de Bruijn graphs store only k-mers, memory usage
scales with the number of unique k-mers.

Measuring wdBG representation

 Human genome (few Billion k-mers): >100 GB
Soil metagenomes (few Million species): Few TBs

Beefy server machines are needed to perform
weighted de Bruijn graph analysis.

• A compact representation of the weighted de Bruijn
graph.

• It would enable transcriptome assembly on
machines with less resources.

• It would also enable assembly of fundamentally
large datasets that wasn’t possible before on a
single machine.

In this talk

dBG as a set
Set

TCCG
CCGC
CCGA
CGCT
AGCT

de Bruijn graph(Edges)

CCG

TCC

CGC

CGA

GCT

AGC

CCGA

TC
CG

CCGC

CGCT AG
CT

Approximate Membership Query
(AMQ)

• An AMQ is a lossy representation of a set.
• Operations: inserts and membership queries.
• Compact space:

• Often taking < 1 byte per item.
• Comes at the cost of occasional false positives.

AMQ

insert(X)

yes/no

isMember(X)

Probabilistic de Bruijn graph
[Pell et al. 2012]

CCG

TCC

CGC

CGA

GCT

AGC
AAT

GAG

AGT

CCGA

TC
CG

CCGC

CGCT AG
CT

GAGC

CGAG GAGT

AAAT

AAA

Topological errors

Bloom filter

TCCG
CCGC

CCGA

CGCT

AGCT

GAGC

CGAG

GAGT

AAAT

Representing a dBG using a Bloom filter.

Probabilistic de Bruijn graph
[Pellow et al. 2016]

CCG

TCC

CGC

CGA

GCT

AGC

GAG

AGT

AAT

AAA

CCGA

TC
CG

CCGC

CGCT AG
CT

GAGC

CGAG

Topological errors

Bloom filter

TCCG
CCGC

CCGA

CGCT

AGCT

GAGC

CGAG

GAGT

AAAT

Showed how to exploit redundancy in k-mers to reduce the false-positive
rate of the Bloom filter without increasing the space.

Exact de Bruijn graph
[Chikhi and Rizk 2013] and [Salikhov et al. 2013]

CCG

TCC

CGC

CGA

GCT

AGC

GAG

AGT

CCGA

TC
CG

CCGC

CGCT AG
CT

GAGC

CGAG

Critical false-positive k-mers

Bloom filter

TCCG
CCGC
CCGA
CGCT
AGCT
GAGC
CGAG
GAGT
AAAT

Hash table

GAGC
CGAG

They showed how to convert a probabilistic representation into an exact one
using a small and exact auxiliary data structure.

AAT
AAAT

AAA

WdBG as a multiset
MultiSet

TCCG, 2
CCGC, 9
CCGA, 6
CGCT, 5
AGCT, 2

Weighted de Bruijn graph(Edge, Abundance)

CCG

TCC

CGC

CGA

GCT

AGC

CCGA, 6

TC
CG

, 2

CCGC,9

CGCT, 5 AG
CT

, 2

Counting filters: AMQs for multisets

• A counting filter is a lossy representation of a multiset.
• Operations: inserts, count, and delete.
• Generalizes AMQs

• False positives ≈ over-counts.
• Counting quotient filter [Pandey et al. 2017]

Counting
filter

insert(X)

count
getCount(X)

delete(X)

Squeakr: Probabilistic weighted
de Bruijn graph [Pandey et al. 2017]

CCG

TCC

CGC

CGA

GCT

AGC

GAG

AGT

CCGA, 6

TC
CG

, 4
CCGC, 9

CGCT, 5 AG
CT,

4

GAGC, 2

CGAG, 1 GAGT, 1

AAT
AAAT, 1

AAA

Topological errors

Abundance error
Counting

quotient filter

TCCG, 4
CCGC, 9

CCGA, 6

CGCT, 5

AGCT, 4

GAGC, 2

CGAG, 1

GAGT, 1

AAAT, 1

• An exact representation of the weighted de Bruijn graph.

• An algorithm that uses counts in the approximate
representation in an AMQ to iteratively self-correct
approximation errors.

• It corrects both kinds of errors, abundance and
topological errors and supports membership
queries.

• It takes 18-28% more space than the approximate
representation and has no errors.

deBGR

A weighted de Bruijn graph
invariant

Total incoming abundance = Total outgoing abundance

Read 1: ….CAAAAT….
Read 2: ….CAAAAC….

CAAA AAAA

AAAT

AAAC

CAAAA, 2 AAAAT
, 1

AAAAC, 1

A weighted de Bruijn graph
invariant

Total incoming abundance = Total outgoing abundance*

*After accounting for read starts and ends.

CAAA
Start reads: 0
End reads: 0

AAAC
Start reads: 0
End reads: 0

CAAAA, 2 AAAAC, 1AAAA
Start reads: 0
End reads: 1

WdBG representation in deBGR
Read 1: CAAAAT

Read 2: CAAAAC

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

AAAC
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 1

AAAAC, 1Edge Abundance

CAAAA 2

AAAAT 1

AAAAC 1

Node Start reads

CAAA 2

Node End reads

AAAT 1

AAAC 1

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

AAAC
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0
End reads: 0

CGTA
Start reads: 0
End reads: 0

CCGTA, 1

WdBG representation in deBGR

Edge Abundance

CAAAA 2

AAAAT 2

AAAAC 1

CCGTA 1

Node Start reads

CAAA 2

Node End reads

AAAT 1

AAAC 1

Error correction

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

AAAC
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0
End reads: 0

CGTA
Start reads: 0
End reads: 0

CCGTA, 1

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

AAAC
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0
End reads: 0

CGTA
Start reads: 0
End reads: 0

CCGTA, 1 0

Error correction

Error correction

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

AAAC
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0
End reads: 0

CGTA
Start reads: 0
End reads: 0

CCGTA, 1 0

Error correction

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

AAAC
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0
End reads: 0

CGTA
Start reads: 0
End reads: 0

CCGTA, 1 0

Error correction

AAAC
Start reads: 0
End reads: 1

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0
End reads: 0

CGTA
Start reads: 0
End reads: 0

CCGTA, 1 0

CCGTA, 1 0

Error correction

AAAC
Start reads: 0
End reads: 1

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0
End reads: 0

CGTA
Start reads: 0
End reads: 0

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

AAAC
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0
End reads: 0

CGTA
Start reads: 0
End reads: 0

CCGTA, 1 0

Error correction

CCGTA, 1 0

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

AAAC
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 2

AAAAC, 1

CCGT
Start reads: 0
End reads: 0

CGTA
Start reads: 0
End reads: 0

Error correction

CAAA
Start reads: 2
End reads: 0

AAAA
Start reads: 0
End reads: 0

AAAT
Start reads: 0
End reads: 1

AAAC
Start reads: 0
End reads: 1

CAAAA, 2 AAAAT
, 2

 1

AAAAC, 1

CCGT
Start reads: 0
End reads: 0

CGTA
Start reads: 0
End reads: 0

CCGTA, 1 0

Error correction

Error correction algorithm
• We use a standard work queue algorithm.

• We bootstrap with a set C of edges for which we know the
abundance is correct.

• We then expand the set C of edges using the weighted de
Bruijn graph invariant.

• Please refer to the paper for exact set of rules for error
correction.

• Running time: O(n・log(n) / log(1/4ε)).

Datasets
Dataset Size #k-mer

instances #Distinct k-mers

GSM984609 26 GB 19,662,773,330 1,146,347,598

GSM981256 22 GB 16,470,774,825 1,118,090,824

GSM981244 43 GB 37,897,872,977 1,404,643,983

SRR1284895 33 GB 26,235,129,875 2,079,889,717

 Space vs Accuracy
Bi

ts
/k

-m
er

0

20

40

60

80

Datasets

GSM984609 GSM981256 GSM981244 SRR1284895

Squeakr Squeakr (exact) deBGR

 Space vs Accuracy
Bi

ts
/k

-m
er

0

20

40

60

80

Datasets

GSM984609 GSM981256 GSM981244 SRR1284895

Squeakr Squeakr (exact) deBGR

16,655,318 15,864,754
12,257,261

27,200,821

0 0 0 0 0 0 0 0

 Space vs Accuracy
Bi

ts
/k

-m
er

0

20

40

60

80

Datasets

GSM984609 GSM981256 GSM981244 SRR1284895

Squeakr Squeakr (exact) deBGR

16,655,318 15,864,754
12,257,261

27,200,821

0 0 0 0 0 0 0 0

Number of errors in deBGR: 0 !

Conclusion
• Abundance information is important for many data

analyses.

• But the abundance information can be used to remove
effectively all the errors in an approximate weighted de
Bruijn graph representation.

• The basic ideas behind our error-correction technique
may also be useful for compactly representing weighted
graphs by exploiting other domain-specific invariants.

https://github.com/splatlab/debgr

De Bruijn graph (dBG)

In graph theory, an n-dimensional de Bruijn graph of m symbols
is a directed graph representing overlaps between sequences of
symbols.

101
100

001

010

011

110

000 111

0010

1100
01

00

The counting quotient filter (CQF) [Pandey et al. 2017]

• A replacement for the (counting) Bloom filter.

• Space and computationally efficient.

• Uses variable-sized counters to handle skewed
data sets efficiently.

CQF space ≤ BF space + O(∑ log c(x))
x∈S

}
Asymptotically optimal

• Smaller than many non-counting AMQs
• Bloom, cuckoo [Fan et al., 2014], and quotient [Bender et

al., 2012] filters.
• Good cache locality
• Deletions
• Dynamically resizable
• Mergeable

Counting quotient filter (CQF)

Quotienting: An alternative to Bloom filters

• Store fingerprint compactly in a hash table.
• Take a fingerprint h(x) for each element x.

• Only source of false positives:
• Two distinct elements x and y, where h(x) = h(y).
• If x is stored and y isn’t, query(y) gives a false positive.

 h(x)x

Storing compact fingerprints

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

q rb(u)

b(x) t(x)

t(u)

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index

Storing compact fingerprints

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?

q rb(u)

b(x) t(x)

t(u)

0

1

2

3

4

5

6

h(x)

b(v)

t(v)

2q

Tag
Bucket index

Storing compact fingerprints

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
Linear probing.

q rb(u)

b(x) t(x)

t(u)

 t(v)

0

1

2

3

4

5

6

h(x)

b(v)

t(v)

2q

Tag
Bucket index

Storing compact fingerprints

q rb(u)

b(x) t(x)

t(u)

 t(v)

0

1

2

3

4

5

6

h(x)

b(v)

t(v)

2q

Does t(v) belongs to
bucket 4 or 5 ?

• The home bucket for
 t(u) and t(v) is 4.

Tag
Bucket index

• CQF uses two metadata bits to resolve collisions and

identify the home bucket.

• The metadata bits group tags by their home bucket.

• Metadata scheme supports efficient inserts/deletes.

1 1

t(u) t(v) t(w) t(x) t(y)

Resolving collisions in the CQF

• Metadata scheme tells us the run of slots holding contents

of a bucket.

• We can encode contents of buckets however we want.

• The original quotient filter used repetition (unary).

1 1

t(u) t(u) t(u) t(u) t(x) t(y)

Encoding counts

• We want to count in binary, not unary.

• Idea: use some of the space for tags to store counts.

• Issue: determine which are tags and which are counts

without using even one “control” bit.

1 1

t(u) 4 t(x) 1 t(y) 1

Encoding counts

4 copies of t(u)
}

Performance: In memory

• The CQF insert performance in RAM is similar to that of state-of-
the-art non-counting AMQs.

• The CQF is significantly faster at low load factors and slightly slower
on high load factors.

Inserts lookups

Performance: Skewed datasets

❑ The CQF outperforms the CBF by a factor of 6x-10x on both inserts
and lookups.

Inserts lookups

