IcebergHT: High-Performance Hash
Tables Through Stablllty and
Low Associativity

SIGMOD 2023

Prashant Pandey, Michael A. Bender, Alex Conway, Martin Farach-Colton,
William Kuszmaul, Guido Tagliavini, Rob Johnson

THE \w W e,
S : EEE M husett
O Uiy ‘\\ Stony Brook @ RUTGERS ~— vimware [IliT e

University == ~ — — — EF 1IN Technology

Hash tables are everywhere!

e — ———— T e — —_—

Built into many languages... Built into many software packages...

o D
i

And performance is critical to many applications.

Three-way
trade-off

Query speed

Hash table performance has a three-way trade off between insertion speed,
query speed, and space.

Stability Low associativity Space efficiency

ltems don’t move after Map each item to one a Minimum overhead from
insertion small number of locations pointers or over provisioning

Stability Low associativity Space efficiency

ltems don’t move after Map each item to one a Minimum overhead from
Insertion small number of locations pointers or over provisioning

Fast insertion

echanism

— e em— . e e ——— _— S

Stability Low associativity Space efficiency
ltems don’t move after Map each item to one a Minimum overhead from
insertion small number of locations ~ POINters or over provisioning

Fast insertion Fast queries

echanism

— e em— . e e ——— _— ——

Stability Low associativity Space efficiency
ltems don’t move after Map each item to one a Minimum overhead from
insertion small number of locations ~ POINters or over provisioning

Fast insertion

Achieving all three is a long-standing open problem In
hash table design.

Our results:

—_——— e e ————————— . —

Stabilit Insertion 50% to 3X faster on PMEM
y performance Up to 2X faster on DRAM
Low Query

. 20% to 2X faster on PMEM

associativity performance Competitive on DRAM
N 0
Space Space 17% space overhead
o o compared to 3X for other
efficiency efficiency hash tables

IcebergHT achieves stability, low associativity, and space efficiency at the same time.

Our results:

Stabilit Insertion 50% to 3X faster on PMEM
y performance Up to 2X faster on DRAM

- PMEM
| ;’f\ \AM

Low |
associati lﬁ

»y swace vverniead
Spg C Spg C compared to 3X for other Y
efficiency efficiency hash tables

IcebergHT achieves stability, low associativity, and space efficiency at the same time.

e Stable

L log N K — o
. Associativity & ——— (a = load factor)

(1 —-a)?
 E.g., N =1Billion, a = 95%, associativity = 12000

Must choose between low associativity and space efficiency.

 Low associativity: queries must check only 2 a |l b | c
cache lines

e Space efficient, load factor > 95%

e But not stable

Insertion performance drops significantly due to excessive kicking at high load
factors.

* Other hashing schemes also lack one or more of these properties

* Chaining: not low associativity

 Robin hood: not stable and not low associativity at high load factors
* Hopscotch: not stable

 Quadratic probing: not stable and not low associativity at high load factors

Theorem: if you throw N balls into

N/log N bins using minimum of two
choices, the fullest bin will have

log N+ loglog N + O(1) balls W.H.P.

Pick 2 random bins |
| Place ball in the emptier bin !

- By Berenbrink, Czumaj, Steger, Vocking
2000

————— — e

 2-choice hashing: hash to two buckets and
put item in emptier bucket

o Stable: no kicking
» Low associativity: O(log N)

 Space efficient: load factor 1 — o(1)

An almost solution: two choice hashing

ha(k) /

log N 4+ loglog N + O(1

slots

]
)

| buckets

An almost solution: two choice hashing

 2-choice hashing: hash to two buckets and

put item in emptier bucket

o Stable: no kicking

» Low associativity: O(log N)

 Space efficient: load factor 1 — o(1) hilk) g

Problem: it does not hold when we delete items

log N + loglog N + O(1)
slots

Opportunity: theorem does hold with deletions if
average bucket occupancy is O(1)

| buckets

iceberg hashing

— e . ——— e —

* |ceberg theorem: if you throw N

balls into N/log N bins of size

log N + o(log N), the number of
overflow balls will be

O(N/log N) hotk) ¥

. ,

Idea: use single-choice front yard to
absorb most items

Backyard has average occupancy of

O(1)

Front yard

log N+ o(log N) slot

S

" N/log N

buckets

Back yard

loglog N + O(1) slots

Overflow
(Almost never used)

—>|

Iceberg hashin

* |ceberg theorem: if you throw N

—_ —— e ———————— —_

Front yard

balls into N/log N bins of size
log N + o(log N), the number of

overflow balls will be

O(N/ lOg N) ho(k

Idea: use single-choice front yard to

absorb most items

Backyard has average occupancy of

O(1)

log N+ o(log N) slot

Problem: buckets in the front yard span many cache
lines, so queries must load many cache lines.

S

" N/log N

buckets

h 1 (k) V4 ;\

Back yard

loglog N + O(1) slots

Overflow
(Almost never used)

—[]

lceberg hashing: metadat

—_—
S — e —————a— ——

a to reduce associativity

o e — e ————

—

_ Front yard Sack vard
I/,-\\\ = —
@&\g & N/logN
\ | buckets Overflow
Fingerprints | (Almost never used)
hitk) 7 —p P
—
- m
Cacheline
64 Bytes ‘
y =2
64 slots 8 slots

Problem: buckets in the front yard span many cache

. . . Solution: store a fingerprint table.
lines, so queries must load many cache lines.

lceberg hashing: metadat

e
o — e —————p—— —

a to reduce associativity

o e — e ————

—

_ Front yard Back yard
‘\(@\:" & N/logN
S Overflow
| buckets
Fingerprints | (Almost never used)
Use AVX512 .‘_H —p I:I

to query h1(k)
metadata P

- m
Cacheline
64 Bytes ‘
y =)
64 slots 8 slots

Problem: buckets in the front yard span many cache

. . . Solution: store a fingerprint table.
lines, so queries must load many cache lines.

IcebergHT implementation

e ————— ——— e = e — — = @

 Highly concurrent operations
* |cebergHT supports in-place resizing; reduces peak memory usage

 Multi-threaded resizes are implemented using distributed reader-writer
locks

 Crash safety is trivial
* Using CLWB; no need for a fence between key & value writes

 Metadata stays in DRAM and is reconstructed during recovery

PMEM performance: operation throughput

e ——

B B icebergHT I B Dash § B CLHT

— 80 -
& |
= 1 60
= i _
= { 40| -
o0 i]
=
é 1 20
10
Insertion Deletion Pos Query Neg Query

Performance using 16 threads for PMEM hash tables.

lceberg outperforms state-of-the-art hash tables across all operations.

Hash tables Space efficiency

lcebergHT 85%

Dash 69%

CLHT 33%

lcebergHT offers higher space efficiency compared to Dash (extendible) and
CLHT (chaining) hash tables.

DRAM performance: operation throughput

= e —
—_——— e e ————————— . — e —— —— . -

B B icebergHT B B Cuckoo N M TBB N B CLHT

@ 100 | 1150
§ 80 |-
2 60 1100
'ED :
§ 40 50
FS 20

0 0

Insertion Deletion Pos Query Neg Query

Performance using 16 threads for DRAM hash tables.

lceberg outperforms state-of-the-art hash tables for insertions and offers similar performance
to CLHT for queries.

lcebergHT deletes are slower.

20

—@— ICEBERGHT —¢— Cuckoo

> | "e|-+ TBB e CLHT-LB-RES
2 e

A "

w® |

-

5

=

0 01 02 03 04 05 06 07 08 0.9

Space efficiency

lcebergHT can achieve high space efficiency and maintain insertion throughput.

CLHT space efficiency drops quickly.
CuckooHT insertion throughput drops at high load factor.

Tlakeaways

» Stability yields:
» Fast updates (especially on PMEM)
* Good scalability with threads
» Crash safety (please refer to paper)
* Low associativity yields:

e Fast lookups

 Small metadata
* |ceberg hashing gives both high performance and high space utilization
* Also, supports resizing without drop In instantaneous latency

* Metadata scheme is also an example of general maplet data structure

Source code: https://github.com/splatiab/iceberghashtable

