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Hash tables are everywhere!

 
 

Built into many languages… Built into many software packages…

And performance is critical to many applications.



Hash table performance criteria

Three-way 
trade-off Space

Insertion speed

Query speed

Hash table performance has a three-way trade off between insertion speed, 
query speed, and space.



Hash table design mechanism

Stability 

Items don’t move after 

insertion

Low associativity

Map each item to one a 

small number of locations

Space efficiency 
Minimum overhead from 

pointers or over provisioning
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Achieving all three is a long-standing open problem in 
hash table design.



Our results:
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IcebergHT also achieves:

• Almost linear scalability with increasing threads

• Fenceless crash safety on PMEM




For example: linear probing 

• Stable


• Associativity   (  = load factor)


• E.g., N = 1Billion,  = 95%, associativity = 12000
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Must choose between low associativity and space efficiency.



For example: cuckoo hashing

• Low associativity: queries must check only 2 
cache lines 


• Space efficient, load factor > 95%


• But not stable

Insertion performance drops significantly due to excessive kicking at high load 
factors.

Kick z

Kick p
a b c
d e f g

h i j z

l m o p

h0(k)

h1(k)

K



Other hashing schemes:

• Other hashing schemes also lack one or more of these properties


• Chaining: not low associativity


• Robin hood: not stable and not low associativity at high load factors


• Hopscotch: not stable


• Quadratic probing: not stable and not low associativity at high load factors



Theorem: if you throw N balls into 
 bins using minimum of two 

choices, the fullest bin will have 
 balls W.H.P.


- By Berenbrink, Czumaj, Steger, Vöcking  
2000

N/log N

log N + log log N + O(1)

Two choice hashing

….

Pick 2 random bins 
Place ball in the emptier bin

N balls

 binsN/log N



An almost solution: two choice hashing

• 2-choice hashing: hash to two buckets and 
put item in emptier bucket 


• Stable: no kicking


• Low associativity: 


• Space efficient: load factor 

O(log N)
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Problem: it does not hold when we delete items


Opportunity: theorem does hold with deletions if 
average bucket occupancy is O(1)



Iceberg hashing

• Iceberg theorem: if you throw  
balls into  bins of size 

, the number of 
overflow balls will be 

N
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Overflow

(Almost never used)

• Idea: use single-choice front yard to 
absorb most items


• Backyard has average occupancy of 
O(1)
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Problem: buckets in the front yard span many cache 
lines, so queries must load many cache lines.



Iceberg hashing: metadata to reduce associativity

Problem: buckets in the front yard span many cache 
lines, so queries must load many cache lines.
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Iceberg hashing: metadata to reduce associativity

Problem: buckets in the front yard span many cache 
lines, so queries must load many cache lines.

h1(k)

h2(k)

K

h0(k)

K



buckets
N/log N

 slots64  slots8

Front yard Back yard

Overflow

(Almost never used)

Solution: store a fingerprint table.

Fingerprints

Cacheline

64 Bytes

Use AVX512 
to query 
metadata



IcebergHT implementation

• Highly concurrent operations


• IcebergHT supports in-place resizing; reduces peak memory usage


• Multi-threaded resizes are implemented using distributed reader-writer 
locks


• Crash safety is trivial 

• Using CLWB; no need for a fence between key & value writes


• Metadata stays in DRAM and is reconstructed during recovery



PMEM performance: operation throughput

Performance using 16 threads for PMEM hash tables.


Iceberg outperforms state-of-the-art hash tables across all operations.



PMEM performance: space efficiency

IcebergHT offers higher space efficiency compared to Dash (extendible) and 
CLHT (chaining) hash tables.

Hash tables Space efficiency

IcebergHT 85%

Dash 69%

CLHT 33%



DRAM performance: operation throughput

Performance using 16 threads for DRAM hash tables.

Iceberg outperforms state-of-the-art hash tables for insertions and offers similar performance 
to CLHT for queries.

IcebergHT deletes are slower.



DRAM performance: space efficiency

IcebergHT can achieve high space efficiency and maintain insertion throughput.

CLHT space efficiency drops quickly.

CuckooHT insertion throughput drops at high load factor.



Takeaways
• Stability yields:

• Fast updates (especially on PMEM)

• Good scalability with threads

• Crash safety (please refer to paper)


• Low associativity yields: 

• Fast lookups

• Small metadata


• Iceberg hashing gives both high performance and high space utilization

• Also, supports resizing without drop in instantaneous latency


• Metadata scheme is also an example of general maplet data structure

Source code: https://github.com/splatlab/iceberghashtable


