
Prashant Pandey, Michael A. Bender, Alex Conway, Martin Farach-Colton,

William Kuszmaul, Guido Tagliavini, Rob Johnson

IcebergHT: High-Performance Hash
Tables Through Stability and
Low Associativity

SIGMOD 2023

Hash tables are everywhere!

Built into many languages… Built into many software packages…

And performance is critical to many applications.

Hash table performance criteria

Three-way
trade-off Space

Insertion speed

Query speed

Hash table performance has a three-way trade off between insertion speed,
query speed, and space.

Hash table design mechanism

Stability

Items don’t move after

insertion

Low associativity

Map each item to one a

small number of locations

Space efficiency
Minimum overhead from

pointers or over provisioning

Hash table design mechanism

Stability

Items don’t move after

insertion

Low associativity

Map each item to one a

small number of locations

Space efficiency
Minimum overhead from

pointers or over provisioning

Fast insertion

Hash table design mechanism

Stability

Items don’t move after

insertion

Low associativity

Map each item to one a

small number of locations

Space efficiency
Minimum overhead from

pointers or over provisioning

Fast insertion Fast queries

Hash table design mechanism

Stability

Items don’t move after

insertion

Low associativity

Map each item to one a

small number of locations

Space efficiency
Minimum overhead from

pointers or over provisioning

Fast insertion Fast queries Low space

Achieving all three is a long-standing open problem in
hash table design.

Our results:

Stability

Low
associativity

Space
efficiency

IcebergHT achieves stability, low associativity, and space efficiency at the same time.

Insertion
performance

Query
performance

Space
efficiency

50% to 3X faster on PMEM
Up to 2X faster on DRAM

20% to 2X faster on PMEM
Competitive on DRAM

17% space overhead
compared to 3X for other

hash tables

Our results:

Stability

Low
associativity

Space
efficiency

IcebergHT achieves stability, low associativity, and space efficiency at the same time.

Insertion
performance

Query
performance

Space
efficiency

50% to 3X faster on PMEM
Up to 2X faster on DRAM

20% to 2X faster on PMEM
Competitive on DRAM

17% space overhead
compared to 3X for other

hash tables

IcebergHT also achieves:

• Almost linear scalability with increasing threads

• Fenceless crash safety on PMEM

For example: linear probing

• Stable

• Associativity (= load factor)

• E.g., N = 1Billion, = 95%, associativity = 12000

≈
log N

(1 − α)2
α

α

a
b
c

K
h(k)

Must choose between low associativity and space efficiency.

For example: cuckoo hashing

• Low associativity: queries must check only 2
cache lines

• Space efficient, load factor > 95%

• But not stable

Insertion performance drops significantly due to excessive kicking at high load
factors.

Kick z

Kick p
a b c
d e f g

h i j z

l m o p

h0(k)

h1(k)

K

Other hashing schemes:

• Other hashing schemes also lack one or more of these properties

• Chaining: not low associativity

• Robin hood: not stable and not low associativity at high load factors

• Hopscotch: not stable

• Quadratic probing: not stable and not low associativity at high load factors

Theorem: if you throw N balls into
 bins using minimum of two

choices, the fullest bin will have
 balls W.H.P.

- By Berenbrink, Czumaj, Steger, Vöcking
2000

N/log N

log N + log log N + O(1)

Two choice hashing

….

Pick 2 random bins
Place ball in the emptier bin

N balls

 binsN/log N

An almost solution: two choice hashing

• 2-choice hashing: hash to two buckets and
put item in emptier bucket

• Stable: no kicking

• Low associativity:

• Space efficient: load factor

O(log N)

1 − o(1)

h0(k)

h1(k)

K

buckets
N/log N

slots

log N + log log N + O(1)

An almost solution: two choice hashing

• 2-choice hashing: hash to two buckets and
put item in emptier bucket

• Stable: no kicking

• Low associativity:

• Space efficient: load factor

O(log N)

1 − o(1)

h0(k)

h1(k)

K

buckets
N/log N

slots

log N + log log N + O(1)

Problem: it does not hold when we delete items

Opportunity: theorem does hold with deletions if
average bucket occupancy is O(1)

Iceberg hashing

• Iceberg theorem: if you throw
balls into bins of size

, the number of
overflow balls will be

N
N/log N

log N + o(log N)

O(N/log N) h1(k)

h2(k)

K

h0(k)

K

buckets
N/log N

 slotslog N + o(log N) slotslog log N + O(1)

Front yard Back yard

Overflow

(Almost never used)

• Idea: use single-choice front yard to
absorb most items

• Backyard has average occupancy of
O(1)

Iceberg hashing

• Iceberg theorem: if you throw
balls into bins of size

, the number of
overflow balls will be

N
N/log N

log N + o(log N)

O(N/log N) h1(k)

h2(k)

K

h0(k)

K

buckets
N/log N

 slotslog N + o(log N) slotslog log N + O(1)

Front yard Back yard

Overflow

(Almost never used)

• Idea: use single-choice front yard to
absorb most items

• Backyard has average occupancy of
O(1)

Problem: buckets in the front yard span many cache
lines, so queries must load many cache lines.

Iceberg hashing: metadata to reduce associativity

Problem: buckets in the front yard span many cache
lines, so queries must load many cache lines.

h1(k)

h2(k)

K

h0(k)

K

buckets
N/log N

 slots64 slots8

Front yard Back yard

Overflow

(Almost never used)

Solution: store a fingerprint table.

Fingerprints

Cacheline

64 Bytes

Iceberg hashing: metadata to reduce associativity

Problem: buckets in the front yard span many cache
lines, so queries must load many cache lines.

h1(k)

h2(k)

K

h0(k)

K

buckets
N/log N

 slots64 slots8

Front yard Back yard

Overflow

(Almost never used)

Solution: store a fingerprint table.

Fingerprints

Cacheline

64 Bytes

Use AVX512
to query
metadata

IcebergHT implementation

• Highly concurrent operations

• IcebergHT supports in-place resizing; reduces peak memory usage

• Multi-threaded resizes are implemented using distributed reader-writer
locks

• Crash safety is trivial

• Using CLWB; no need for a fence between key & value writes

• Metadata stays in DRAM and is reconstructed during recovery

PMEM performance: operation throughput

Performance using 16 threads for PMEM hash tables.

Iceberg outperforms state-of-the-art hash tables across all operations.

PMEM performance: space efficiency

IcebergHT offers higher space efficiency compared to Dash (extendible) and
CLHT (chaining) hash tables.

Hash tables Space efficiency

IcebergHT 85%

Dash 69%

CLHT 33%

DRAM performance: operation throughput

Performance using 16 threads for DRAM hash tables.

Iceberg outperforms state-of-the-art hash tables for insertions and offers similar performance
to CLHT for queries.

IcebergHT deletes are slower.

DRAM performance: space efficiency

IcebergHT can achieve high space efficiency and maintain insertion throughput.

CLHT space efficiency drops quickly.

CuckooHT insertion throughput drops at high load factor.

Takeaways
• Stability yields:

• Fast updates (especially on PMEM)

• Good scalability with threads

• Crash safety (please refer to paper)

• Low associativity yields:

• Fast lookups

• Small metadata

• Iceberg hashing gives both high performance and high space utilization

• Also, supports resizing without drop in instantaneous latency

• Metadata scheme is also an example of general maplet data structure

Source code: https://github.com/splatlab/iceberghashtable

