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Hash tables are everywhere!
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Built into many languages... Built into many software packages...
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And performance is critical to many applications.



Three-way
trade-off

Query speed

Hash table performance has a three-way trade off between insertion speed,
query speed, and space.



Stability Low associativity Space efficiency

ltems don’t move after Map each item to one a Minimum overhead from
insertion small number of locations pointers or over provisioning
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Achieving all three is a long-standing open problem In
hash table design.



Our results:
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Stabilit Insertion 50% to 3X faster on PMEM
y performance Up to 2X faster on DRAM
Low Query

. 20% to 2X faster on PMEM

associativity performance Competitive on DRAM
N 0
Space Space 17% space overhead
o o compared to 3X for other
efficiency efficiency hash tables

IcebergHT achieves stability, low associativity, and space efficiency at the same time.
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e Stable

L log N K — o
. Associativity & ——— (a = load factor)

(1 —-a)?
 E.g., N =1Billion, a = 95%, associativity = 12000

Must choose between low associativity and space efficiency.




 Low associativity: queries must check only 2 a |l b | c
cache lines

e Space efficient, load factor > 95%

e But not stable

Insertion performance drops significantly due to excessive kicking at high load
factors.



* Other hashing schemes also lack one or more of these properties

* Chaining: not low associativity

 Robin hood: not stable and not low associativity at high load factors
* Hopscotch: not stable

 Quadratic probing: not stable and not low associativity at high load factors



Theorem: if you throw N balls into

N/log N bins using minimum of two
choices, the fullest bin will have

log N+ loglog N + O(1) balls W.H.P.

Pick 2 random bins |
| Place ball in the emptier bin !

- By Berenbrink, Czumaj, Steger, Vocking
2000
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 2-choice hashing: hash to two buckets and
put item in emptier bucket

o Stable: no kicking
» Low associativity: O(log N)

 Space efficient: load factor 1 — o(1)

An almost solution: two choice hashing

ha(k) /

log N 4+ loglog N + O(1

slots
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| buckets




An almost solution: two choice hashing

 2-choice hashing: hash to two buckets and

put item in emptier bucket

o Stable: no kicking

» Low associativity: O(log N)

 Space efficient: load factor 1 — o(1) hilk) g

Problem: it does not hold when we delete items

log N + loglog N + O(1)
slots

Opportunity: theorem does hold with deletions if
average bucket occupancy is O(1)

| buckets




iceberg hashing
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* |ceberg theorem: if you throw N

balls into N/log N bins of size

log N + o(log N), the number of
overflow balls will be

O(N/log N) hotk) ¥

. ,

Idea: use single-choice front yard to
absorb most items

Backyard has average occupancy of

O(1)

Front yard

log N+ o(log N) slot

S

" N/log N

buckets

Back yard

loglog N + O(1) slots

Overflow
(Almost never used)
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Iceberg hashin

* |ceberg theorem: if you throw N
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Front yard

balls into N/log N bins of size
log N + o(log N), the number of

overflow balls will be

O(N/ lOg N) ho(k

Idea: use single-choice front yard to

absorb most items

Backyard has average occupancy of

O(1)

log N+ o(log N) slot

Problem: buckets in the front yard span many cache
lines, so queries must load many cache lines.
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lceberg hashing: metadat
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a to reduce associativity
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\ | buckets Overflow
Fingerprints | (Almost never used)
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Cacheline
64 Bytes ‘
y =2
64 slots 8 slots

Problem: buckets in the front yard span many cache

. . . Solution: store a fingerprint table.
lines, so queries must load many cache lines.



lceberg hashing: metadat
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Problem: buckets in the front yard span many cache

. . . Solution: store a fingerprint table.
lines, so queries must load many cache lines.



IcebergHT implementation
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 Highly concurrent operations
* |cebergHT supports in-place resizing; reduces peak memory usage

 Multi-threaded resizes are implemented using distributed reader-writer
locks

 Crash safety is trivial
* Using CLWB; no need for a fence between key & value writes

 Metadata stays in DRAM and is reconstructed during recovery



PMEM performance: operation throughput
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Performance using 16 threads for PMEM hash tables.

lceberg outperforms state-of-the-art hash tables across all operations.



Hash tables Space efficiency

lcebergHT 85%

Dash 69%

CLHT 33%

lcebergHT offers higher space efficiency compared to Dash (extendible) and
CLHT (chaining) hash tables.



DRAM performance: operation throughput
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Performance using 16 threads for DRAM hash tables.

lceberg outperforms state-of-the-art hash tables for insertions and offers similar performance
to CLHT for queries.

lcebergHT deletes are slower.
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Space efficiency

lcebergHT can achieve high space efficiency and maintain insertion throughput.

CLHT space efficiency drops quickly.
CuckooHT insertion throughput drops at high load factor.



Tlakeaways

» Stability yields:
» Fast updates (especially on PMEM)
* Good scalability with threads
» Crash safety (please refer to paper)
* Low associativity yields:

e Fast lookups

 Small metadata
* |ceberg hashing gives both high performance and high space utilization
* Also, supports resizing without drop In instantaneous latency

* Metadata scheme is also an example of general maplet data structure

Source code: https://github.com/splatiab/iceberghashtable



