Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index

Prashant Pandey, Fatemeh Almodaresi, Michael A. Bender,
 Michael Ferdman, Rob Johnson*, Rob Patro
 Stony Brook University, NY
 *VMware Research USA

A huge amount of information is available only in raw sequencing data

- Assembled data is hugely lossy. A lot of variability information is lost during assembly.
- And a lot of raw sequencing data never gets assembled at all.

The ability to perform searches on raw sequencing data would enable us to answer lots of questions

Q: What if I find a new putative disease-related transcript, and want to see if it appeared in other biological samples?

Q: What if I discover a new fusion event in a particular cancer subtype and want to know if it is common among samples with this subtype?

Q: What if I find an unexpected bacterial contaminant in my data; which other samples might contain this?

The ability to perform searches on raw sequencing data would enable us to answer lots of questions

Q: What if I find a new putative disease-related transcript, and want to see if it appeared in other biological samples?

Q: What if I discover a new fusion event in a particular cancer subtype and want to know if it is common among samples with this subtype?

Q: What if I find an unexpected bacterial contaminant in my data; which other samples might contain this?

A: I need to search through tons of raw sequencing data.

Current tools (i.e., BLAST) can't answer diversity questions easily

Current tools (i.e., BLAST) can't answer diversity questions easily

GATG

GA....

ata

naw scyucheing data

Individuals

Our Answer: Mantis

- A system to index and search through large collections of raw sequencing samples.
- Mantis uses **new data structures** to enable:
 - **6X faster index construction** than the state-of-the-art.
 - **6X-100X faster searches** than the state-of-the-art.
 - 20% smaller index size.
 - Exact results, i.e., no false-positives or -negatives.
- Mantis is also a colored de Bruijn graph:
 - Fast graph traversal
 - Topological analyses

The sample discovery problem [Solomon and Kingsford]

- Decompose each sample into *k*-mers.
- If more than θ -fraction k-mers from a query appear in an sample then there is a high chance that query appears in that sample.

- **SBT:** Solomon and Kingsford 2016
- **SSBT:** Solomon and Kingsford 2017
- AllSome SBT: Sun et al. 2017

- **SBT:** Solomon and Kingsford 2016
- **SSBT:** Solomon and Kingsford 2017
- AllSome SBT: Sun et al. 2017
- All these tools use Bloom filters to represent *k*-mer content of samples.

- **SBT:** Solomon and Kingsford 2016
- SSBT: Solomon and Kingsford 2017
- AllSome SBT: Sun et al. 2017
- All these tools use Bloom filters to represent *k*-mer content of samples.
- Using Bloom filter saves a lot of space but results contain false-positives.

- **SBT:** Solomon and Kingsford 2016
- SSBT: Solomon and Kingsford 2017
- AllSome SBT: Sun et al. 2017
- All these tools use Bloom filters to represent *k*-mer content of samples.
- Using Bloom filter saves a lot of space but results contain false-positives.
- Also, all these tools have to work around the limitations of Bloom filters.

Input Samples

	_	_		
S1	S2	S3	S4	
	ACTG	ACTG		
ACTT				
		CTTG	CTTG	
	TTTC	TTTC		
	GCGT	GCGT	GCGT	
	AGCC	AGCC		

Map: *k*-mers to Samples

k-mer	Samples		
ACTG	S2, S3		
ACTT	S1		
CTTG	S3, S4		
TTTC	S2, S3		
GCGT	S2, S3, S4		
AGCC	S2, S3		

• We want to map *k*-mers to the samples in which they appear.

Input Samples

Map: *k*-mers to Samples

S1	S2	S3	S4		<i>k</i> -mer	Samples
	ACTG	ACTG			ACTG	S2, S3
ACTT					ACTT	S1
		CTTG	CTTG		CTTG	S3, S4
	TTTC	TTTC			TTTC	S2, S3
	GCGT	GCGT	GCGT		GCGT	S2, S3, S4
	AGCC	AGCC			AGCC	S2, S3

• There is an inherent redundancy in this this design.

We add another layer of indirection from IDs to sets of samples.

• We call each set a color class.

• We store sets of samples as bit vectors.

• We use the CQF to map *k*-mers to color-class IDs.

• We use Rainbowfish technique to map color-class IDs to sets of samples.

Counting quotient filter (CQF)

- A replacement for the (counting) Bloom filter.
- Space and computationally efficient.
- Uses variable-sized counters to handle skewed data sets efficiently.

CQF space
$$\leq$$
 BF space $+$ O($\sum_{x \in S} \log c(x)$)

Asymptotically optimal

Counting quotient filter (CQF) Colored

- A replacement for the (counting) Bloom filter.
- Space and computationally efficient.
- We repurpose variable-sized counters in the CQF to store color-class IDs.

 CQF space ≤ DF space + O(∠ log c(x))

 x∈S

Asymptotically optimal

The CQF stores variable-sized color IDs efficiently

The distribution of IDs of color classes and their popularity.

The CQF stores variable-sized color IDs efficiently

The distribution of IDs of color classes and their popularity.

Since some color classes are more popular than others, using variable-length color-class IDs can save substantial amount of space.

Raw sequencing samples

Raw sequencing samples

Squeakr

Output

Experimental setup

- Build index for 2652 samples of RNA-seq short-read sequencing runs of human blood, brain, and breast tissue.
- Compared with SSBT.
- Evaluation metrics:
 - Index size
 - Construction time
 - Query performance
 - Quality of results

Index size

Mantis is 20% smaller than the SSBT.

Construction time

Mantis is 6X faster than the SSBT for construction.

Query performance

Mantis is 6X-100X faster than the SSBT for queries.

Quality of results

Mantis is exact.

Conclusion

- Raw sequencing data archives are an untapped trove of information.
- Mantis makes it feasible to search these archives for new discoveries.
- Mantis outperforms prior systems by up to 100x.

Source code: https://github.com/splatlab/mantis

Fatemeh Almodaresi

Michael A. Bender

Michael Ferdman

Rob Johnson

Rob Patro

Source code: https://github.com/splatlab/mantis

