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A huge amount of information is available 
only in raw sequencing data

● Assembled data is hugely lossy. A lot of variability information is 
lost during assembly.

● And a lot of raw sequencing data never gets assembled at all.



The ability to perform searches on raw 
sequencing data would enable us to answer 

lots of questions

Q: What if I find a new putative disease-related transcript, and want to 
see if it appeared in other biological samples?

Q : What if I discover a new fusion event in a particular cancer 
subtype and want to know if it is common among samples with this 
subtype?

Q: What if I find an unexpected bacterial contaminant in my data; 
which other samples might contain this?



The ability to perform searches on raw 
sequencing data would enable us to answer 

lots of questions

Q: What if I find a new putative disease-related transcript, and want to 
see if it appeared in other biological samples?

Q : What if I discover a new fusion event in a particular cancer 
subtype and want to know if it is common among samples with this 
subtype?

Q: What if I find an unexpected bacterial contaminant in my data; 
which other samples might contain this?

A: I need to search through tons of raw sequencing data. 



Current tools (i.e., BLAST) can’t answer 
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This renders what is otherwise an immensely 
valuable public resource largely inert.



● A system to index and search through large 
collections of raw sequencing samples.

● Mantis uses new data structures to enable:
○ 6X faster index construction than the state-of-the-art.
○ 6X-100X faster searches than the state-of-the-art.
○ 20% smaller index size.
○ Exact results, i.e., no false-positives or -negatives.

● Mantis is also a colored de Bruijn graph:
○ Fast graph traversal
○ Topological analyses

Our Answer: Mantis



The sample discovery problem [Solomon and Kingsford]

● Decompose each sample into k-mers.
● If more than θ-fraction k-mers from a query appear in an sample then 

there is a high chance that query appears in that sample.
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Existing tools for sample discovery problem

● SBT: Solomon and Kingsford 2016
● SSBT: Solomon and Kingsford 2017
● AllSome SBT: Sun et al. 2017

● All these tools use Bloom filters to represent k-mer content 
of samples.

● Using Bloom filter saves a lot of space but results contain 
false-positives.

● Also, all these tools have to work around the limitations of 
Bloom filters.



Mantis: A fundamentally different technique

● We want to map k-mers to the samples in which they appear.
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Mantis: A fundamentally different technique

● There is an inherent redundancy in this this design.
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Mantis: A fundamentally different technique

● We add another layer of indirection from IDs to sets of samples.
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Mantis: A fundamentally different technique
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● We call each set a color class.



Mantis: A fundamentally different technique

● We store sets of samples as bit vectors.
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Mantis: A fundamentally different technique

● We use the CQF to map k-mers to color-class IDs.

Input Samples CQF

Map: IDs to Samples
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Mantis: A fundamentally different technique

● We use Rainbowfish technique to map color-class IDs to sets of 
samples.
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● A replacement for the (counting) Bloom filter.

● Space and computationally efficient.

● Uses variable-sized counters to handle skewed data sets 

efficiently.

Counting quotient filter (CQF)

CQF space ≤ BF space + O(∑ log c(x))

          
        

x∈S

}
Asymptotically optimal



● A replacement for the (counting) Bloom filter.

● Space and computationally efficient.

● Uses variable-sized counters to handle skewed data sets 

efficiently.

Counting quotient filter (CQF)

CQF space ≤ BF space + O(∑ log c(x))

          
        

x∈S

}
Asymptotically optimal

Colored

We repurpose variable-sized counters in 
the CQF to store color-class IDs.



The CQF stores variable-sized color IDs 
efficiently

The distribution of IDs of color classes and their popularity.



The CQF stores variable-sized color IDs 
efficiently

The distribution of IDs of color classes and their popularity.

Since some color classes are more popular than 
others, using variable-length color-class IDs 

can save substantial amount of space.
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Experimental setup

● Build index for 2652 samples of RNA-seq short-read 

sequencing runs of human blood, brain, and breast tissue.

● Compared with SSBT.

● Evaluation metrics:

○ Index size

○ Construction time

○ Query performance

○ Quality of results



Index size

Mantis is 20% smaller than the SSBT.



Construction time

Mantis is 6X faster than the SSBT for construction.



Query performance

ᵠ = 0.9 for SSBT

Mantis is 6X-100X faster than the SSBT for queries.



Quality of results

Mantis is exact.

ᵠ = 0.9 for SSBT



● Raw sequencing data archives are an untapped 
trove of information.

● Mantis makes it feasible to search these archives 
for new discoveries.

● Mantis outperforms prior systems by up to 100x.

Conclusion

Source code: https://github.com/splatlab/mantis
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