Buffered Count-Min Sketch on SSD: Theory and Experiments

Mayank Goswami, Dzejla Medjedovic, Emina Mekic, and **Prashant Pandey**

ESA 2018, Helsinki, Finland

The heavy hitters problem (HH(k))

- Given stream of *N* items, report items whose frequency $\geq \varphi N$.
- General solution is "hard" in small space.
- Approximate solutions are employed.

Picture taken from: http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf.

The approximate heavy hitters problem (ϵ -HH(k))

- Find all items with count $\geq \varphi N$, none with count $< (\varphi \varepsilon)N$
- Error $0 < \varepsilon < 1$, e.g., $\varepsilon = 1/1000$
- Related problem: estimate each frequency with error $\pm \varepsilon N$

Picture taken from: http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf.

Sketch data structures

- A sketch is a **compact representation** of a data stream.
- It is typically **lossy**.
- It is useful to **approximately answer analytical questions** about data stream. E.g.,
 - Heavy hitters
 - Quantile queries
 - Inner-product queries

Financial market

Financial market

Sensor networks

Financial market

IP traffic

Sensor networks

Financial market

Sensor networks

IP traffic

In this talk:

- The **buffered count-min sketch (BCMS)**, an SSD-based sketch data structure.
 - The BCMS scales efficiently to large datasets keeping the total estimation error bounded.
- **Theoretical analysis** of the BCMS for:
 - Update and estimate times on SSD
 - Bounded error
- **Experimental** evaluation of the BCMS.

Count-min sketch (CMS)^[1]

A CMS consists of a 2-D counter-array of depth *d* and width *w* and *d* hash functions.

[1]. Graham Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. Journal. of Algorithms.

Count-min sketch: update

W

UPDATE (a_i, c_i)

Count-min sketch: estimate

 $\text{ESTIMATE}(a_i) = \text{MIN}_{1 \le i \le d}(C_i)$

Count-min sketch: analysis

We want estimation error within the range εN , with probability at least $1 - \delta$, i.e., $\Pr[\text{Error}(q) > \varepsilon N] \le \delta$.

Count-min sketch: analysis

We want estimation error within the range εN , with probability at least $1 - \delta$, i.e., $\Pr[\text{Error}(q) > \varepsilon N] \le \delta$.

CMS size vs dataset size when ε is constant

CMS size remains constant when ε is constant.

CMS size vs dataset size when εN is constant

CMS size vs Dataset size

CMS size grows linearly with dataset size.

Consider the example,

 $N = 2^{30}$, where overestimate 512 ($\varepsilon = 2^{-21}$) with 99.9% certainty ($\delta = 0.001$), then

Consider the example,

 $N = 2^{30}$, where overestimate 512 ($\varepsilon = 2^{-21}$) with 99.9% certainty ($\delta = 0.001$), then

CMS size ~3.36 GB (assuming 4 Byte counters).

Consider the example,

 $N = 2^{30}$, where overestimate 512 ($\varepsilon = 2^{-21}$) with 99.9% certainty ($\delta = 0.001$), then

CMS size ~3.36 GB (assuming 4 Byte counters).

Now, suppose we want to keep the **overestimate same but double the data set size**, then

Consider the example,

 $N = 2^{30}$, where overestimate 512 ($\varepsilon = 2^{-21}$) with 99.9% certainty ($\delta = 0.001$), then

CMS size ~3.36 GB (assuming 4 Byte counters).

Now, suppose we want to keep the **overestimate same but double the data set size**, then

CMS size ~6.72 GB.

Consider the example,

 $N = 2^{30}$, where overestimate 512 ($\varepsilon = 2^{-21}$) with 99.9% certainty ($\delta = 0.001$), then

CMS size ~3.36 GB (assuming 4 Byte counters).

Now, suppose we want to keep the **overestimate same but double the data set size**, then

CMS size ~6.72 GB.

For example, in a word-similarity application^[1], for 90 GB of web data the count-min sketch size is 8 GB.

[1]. Amit Goyal, Jagadeesh Jagarlamudi, Hal Daumé, III, and Suresh Venkatasubramanian. Sketch techniques for scaling distributional similarity to the web. GEMS, 2010.

Update performance degrades when the CMS grows out of Cache

Effect of CMS size in RAM on the cost of updates

Update performance worsens when the CMS grows out of RAM

Effect of CMS size on SSD on the cost of updates

Buffered count-min sketch (BCMS)

- Theoretical:
 - The buffered CMS is asymptotically faster for estimate
 operation than the plain CMS on SSD.
 - The buffered CMS requires **less than 1 I/O per update** operation for most practical configurations on SSD.
 - The buffered CMS offers similar error guarantees as the plain CMS:

 $\Pr[\operatorname{Error}(\mathbf{q}) > \varepsilon N (1 + \mathbf{o}(1))] \le \delta + \mathbf{o}(1).$

I/O in the disk access machine (DAM) model

• How computations works:

- Data is transferred in blocks between RAM and disk.
- The # of block transfers dominate the running time.

• Goal: Minimize # of block transfers

• Performance bounds are parameterized by block size B, memory size M,

Plain count-min sketch on SSD

W

O(d) random I/Os for each operation.

Buffered count-min sketch: hash localization

Buffered count-min sketch: hash localization

1 I/O per estimate operation.

O(w/MB) I/Os per update operation amortized!

- In a stream of size *N* and a plain CMS of width *w* and depth *d*, for a query item *i*
 - E[# items colliding with i in a row (or error)] = N/w.

- In a stream of size *N* and a plain CMS of width *w* and depth *d*, for a query item *i*
 - E[# items colliding with i in a row (or error)] = N/w.
- Using Markov's inequality
 - Probability of seeing more than *e* times the expected error is *1/e*,
 i.e., P[Error > e N/w] ≤ 1/e.

- In a stream of size *N* and a plain CMS of width *w* and depth *d*, for a query item *i*
 - E[# items colliding with i in a row (or error)] = N/w.
- Using Markov's inequality
 - Probability of seeing more than *e* times the expected error is *1/e*,
 i.e., P[Error > e N/w] ≤ 1/e.
- Each row has an independent hash function
 - Probability that the expected error is more than *e* times in each row is $(1/e)^d$.

- In a stream of size *N* and a plain CMS of width *w* and depth *d*, for a query item *i*
 - E[# items colliding with i in a row (or error)] = N/w.
- Using Markov's inequality
 - Probability of seeing more than *e* times the expected error is *1/e*,
 i.e., P[Error > e N/w] ≤ 1/e.
- Each row has an independent hash function
 - Probability that the expected error is more than *e* times in each row is $(1/e)^d$.

For $w = \lceil e/\epsilon \rceil$ and $d = \ln(1/\delta)$, expected error $= \delta$.

Assumption: ε is subconstant in $N(\lim_{N\to\infty} \varepsilon(N) = 0)$

CMS size vs Dataset size

CMS size grows much slowly with dataset size.

Buffered count-min sketch: error analysis

- Each item *i* from the stream hashes into a buffer
 - To determine WHP number of items in a buffer we use
 balls-and-bins analysis where, # balls >> # bins.

- Error for a query *q* in different rows are no longer independent
 - A high error in one row implies more elements were hashed by h_0 to the same bucket.

Buffered count-min sketch: evaluation

- Empirical:
 - The buffered CMS is **3.7X--4.7X faster on update operation** compared to the plain CMS on SSD.
 - The buffered CMS is **4.3X faster on estimate operation** compared to the plain CMS on SSD.

Evaluation parameters

- Update throughput
- Estimate throughput
- Effect of hash localization on estimation error
- Effect of changing RAM-to-sketch-size ratio

Evaluation setup

Size	Ratio	Width	Depth	#elements
128MB	2	3355444	5	9875188
256MB	4	6710887	5	19750377
512MB	8	13421773	5	39500754
1GB	16	26843546	5	79001508

In all our experiments, $\delta = 0.01$ and overestimate (εN) = 8. RAM size: 64 MB

Update performance

Update performance

The BCMS is 3.7X--4.7X faster on update operation compared to the plain CMS.

Estimate performance

11000 8275 5550 2825 100 128 MB 256 MB 512 MB 1 GB COunt-Min Sketch Buffered Count-Min Sketch 1 GB CMS size

Estimate performance

The BCMS is 4.3X faster on estimate operation compared to the plain CMS.

Accuracy

Overestimate evaluation

Overestimates in the BCMS are similar to the plain CMS.

Conclusion

- Techniques like hash localization and buffering can be applied to scale the plain CMS to SSDs.
- We showed both theoretically and empirically, if we keep the
 ɛ-error subconstant in *N* then the hash localization has trivial (or no effect) on the overestimate.
- We leave the question of deriving update lower bounds and/or a SSD-based data structure with faster update time for future work.