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The heavy hitters problem (HH(k))

● Given stream of N items, report items whose frequency ≥ φN.

● General solution is “hard” in small space. 

● Approximate solutions are employed.

Picture taken from: http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf.



The approximate heavy hitters problem (ε-HH(k))

● Find all items with count ≥ φN, none with count < (φ−ε)N 

● Error 0 < ε < 1, e.g., ε = 1/1000 

● Related problem: estimate each frequency with error ±εN

Picture taken from: http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf.



Sketch data structures

● A sketch is a compact representation of a data stream.

● It is typically lossy.

● It is useful to approximately answer analytical questions 

about data stream. E.g., 

○ Heavy hitters

○ Quantile queries

○ Inner-product queries
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Sketches are at the heart of stream analyses
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In this talk:

● The buffered count-min sketch (BCMS), an SSD-based sketch 
data structure.
○ The BCMS scales efficiently to large datasets keeping the total 

estimation error bounded.

● Theoretical analysis of the BCMS for:
○ Update and estimate times on SSD
○ Bounded error

● Experimental evaluation of the BCMS.



Count-min sketch (CMS)[1]

w

d

A CMS consists of a 2-D counter-array of depth d and width w and d hash 
functions.

[1]. Graham Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch and its applications. Journal. of Algorithms.



Count-min sketch: update
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Count-min sketch: estimate
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Count-min sketch: analysis
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We want estimation error within the range εN, with probability at least 1 - δ, 
i.e., Pr[Error(q) > εN] ≤ δ.



Count-min sketch: analysis
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d = ln(1/δ) and w = ⌈e/ε⌉ and CMS size: ln(1/δ) � ⌈e/ε⌉

We want estimation error within the range εN, with probability at least 1 - δ, 
i.e., Pr[Error(q) > εN] ≤ δ.



CMS size vs dataset size when ε is constant

CMS size remains constant when ε is constant.



CMS size grows linearly with dataset size.

CMS size vs dataset size when εN is constant
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The count-min sketch size grows with data set size

Consider the example, 

N = 230, where overestimate 512 (ε = 2-21) with 99.9% certainty (δ = 
0.001), then 

CMS size ~3.36 GB (assuming 4 Byte counters).

Now, suppose we want to keep the overestimate same but double the 
data set size, then

CMS size ~6.72 GB.

For example, in a word-similarity application[1], for 90 GB of web 
data the count-min sketch size is 8 GB.

[1]. Amit Goyal, Jagadeesh Jagarlamudi, Hal Daumé, III, and Suresh Venkatasubramanian. Sketch techniques for scaling distributional 
similarity to the web. GEMS, 2010.
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Update performance worsens when the CMS grows out of 
RAM



Buffered count-min sketch (BCMS)

● Theoretical:

○ The buffered CMS is asymptotically faster for estimate 

operation than the plain CMS on SSD.

○ The buffered CMS requires less than 1 I/O per update operation 

for most practical configurations on SSD.

○ The buffered CMS offers similar error guarantees as the plain 

CMS:

Pr[Error(q) > εN (1 + o(1))] ≤ δ + o(1).



I/O in the disk access machine (DAM) model 

● How computations works:

○ Data is transferred in blocks between RAM and disk.

○ The # of block transfers dominate the running time.

● Goal: Minimize #  of block transfers

○ Performance bounds are parameterized by block size B, memory size M, 

data size N.

RAM DISK

M

B

B



Plain count-min sketch on SSD
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Buffered count-min sketch: hash localization
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Buffered count-min sketch: hash localization
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Buffered count-min sketch: buffering
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Buffered count-min sketch: buffering
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Buffered count-min sketch: buffering
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O(w/MB) I/Os per update operation amortized!



● In a stream of size N and a plain CMS of width w and depth d, for a 

query item i
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● In a stream of size N and a plain CMS of width w and depth d, for a 

query item i

○ E[# items colliding with i in a row (or error)] = N/w.

● Using Markov’s inequality

○ Probability of seeing more than e times the expected error is 1/e,                

i.e., P[Error > e N/w] ≤ 1/e.

● Each row has an independent hash function

○ Probability that the expected error is more than e times in each row is (1/e)d .

Plain count-min sketch: error analysis

For w = ⌈e/ε⌉ and d = ln(1/δ), expected error = δ.



Assumption: ε is subconstant in N (lim
N→∞

 ε(N) = 0)

CMS size grows much slowly with dataset size.



● Each item i from the stream hashes into a buffer

○ To determine WHP number of items in a buffer we use 

balls-and-bins analysis where, # balls >> # bins.

● Error for a query q in different rows are no longer 

independent

○ A high error in one row implies more elements were hashed by h
0
 

to the same bucket.

Buffered count-min sketch: error analysis



Buffered count-min sketch: evaluation

● Empirical: 

○ The buffered CMS is 3.7X--4.7X faster on update operation 

compared to the plain CMS on SSD.

○ The buffered CMS is 4.3X faster on estimate operation 

compared to the plain CMS on SSD.



Evaluation parameters

● Update throughput

● Estimate throughput

● Effect of hash localization on estimation error

● Effect of changing RAM-to-sketch-size ratio



Evaluation setup

Size Ratio Width Depth #elements

128MB 2 3355444 5 9875188

256MB 4 6710887 5 19750377

512MB 8 13421773 5 39500754

1GB 16 26843546 5 79001508

In all our experiments, δ = 0.01 and overestimate (εN) = 8.
RAM size: 64 MB



Update performance

The BCMS is 3.7X--4.7X faster on update operation compared to the plain CMS.



Estimate performance

The BCMS is 4.3X faster on estimate operation compared to the plain CMS.



Accuracy 

Overestimates in the BCMS are similar to the plain CMS.



Conclusion

● Techniques like hash localization and buffering can be applied 

to scale the plain CMS to SSDs.

● We showed both theoretically and empirically, if we keep the 

ε-error subconstant in N then the hash localization has trivial (or 

no effect) on the overestimate.

● We leave the question of deriving update lower bounds and/or a 

SSD-based data structure with faster update time for future 

work.








