A General-Purpose Counting Filter:

Making Every Bit Count

Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro
Stony Brook University, NY



Approximate Membership Query
(AMQ)

insert(X)

1sMember(X)

<

yes/no

* An AMQ is a lossy representation of a set.
e Operations: inserts and membership queries.
 Compact space:

e Often taking < 1 byte per item.

e Comes at the cost of occasional false positives.



Bloom filter

[Bloom, 1970]

4 A

* A Bloom filter 1s a bit-array + k£ hash functions.
(Here k=2.)



Insertions 1in a Bloom filter

: m ‘
nnn

* A Bloom filter 1s a bit-array + k£ hash functions.
(Here k=2.)




Insertions 1in a Bloom filter

> m ‘
* A Bloom filter 1s a bit-array + k£ hash functions.
(Here k=2.)




Insertions 1in a Bloom filter

* A Bloom filter 1s a bit-array + k£ hash functions.
(Here k=2.)



Membership query in a Bloom filter

e The Bloom filter has a bounded false-positive rate.



Membership query in a Bloom filter
YES o

e The Bloom filter has a bounded false-positive rate.



Membership query in a Bloom filter
YES of

e The Bloom filter has a bounded false-positive rate.



Membership query in a Bloom filter
YES o/ NO ¢/

e The Bloom filter has a bounded false-positive rate.



Membership query in a Bloom filter
YES o/ NO ¢/

e The Bloom filter has a bounded false-positive rate.



Membership query in a Bloom filter
YES J NO J YES X false positive

e The Bloom filter has a bounded false-positive rate.



Bloom filters are ubiquitous

Streaming applications Networking




Counting filters: AMQs for multisets

insert(X)
delete(X)

Counting

filter

getCount(X)

<

count

e A counting filter is a lossy representation of a multiset.
e Operations: inserts, count, and delete.
e Generalizes AMQs

e False positives = over-counts.



Why 1s counting important?

* Counting filters have numerous applications:
* Computational biology, e.g., k-mer counting.
* Network anomaly detection.

* Natural language processing, €.g., n-gram counting.

* Counting enables AMQs

to support deletes.




Many real data sets have skewed counts

Frequency distribution: RNA-seq

108 \\ Number of items: ~19.6B -
. ]
107 | \Number of distinct items: ~1.1B-
108 N '
N
10° b

Number of items with the frequency

100 ,

10° 10t 107 103 104 10>  10° 107
Frequency

Counting filters should handle skewed data
sets efficiently.



Many real data sets have skewed counts

Frequency distribution: RNA-seq

108 '-‘\\ Number of items: ~19.6B

107 | \\ Number of distinct items: ~1.1B-

106 | \ '
o 0

105 ®

Number of items with the frequency

100 ,

10° 10t 107 103 104 10°
Frequency

Counting filters should handle skewed data
sets efficiently.



Counting Bloom filters

[Fan et al., 2000]

0 01

e Counters must be large enough to hold count of most frequent item.

e Counting Bloom filters are not space-efficient for skewed data sets.



Counting Bloom filters

[Fan et al., 2000]

RNA-seq dataset
Total number of items: 19.6 Billion
Number of distinct items: 1.1 Billion

Maximum frequency: ~8 Million

e Counters must be large enough to hold count of most frequent item.

e Counting Bloom filters are not space-efficient for skewed data sets.



This paper: The counting quotient filter (CQF)

* Areplacement for the (counting) Bloom filter.
* Space and computationally efficient.

e Uses variable-sized counters to handle skewed

data sets efficiently.

CQF space < BF space + O(2. log c(x))

\ xeS ’

Asymptotically optimal



This paper: The counting quotient filter (CQF)

° RNA-seq dataset I.
Total number of items: 19.6 Billion
Number of distinct items: 1.1 Billion

. Maximum frequency: ~8 Million S

QF space < BF space + O(2. log c(x))

\ xeS ’

Asymptotically optimal




Other features of the CQF

* Smaller than many non-counting AMQs

e Bloom, cuckoo [Fan et al., 2014], and quotient [Bender
et al., 2012] f1lters.

* Good cache locality
e Deletions

 Dynamically resizable

 Mergeable



Contributions

 New quotient filter metadata scheme
 Smaller and faster than original quotient filter
 Efficient variable-length counter encoding method
e Zero overhead for counters
e Fast implementation of bit-vector select on words

e Exploits new x86 bit-manipulation instructions



Quotienting: An alternative to Bloom filters

e Store fingerprint compactly in a hash table.

e Take a fingerprint &(x) for each element x.

GEED — €

e Only source of false positives:

e Two distinct elements x and y, where h(x) = h(y).

e If x1s stored and y 1sn’t, query(y) gives a false positive.



Storing compact fingerprints

¢ Bucket index
) QO —Tag
> < |

b(u) B} 9 T

e b(x) = location in the hash table
* f(x) = tag stored in the hash table

29

A U A W N = O




Storing compact fingerprints

Bucket index

;
) QO —Tag

b(u i 7 T
(u) 0
b(v
() 1 e b(x) = location in the hash table
) * f(x) = tag stored in the hash table
29
3 Collisions in the hash table?
_z 4
()
6




Storing compact fingerprints

Bucket index

;
) QO —Tag

b(u i 7 T

(u) 0

b(v

() 1 e b(x) = location in the hash table
) * f(x) = tag stored in the hash table
3 Collisions in the hash table?
> 4 Linear probing.
t(v) i

6




Storing compact fingerprints

Bucket index

;
) QO —Tag

bw) . 7 T
b(v) 1 e The home bucket for
t(u) and 1(v) 1s 4.
2
3 2
_z 4
tv) « Does #(v) belongs to
5
y bucket 4 or 5 ?




Resolving collisions in the CQF

e CQF uses two metadata bits to resolve collisions and

1dentify the home bucket.

* The metadata bits group tags by their home bucket.



Resolving collisions in the CQF

e CQF uses two metadata bits to resolve collisions and

1dentify the home bucket.

insert v

* The metadata bits group tags by their home bucket.



Resolving collisions in the CQF

e CQF uses two metadata bits to resolve collisions and

identify the home bucket.

insert v

B
0 ] G @ > )

* The metadata bits group tags by their home bucket.

The metadata bits enable us to identify the slots
holding the contents of each bucket.



Counting quotient filter (CQF)

Implementation: Abstract Representation

2 Meta-bits per slot. ' 24 ‘
01234567

h(x) --> h,(x) Il h,(x)

runends

occupieds

| [ [ [T
— I
¢ ----2«1---- —




Counting quotient filter (CQF)

Implementation: Abstract Representation

2 Meta-bits per slot. : 24 ~
01234567
\

h(a)

h(x) --> h,(x) Il h,(x)

runends

occupieds

. A
—
¢ ----Zq---- —




Counting quotient filter (CQF)

Implementation: Abstract Representation

2 Meta-bits per slot. : 24 ~
01234567
h(x) --> h,(x) Il k,(x) v
h(a)
runends h(b)
occupieds

L L
| O I I O
Lo C EwEs




Counting quotient filter (CQF)

Implementation: Abstract Representation

2 Meta-bits per slot. ; 24 ~
01234567
h(x) --> h,(x) Il k,(x) v -
h(a)  h(d)
runends h(b)
occupieds

L T
[
Lo | RS




Counting quotient filter (CQF)

Implementation: Abstract Representation

2 Meta-bits per slot. ; 24 4
01234567
h(x) --> h,(x) Il k,(x) v -
h(a)  h(d)
runends h(®d)  h(e)

occupieds

L 1
_—--===---
o EEESoWe




Counting quotient filter (CQF)

Implementation: Abstract Representation

2 Meta-bits per slot. ; 24 4
01234567
h(x) --> h,(x) Il k,(x) v -
h(a)  h(d)
runends h&ll)) he)
occupieds h(c)

B = b

e ----2---- —
> q <




Counting quotient filter (CQF)

Implementation: Abstract Representation
2 Meta-bits per slot. ' 24 ‘
01234567
h(x) --> h,(x) Il h,(x) v v 4
h(a) h(d) h(f)
runends hg}) h(e)

occupieds h(c)

e

e ----2---- —
> q <




Metadata operations

I'llIl

'===-

occupleds

runends

Rank(occupieds, 3) =2 Select(runends, 2) =5

e Can accelerate metadata operations using x86 bit-manipulation
instructions.

e Asymptotic improvement in query performance over the original QF.



Encodingounts

N




Encoding counts

* Metadata scheme tells us the run of slots holding

contents of a bucket.

e We can encode contents of buckets however we want.

o The original quotient filter used repetition (unary).




Encoding counts

 We want to count in binary, not unary.

e Idea: use some of the space for tags to store counts.

* Issue: determine which are tags and which are counts

without using even one “control” bit.

4 copies of #(u)




Encoding counts

Dataset: 2 copies of 0, 7 copies of 3, and 9 copies 8.

- HEREEENEE
----’----
> q Y

| —

e An encoding scheme to count the multiplicity of items.
e Variable-sized counter.
e Using slots reserved for remainders to, instead, store count

information.



Performance: In memory

Inserts lookups
99 | I 55 I
- 50 —.—CQF '§ 50 +CQF
g 45 “ (1;]}; cé 45% s~ CF
§ 40 _ ' 5 40 —+— BF
— c.
2 35 @ 35
g 30[ £ 30}
£ 25*a T 25
8 A-a A o H".
52[].—._._. N = 220 A b b b b bbb boh ‘.“G-AAAA*
" [+ |
5 15 “"'l' a ué lsw
= 10f Ran 4 2 10} .
S i~ = 10
5] e wwrww | h = 5
0 | | 0 | |
0 20 40 60 80 100 0 20 40 60 80 100
Load Factor Load Factor

e The CQF insert performance in RAM is similar to that of state-of-
the-art non-counting AMQs.

* The CQF is significantly faster at low load factors and slightly
slower on high load factors.



Performance: Skewed datasets

Inserts lookups
51 T T T Y 5 ‘ T T T I
50 = CQF 50 Fl CQFL
g 451 *— CBF || g 45 - *— CBF
< L Ly / O -
2 35 g 35
Z 30 z 30
o =
g 25 - § 25 -
g 201 . = 200 W g g eSS EEEsoneem
=
g 15" " o s s ssnnnnnnge ;9_ 15
= 10 p 10
51 - 5 |- -
L & & & 0 6 60 060606060000000008 % '1. “P.T.'.‘f““".
00 5 10 15 20 25 30 35 40 45 50 0O 5 10 15 20 25 30 35 40 45 50

Load Factor Load Factor

d The CQF outperforms the CBF by a factor of 6x-10x on both inserts
and lookups.



Conclusion
e The CQF i1s smaller and faster than other AMQ)s,
e even ones that can’t count.

e The CQF also supports deletes, resizing, cache

locality, and other features applications need.

 The CQF demonstrates the extensible design of
the quotient filter.

https://github.com/splatlab/caf


https://github.com/splatlab/cqf



















Space analysis: Bloom Filter

e m = # of bits
e n = # of elements

e k = # of hash functions

e k=m/(nln2)

* bits per element S = m/n

-m/(nin2) _ ~-Sin2

e false-positive rate = 2 2



Space analysis: Cuckoo Filter
e f=# of fingerprint bits
e b = # of entries 1n each bucket

e o = load factor

* bits per element S = a/f

e false-positive rate = 2b/2 = 2b/2°*



Space analysis: Quotient filter

The quotient filter always takes less space
than the cuckoo filter and offers better false-

positive rate than the Bloom filter whenever
S=(c+Ilna)(a-ln2)

* bits per element S = (r+c)/a

e false-positive rate = 2" = a2 "



