
Timely Reporting of Heavy
Hitters using External Memory

Prashant Pandey*, Shikha Singh*, Michael A. Bender, Jonathan W. Berry,
Martin Farach-Colton, Rob Johnson, Thomas M. Kroeger, Cynthia A. Phillips

*Both authors contributed equally to this research.

Open problem in streaming

● A high-speed stream of key-value pairs arriving over time

● Goal: report every key as soon as it appears 24 times without

missing any

● Firehose benchmark (Sandia National Lab) simulates the stream

https://firehose.sandia.gov/

https://firehose.sandia.gov/

Why should we care about this problem

Defense systems for cyber security
monitor high-speed streams for
malicious traffic

Malicious traffic forms a small
portion of the stream

Automated systems take defensive
actions for every reported event

Catch all malicious events

Small reporting threshold

Minimize false positives

Timely event detection problem

● Stream of elements arrive over time

S1

Time

S2 St

● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in

(s1,s2….st)

S1

Time

S2 St

t

Timely event detection problem

● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in

(s1,s2….st)

S1

Time

S2 St

t

Event!

Suppose T= 4

Timely event detection problem

● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in

(s1,s2….st)
● In timely event-detection problem (TED), we want to report

all events shortly after they occur.

S1

Time

S2 St

t

Event!

Suppose T= 4

Report

Timely event detection problem

Features we need in the solution

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

High throughput ingestion

Features we need in the solution

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Sampling

Features we need in the solution

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

Sampling

One-pass streaming has errors

● Heavy hitter problem: report items whose frequency ≥ φN
● Exact one-pass solution solution requires Ω(N) space

RAM

One-pass streaming has errors

● Approximate solution: report all items with count ≥ φN, none
with < (φ−ε)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.

16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

● Approximate solutions requires: Ω(1/ε)

RAM

Real time with false-positives!

Maintain count
estimates in RAM
Misra & Gries ‘82

One-pass streaming has errors

● Approximate solution: report all items with count ≥ φN, none
with < (φ−ε)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.

16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

● Approximate solutions requires: Ω(1/ε)

RAM

Real time with false-positives!

Maintain count
estimates in RAM
Misra & Gries ‘82

For Sandia, φN is a small constant (24),
 So Ω(1/ε) is very very large!!

Can’t solve in RAM for very small φ

One-pass solution has:

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

Two-pass streaming isn’t real-time

● A second pass over the stream can get rid of errors
● Store the stream on SSD and access it later

RAM

Scales to very small φ
but offline!

Second pass

SSD

Two-pass solution has:

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

If data is stored: why not access it?

RAM

SSD

Why wait for second pass?

Our contribution

Combine streaming and EM algorithms to solve
real-time event detection problem

Streaming
model

External memory
algorithms

 Idea

Use an efficient external-memory
counting data structure to scale
Misra Gries algorithm to SSDs

L

0

1

RAM

FLASH

log(N/M)

N

QueryM

Cascade filter: write-optimized quotient filter
Bender et al. ‘12, Pandey et al. ‘17

Mr1

MrL

● The Cascade filter efficiently scales out-of-RAM
● It accelerates insertions at some cost to queries

Cascade filter operations

Insert Query

Cascade filter operations

Insert Query

< 1 I/O per
observation

Cascade filter operations

Insert Query

< 1 I/O per
observation

> 1 I/O per
observation

Cascade filter doesn’t have real-time reporting

Insert Query

< 1 I/O per
observation

> 1 I/O per
observation

But every insert is also a query in
real-time reporting!

Cascade filter doesn’t have real-time reporting

Insert Query

< 1 I/O per
observation

> 1 I/O per
observation

But every insert is also a query in
real-time reporting!

Traditional cascade filter doesn’t solve
the problem!

We define the time stretch of a report to be

1st occurrence T-th occurrence Reporting time

Timeline L
DLifetime

Delay

Time stretch = 1 + 𝛼 = 1 +
Delay

Lifetime

 Idea: reporting with bounded delay

This paper: Leveled External-Memory
Reporting Table (LERT)

● Given a stream of size N and φN > Ω(N/M) the amortized
cost of solving real-time event detection is

● For a constant 𝛼, can support arbitrarily small thresholds φ
with amortized cost

Takeaway: Online reporting comes at the cost of throughput but
almost online reporting is essentially free!

This paper: Leveled External-Memory
Reporting Table (LERT)

● Given a stream of size N and φN > Ω(N/M) the amortized
cost of solving real-time event detection is

● For a constant 𝛼, can support arbitrarily small thresholds φ
with amortized cost

Takeaway: Online reporting comes at the cost of throughput but
almost online reporting is essentially free!

Can achieve timely reporting at effectively
the optimal insert cost; no query cost

Evaluation

● Empirical timeliness

● High-throughput ingestion

Evaluation: empirical time stretch

Average time stretch is 43% smaller than theoretical upper bound.

Evaluation: scalability

The insertion throughput increases as we add more threads.
We can achieve > 13M insertions/sec.

LERT: supports scalable and real-time reporting

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

● We can solve timely event detection problem at a level of
precision that is not possible in the streaming model.

● This work suggests new research opportunities:
○ What other streaming problems can be solved in external

memory at comparable speed?
○ What is the right model for streaming in modern external

memory?

Conclusion

Streaming
model

External memory
algorithms

