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Open problem in streaming

● A high-speed stream of key-value pairs arriving over time

● Goal: report every key as soon as it appears 24 times without 

missing any

● Firehose benchmark (Sandia National Lab) simulates the stream 

https://firehose.sandia.gov/

https://firehose.sandia.gov/


Why should we care about this problem

Defense systems for cyber security 
monitor high-speed streams for 
malicious traffic

Malicious traffic forms a small 
portion of the stream

Automated systems take defensive 
actions for every reported event

Catch all malicious events

Small reporting threshold

Minimize false positives



Timely event detection problem

● Stream of elements arrive over time
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● An event occurs at time t if St occurs exactly T times in 
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● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in 

(s1,s2….st)
● In timely event-detection problem (TED), we want to report 

all events shortly after they occur.
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Suppose T= 4
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Timely event detection problem
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Features we need in the solution

● Stream is large (e.g., terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream 
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

Sampling



One-pass streaming has errors

● Heavy hitter problem: report items whose frequency ≥ φN  
● Exact one-pass solution solution requires Ω(N) space

RAM



One-pass streaming has errors

● Approximate solution: report all items with count ≥ φN, none 
with < (φ−ε)N [Alon et al. 96, Berinde et al. 10,  Bhattacharyya et al. 16, Bose et al. 03, Braverman et al. 
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● Approximate solutions requires: Ω(1/ε) 

RAM

Real time with false-positives!

Maintain count 
estimates in RAM
Misra & Gries ‘82

For Sandia, φN is a small constant (24), 
 So Ω(1/ε) is very very large!!

Can’t solve in RAM for very small φ



One-pass solution has:
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Two-pass streaming isn’t real-time

● A second pass over the stream can get rid of errors
● Store the stream on SSD and access it later

RAM

Scales to very small φ 
but offline!

Second pass

SSD



Two-pass solution has:

● Stream is large (e.g., terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream 
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds



If data is stored: why not access it?

RAM

SSD

Why wait for second pass?



Our contribution

Combine streaming and EM algorithms to solve 
real-time event detection problem

Streaming 
model

External memory 
algorithms



         Idea

Use an efficient external-memory 
counting data structure to scale 
Misra Gries algorithm to SSDs
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Cascade filter: write-optimized quotient filter
Bender et al. ‘12, Pandey et al. ‘17
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● The Cascade filter efficiently scales out-of-RAM
● It accelerates insertions at some cost to queries
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Cascade filter doesn’t have real-time reporting

Insert Query

< 1 I/O per 
observation

> 1 I/O per 
observation

But every insert is also a query in 
real-time reporting!

Traditional cascade filter doesn’t solve 
the problem! 



We define the time stretch of a report to be

1st occurrence T-th occurrence Reporting time

Timeline L
DLifetime

Delay

Time stretch = 1 + 𝛼 = 1 + 
Delay

Lifetime

         Idea: reporting with bounded delay



This paper: Leveled External-Memory 
Reporting Table (LERT)

● Given a stream of size N and φN > Ω(N/M) the amortized 
cost of solving real-time event detection is

● For a constant 𝛼, can support arbitrarily small thresholds φ 
with amortized cost 

Takeaway: Online reporting comes at the cost of throughput but 
almost online reporting is essentially free!



This paper: Leveled External-Memory 
Reporting Table (LERT)

● Given a stream of size N and φN > Ω(N/M) the amortized 
cost of solving real-time event detection is

● For a constant 𝛼, can support arbitrarily small thresholds φ 
with amortized cost

Takeaway: Online reporting comes at the cost of throughput but 
almost online reporting is essentially free!

Can achieve timely reporting at effectively 
the optimal insert cost; no query cost



Evaluation

● Empirical timeliness

● High-throughput ingestion



Evaluation: empirical time stretch

Average time stretch is 43% smaller than theoretical upper bound.



Evaluation: scalability

The insertion throughput increases as we add more threads.
We can achieve > 13M insertions/sec.



LERT: supports scalable and real-time reporting 

● Stream is large (e.g., terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream 
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds



● We can solve timely event detection problem at a level of 
precision that is not possible in the streaming model.

● This work suggests new research opportunities:
○ What other streaming problems can be solved in external 

memory at comparable speed?
○ What is the right model for streaming in modern external 

memory?

Conclusion

Streaming 
model

External memory 
algorithms






