
High Performance Filters For GPUs

Hunter McCoy, Steven Hofmeyr, Katherine Yelick, Prashant Pandey

Applications in an exascale world

#1: Frontier
9408 nodes, 37,632 GPUs

1,685.65 PFlop/s Peak

• High Performance Data Analytics (HPDA) is the
intersection of High Performance Computing (HPC)
and Big Data

• HPDA applications run on massive systems like
supercomputers

• GPUs power these supercomputers

3

Metagenomics

Soil sample Human gutWater sample

Metagenomics is the study of microbes that inhabit an environment and their interactions.

• Sequences are generated as fragments called reads

• Rebuilding DNA strands from the reads is compute/memory intensive

4

Metagenomic assembly

It’s like building the puzzle without the picture on the box and there are
multiple different puzzles in the same box!

MetaHipMer: an exascale metagenomic assembler

Hofmeyr, S., Egan, R., Georganas, E. et al. Terabase-scale metagenome coassembly with MetaHipMer. Sci Rep 10, 10689 (2020).

Input reads

K-mer analysis

De Bruijn graph construction

Contig generation

Alignment

Local Assembly

Scaffolding

On GPU

Extract k-mers

MetaHipMer Running Time

GPUs accelerate metagenomic assembly

• MHM recently completed the largest co-
assembly ever

• 9,400 nodes on Frontier

• 37,000 GPUs
• 71.6 terabyte assembly of Tara Oceans

dataset

MetaHipMer Running Time

GPUs accelerate metagenomic assembly

• MHM recently completed the largest co-
assembly ever

• 9,400 nodes on Frontier

• 37,000 GPUs
• 71.6 terabyte assembly of Tara Oceans

dataset

105 terabyte Human Microbiome dataset not assembled yet!

GPUs are the memory bottleneck!

! Peak memory usage in k-mer analysis!!!!

Input reads

K-mer analysis

De Bruijn graph construction

Contig generation

Alignment

Local Assembly

Extract k-mers

!

On GPU

Scaffolding

Tradeoff in GPU-enabled k-mer analysis

Speed Memory

Faster compute Low device memory

Filters can help overcome the memory-speed tradeoff in GPUs!

• Filters are a lossy representation of a set,
and trade accuracy for space efficiency

• Queries return “maybe” or “definitely not”
in set

• False positives occur with bounded error
rate

• Errors are one sided, i.e., no false negatives
ϵ

A

C

B
D

A:

B:

C:

D: False Positive

In Set
In Universe

Filters save space by giving up accuracy

Space bits≥ n log
1
ϵ

For most practical purposes: , a filter
requires ~8 bits/item

ϵ = 2 %

A:

B:

C:

D: False Positive

In Set
In Universe

Filters save space by giving up accuracy

• Filters are a lossy representation of a set,
and trade accuracy for space efficiency

• Queries return “maybe” or “definitely not”
in set

• False positives occur with bounded error
rate

• Errors are one sided, i.e., no false negatives
ϵ

A

C

B
D

K-mer analysis requires filters with:

High performance Space efficiency Deletions Key-value support

Existing GPU filters lack critical features

Inserts Queries Deletions Counting Key-Value

Association

Bloom filter

Blocked
Bloom Filter[1]

RSQF [2]

SQF [2]

* *

*

* Not supported in implementation, could be supported in theory[1] Junger et al. 2020

[2] Geil et al. 2018

Inserts Queries Deletions Counting Key-Value

Association

Bloom filter

Blocked
Bloom Filter[1]

RSQF [2]

SQF [2]

* *

*

Performance

Existing GPU filters lack critical features

* Not supported in implementation, could be supported in theory[1] Junger et al. 2020

[2] Geil et al. 2018

Can we build a GPU filter that can achieve

high-performance and features?

Inserts Queries Deletions Counting Key-Value

Association

Bloom Filter

Blocked
Bloom Filter[1]

RSQF [2]

SQF [2]

TCF

GQF

TCF achieves performance and features

* *

*

Performance

* Not supported in implementation, could be supported in theory[1] Junger et al. 2020

[2] Geil et al. 2018

Our results

• Present new GPU filter designs:

• Two-Choice Filter (TCF)

• Stable filter with key-value association/deletion

• GPU Quotient Filter (GQF)

• Filter with key-value association/deletion/dynamic counters

• Up to 4.4x faster than previous GPU filters

• Thread-level point API and host bulk API for easy integration

• 43% reduction in overall peak memory usage in MetaHipMer

McCoy, Hofmeyr, Yelick, Pandey PPOPP 2023

McCoy, Hofmeyr, Yelick, Pandey ACDA 2023

• Present new GPU filter designs:

• Two-Choice Filter (TCF)

• Stable filter with key-value association/deletion

• GPU Quotient Filter (GQF)

• Filter with key-value association/deletion/dynamic counters

• Up to 4.4x faster than previous GPU filters

• Thread-level point API and host bulk API for easy integration

• 43% reduction in overall peak memory usage in MetaHipMer

Our results McCoy, Hofmeyr, Yelick, Pandey PPOPP 2023

McCoy, Hofmeyr, Yelick, Pandey ACDA 2023

1. Thread divergence
• Warps diverge and slow down if threads perform

different operations

2. Memory coherence

• Warps slow down if threads read from different
cache lines

3. Limited memory
• 80 GB vs 1 TB - GPU memory can’t fall back to disk

4. Massive parallelism
• ~80,000-160,000 simultaneous threads

GPU challenges

Nvidia A100 Tensor GPU

Design goals for GPU filters

Stability

Items don’t move after
insertion

Low associativity

Map each item to one or a
small number of locations

Space efficiency

Minimum overhead from
pointers or over provisioning

Mapping GPU challenges to filter design goals

Thread divergence and
memory coherence

High degree of parallelism

Low associativity

Stability

Space efficiency

Filter design goal GPU challenge

Limited memory

Fingerprinting is an alternative to Bloom filters

• Filter stores lossy versions of keys called fingerprints
• Fingerprints are p bits, stored compactly in a hash table

Key H(Key)

Log |U| p

Probability of a collision:
1
2p

• Only source of false positives:

• Two distinct elements x and y, where h(x) = h(y)

• To insert and item x

• Compute and

• Insert into emptier

bucket

h0(x) h1(x)
f(x)

h0(x)

X

Buckets

N/s

s Slots

s = ω(log log N)

h1(x)

Two choice filter Pandey, Conway, Durie, Bender,

Farach-Colton, Johnson SIGMOD 2021

• To insert and item x

• Compute and

• Insert into emptier

bucket

h0(x) h1(x)
f(x)

h0(x)

X

Buckets

N/s

s Slots

s = ω(log log N)

h1(x)

Two choice filter Pandey, Conway, Durie, Bender,

Farach-Colton, Johnson SIGMOD 2021

Each bucket is a mini-quotient
filter with false-positive rate
and capacity s

ϵ/2

• To insert and item x

• Compute and

• Insert into emptier

bucket

h0(x) h1(x)
f(x)

h0(x)

X

Buckets

N/s

s Slots

s = ω(log log N)

h1(x)

Two choice filter

Vöcking 2000: variance in
block occupancy is a
lower order term.

Pandey, Conway, Durie, Bender,

Farach-Colton, Johnson SIGMOD 2021

Each bucket is a mini-quotient
filter with false-positive rate
and capacity s

ϵ/2

• To insert and item x

• Compute and

• Insert into emptier

bucket

h0(x) h1(x)
f(x)

h0(x)

X

Buckets

N/s

s Slots

s = ω(log log N)

h1(x)

Two choice filter

Vöcking 2000: variance in
block occupancy is a
lower order term.

No kicking across buckets

Pandey, Conway, Durie, Bender,

Farach-Colton, Johnson SIGMOD 2021

Each bucket is a mini-quotient
filter with false-positive rate
and capacity s

ϵ/2

• To insert and item x

• Compute and

• Insert into emptier

bucket

h0(x) h1(x)
f(x)

h0(x)

X

Buckets

N/s

s Slots

s = ω(log log N)

h1(x)

Two choice filter

Vöcking 2000: variance in
block occupancy is a
lower order term.

No kicking across buckets

Pandey, Conway, Durie, Bender,

Farach-Colton, Johnson SIGMOD 2021

h0(x) and h1(x) can be
independent for insert-only

Each bucket is a mini-quotient
filter with false-positive rate
and capacity s

ϵ/2

• To insert and item x

• Compute and

• Insert into emptier

bucket

h0(x) h1(x)
f(x)

h0(x)

X

Buckets

N/s

s Slots

s = ω(log log N)

h1(x)

Two choice filter

Vöcking 2000: variance in
block occupancy is a
lower order term.

No kicking across buckets

Pandey, Conway, Durie, Bender,

Farach-Colton, Johnson SIGMOD 2021

h0(x) and h1(x) can be
independent for insert-only

But still need it to
support deletes!

Each bucket is a mini-quotient
filter with false-positive rate
and capacity s

ϵ/2

•

• No drops up to 90% load

• Strategy used by VQF

• Slow on GPUs — too many slots to probe with
1 warp

• Not stable — tags move inside buckets
• Can increase throughput by setting s to a

smaller value
• However, can’t reach high space efficiency

s = ω(log log N) ≈ 48

h0(x)

X

s Slots

s = ω(log log N)

h1(x)

Buckets

N/s

Two choice filter on GPUs Pandey, Conway, Durie, Bender,

Farach-Colton, Johnson SIGMOD 2021

Choosing the optimal bucket size

Can we efficiently use warps with bucket sizes less than 32?

Choosing the optimal bucket size

Can we efficiently use warps with bucket sizes less than 32?

Yes, with Cooperative Groups

With small bucket sizes, warps may not be fully utilized

• The cooperative groups API lets us split
warps into smaller teams called
Cooperative Groups

• This is a logical partition: underlying
hardware has not changed

• Cooperative groups let us trade
computation for memory:

• Less compute per group, but we
can amortize cost of loading
buckets

Warp

1 team of 32 2 teams of 16 4 teams of 8

Optimal bucket size

Bucket Size

Buckets are modified atomically

• CUDA coherence is weak - no
guarantee that changes will be
observed in other blocks without
thread fencing / atomics

• Cache old state - verify with
atomicCAS

• All insertions done atomically, all
queries done lazily

0 0 1 1

Success Fail

Filled Empty

Old Bucket

Ballot

Threads

AtomicCAS

Final State

• Bucket size is chosen to be 16

• Items drop around 70% load

• Small backing table catches drops,
allows scaling to 90% load

• Backing table is ~1-2% of the total

filter size.

• Uses linear probing to traverse

buckets

Frontyard-backyard hashing

• Modular design with configurable
error rate

• Key-value association

• Deletion

• Stable

• Point API for use in kernels.

Two choice
hashing

Linear
probing

Two-choice filter with backyard

• Modular design with configurable
error rate

• Key-value association

• Deletion

• Stable

• Point API for use in kernels.

Two choice
hashing

Linear
probing

Two-choice filter with backyard

High performance with features!!

Results

BF Blocked BF SQF RSQF TCF GQF
False Positive (%) 0.15 0.71 1.17 1.55 0.024 0.19
Bits Per Item 10.10 9.73 9.7 7.87 16 10.68

Aggregate savings

Peak memory use in k-mer analysis is reduced by 2.8 - 5.4x!

This results in a 43% reduction in peak memory use in the
assembly pipeline

Takeaways

• The two-choice filter overcomes the feature-performance tradeoff of
previous GPU Filters

• Simple design with strong theoretical foundation results in practical data
structures

• Using a GPU filter can vastly reduce memory use of k-mer analysis

• No measured decrease in assembly quality

• No measured increase in overall runtime

• Filters with advanced features simplify the pipeline

Github and lab page:

Libraries: https://github.com/saltsystemslab/gpu-filters

UtahDB: http://mod.cs.utah.edu/

https://github.com/saltsystemslab/gpu-filters
http://mod.cs.utah.edu/

