High Performance Filters For GPUs

Hunter McCoy, Steven Hofmeyr, Katherine Yelick, Prashant Pandey

Applications in an exascale world

- High Performance Data Analytics (HPDA) is the intersection of High Performance Computing (HPC) and Big Data
- HPDA applications run on massive systems like supercomputers

- - #1: Frontier 9408 nodes, 37,632 GPUs 1,685.65 PFlop/s Peak

• **GPUs** power these supercomputers

Metagenomics

Soil sample

Water sample

Human gut

Metagenomics is the study of microbes that inhabit an environment and their interactions.

Metagenomic assembly

- Sequences are generated as fragments called reads
- Rebuilding DNA strands from the reads is compute/memory intensive

It's like building the puzzle without the picture on the box and there are multiple different puzzles in the same box!

MetaHipMer: an exascale metagenomic assembler

GPUs accelerate metagenomic assembly

- MHM recently completed the largest coassembly ever
 - 9,400 nodes on Frontier
 - 37,000 GPUs
 - 71.6 terabyte assembly of Tara Oceans dataset

MetaHipMer Running Time

GPUs accelerate metagenomic assembly

- MHM recently completed the largest coassembly ever
 - 9,400 nodes on Frontier
 - 37,000 GPUs
 - 71.6 terabyte assembly of Tara Oceans dataset

MetaHipMer Running Time

105 terabyte Human Microbiome dataset not assembled yet!

GPUs are the memory bottleneck!

Peak memory usage in *k*-mer analysis!

Tradeoff in GPU-enabled k-mer analysis

Filters can help overcome the memory-speed tradeoff in GPUs!

Filters save space by giving up accuracy

- Filters are a lossy representation of a set, and trade accuracy for space efficiency
- Queries return "maybe" or "definitely not" in set
- False positives occur with bounded error rate ϵ
- Errors are one sided, i.e., no false negatives

Filters save space by giving up accuracy

- Filters are a lossy representation of a set, and trade accuracy for space efficiency
- Queries return "maybe" or "definitely not" in set
- False positives occur with bounded error rate ϵ
- Errors are one sided, i.e., no false negatives

Space
$$\geq n \log \frac{1}{\epsilon}$$
 bits

For most practical purposes: $\epsilon=2\,\%$, a filter requires ~8 bits/item

In Set

K-mer analysis requires filters with:

High performance

Space efficiency

Deletions

Key-value support

Existing GPU filters lack critical features

	Inserts	Queries	Deletions	Counting	Key-Value Association
Bloom filter	\sim				
Blocked Bloom Filter ^[1]	\checkmark				
RSQF ^[2]	\checkmark	\checkmark	*		*
SQF [2]	\checkmark	\checkmark	\checkmark		*

[1] Junger et al. 2020 [2] Geil et al. 2018

* Not supported in implementation, could be supported in theory

Existing GPU filters lack critical features

	Inserts	Queries	Deletions	Counting	Key-Value Association	Performance
Bloom filter						
Blocked Bloom Filter ^[1]	\checkmark	\checkmark				
RSQF ^[2]	V	\checkmark	*		*	
SQF [2]	\checkmark	\checkmark	\checkmark		*	

[1] Junger et al. 2020 [2] Geil et al. 2018

* Not supported in implementation, could be supported in theory

Can we build a GPU filter that can achieve high-performance and features?

TCF achieves performance and features

[1] Junger et al. 2020 [2] Geil et al. 2018

* Not supported in implementation, could be supported in theory

- Present new GPU filter designs:
 - Two-Choice Filter (TCF)
 - Stable filter with key-value association/deletion
 - GPU Quotient Filter (GQF)
 - Filter with key-value association/deletion/dynamic counters
- Up to **4.4x faster** than previous GPU filters
- Thread-level point API and host bulk API for easy integration
- 43% reduction in overall peak memory usage in MetaHipMer

• Present new GPU filter designs:

- Two-Choice Filter (TCF)
 - Stable filter with key-value association/deletion
- GPU Quotient Filter (GQF)
 - Filter with key-value association/deletion/dynamic counters
- Up to **4.4x faster** than previous GPU filters
- Thread-level point API and host bulk API for easy integration
- 43% reduction in overall peak memory usage in MetaHipMer

GPU challenges

1. Thread divergence

Warps diverge and slow down if threads perform different operations

2. Memory coherence

Warps slow down if threads read from different cache lines

3. Limited memory

• 80 GB vs 1 TB - GPU memory can't fall back to disk

4. Massive parallelism

• ~80,000-160,000 simultaneous threads

Design goals for GPU filters

Stability

Items don't move after insertion

Low associativity

Map each item to one or a small number of locations

Space efficiency

Minimum overhead from pointers or over provisioning

Mapping GPU challenges to filter design goals

of UTAH

Fingerprinting is an alternative to Bloom filters

- Filter stores lossy versions of keys called fingerprints
 - Fingerprints are **p** bits, stored compactly in a hash table

- Only source of false positives:
 - Two distinct elements x and y, where h(x) = h(y)

Probability of a collision:
$$\frac{1}{2^p}$$

- To insert and item x
 - Compute $h_0(x)$ and $h_1(x)$
 - Insert f(x) into emptier bucket

- Compute $h_0(x)$ and $h_1(x)$
- Insert f(x) into emptier bucket

Each bucket is a mini-quotient filter with false-positive rate $\epsilon/2$ and capacity *s*

Two choice filter on GPUs

- $s = \omega(\log \log N) \approx 48$
 - No drops up to 90% load
 - Strategy used by VQF
- Slow on GPUs too many slots to probe with 1 warp
- Not stable tags move inside buckets
- Can increase throughput by setting s to a smaller value
 - However, can't reach high space efficiency

Choosing the optimal bucket size

Can we efficiently use warps with bucket sizes less than 32?

Choosing the optimal bucket size

Can we efficiently use warps with bucket sizes less than 32?

Yes, with Cooperative Groups

With small bucket sizes, warps may not be fully utilized

- The cooperative groups API lets us split warps into smaller teams called Cooperative Groups
- This is a logical partition: <u>underlying</u>
 <u>hardware has not changed</u>
- Cooperative groups let us trade computation for memory:
 - Less compute per group, but we can amortize cost of loading buckets

Optimal bucket size

Buckets are modified atomically

- CUDA coherence is weak no guarantee that changes will be observed in other blocks without thread fencing / atomics
- Cache old state verify with atomicCAS
- All insertions done atomically, all queries done lazily

Frontyard-backyard hashing

- Bucket size is chosen to be 16
 - Items drop around 70% load
- Small backing table catches drops, allows scaling to 90% load
 - Backing table is ~1-2% of the total filter size.
 - Uses linear probing to traverse buckets

Two-choice filter with backyard

- Modular design with configurable error rate
- Key-value association
- Deletion
- Stable
- Point API for use in kernels.

Two-choice filter with backyard

- Modular design with configurable error rate
- Key-value association
- Deletion
- Stable
- Point API for use in kernels.

High performance with features!!

	BF	Blocked BF	SQF	RSQF	TCF	GQF
False Positive (%)	0.15	0.71	1.17	1.55	0.024	0.19
Bits Per Item	10.10	9.73	9.7	7.87	16	10.68

Aggregate savings

Peak memory use in *k*-mer analysis is reduced by 2.8 - 5.4x!

This results in a 43% reduction in peak memory use in the assembly pipeline

- The two-choice filter overcomes the feature-performance tradeoff of previous GPU Filters
- Simple design with strong theoretical foundation results in practical data structures
- Using a GPU filter can **vastly reduce memory use** of *k*-mer analysis
 - No measured decrease in assembly quality
 - No measured increase in overall runtime
- Filters with advanced features simplify the pipeline

Github and lab page: Libraries: https://github.com/saltsystemslab/gpu-filters UtahDB: http://mod.cs.utah.edu/

