
Scalability Challenges in
Large-Scale Sequence Search

Prashant Pandey

School of Computing

University of Utah

Facing a New Challenge
The Sequence Read Archive (SRA) …

is not searchable by sequence* ! (Yes, I know!)
This renders what is otherwise an immensely valuable public resource largely inert

* there is an SRA BLAST, but functionality is limited

Terabyte

Petabyte

A Huge Amount of Information is Available

in Raw Sequencing Data

Assembled data is hugely lossy. A lot of variability information is lost
during assembly.
And a lot of raw sequencing data never gets assembled.

The Ability to Perform Searches on Raw Sequencing
Data would Enable Us to Answer Lots of Questions

Q: What if I find a new putative disease-related transcript, and want to

see if it appeared in other biological samples?

Q : What if I discover a new fusion event in a particular cancer subtype

and want to know if it is common among samples with this subtype?

Q: What if I find an unexpected bacterial contaminant in my data;

which other samples might contain this?

The ability to perform searches on raw sequencing
data would enable us to answer lots of questions

Q: What if I find a new putative disease-related transcript, and want to

see if it appeared in other biological samples?

Q : What if I discover a new fusion event in a particular cancer subtype

and want to know if it is common among samples with this subtype?

Q: What if I find an unexpected bacterial contaminant in my data;

which other samples might contain this?

A: I need to search through tons of raw sequencing data.

Facing a New Challenge
Contrast this situation with the task of searching assembled, curated genomes,

For which we have an excellent tool; BLAST.

Essentially, the “Google of genomics”:

However, even the scale of reference databases requires algorithmic innovations:

The Computational Problem
So, why can’t we just use BLAST for searching “raw” data?
๏ Patterns of interest might be spread across many reads (no

contiguous substring)

๏ The pattern we are looking for may not be present in an assembled
genome (we have genomes for only a small fraction of the ~8.7
Million* species on the planet — most can’t even be cultivated in
labs)

*Mora, Camilo, et al. "How many species are there on Earth and in the ocean?." PLoS biology 9.8 (2011): e1001127.

๏ Even if we had those genomes, there is so much more information in
raw data. A reference genome reduces entire populations (e.g.
humans) to a single string — hugely lossy (gene expression could
change wildly in the same genome)

๏ BLAST-like algorithms & data structures just don’t seem to scale!

Reframing the problem
Some recent work reframes this problem slightly, and
suggested a direction toward a potential solution …

Proposal:

A hierarchical index of k-mer content represented approximately
via Bloom filters.

Returns “yes/no” results for individual experiments → “yes” results
can be searched using more traditional methods

K-mers as search primitives*

๏ For a given molecule (string), a k-mer is simply a k-length
sub-string.

๏ Akin to n-grams as used in NLP (except DNA/RNA have no
natural “tokens” … this complicates things quite a bit)

ATCAGACAGTACTAGACCCATTCAGACATCA
1st 9-mer
2nd 9-mer

3rd 9-mer

๏ Idea: Similarity of k-mer composition ⇾ similar sequence

*Note: This is related to the way we sped up transcript expression
estimation by >20x in our “sailfish” work.

Sample discovery problem

Return all samples that contain at least some user-defined fraction of
k-mers present in the query string.

θ

Sample discovery problem

Return all samples that contain at least some user-defined fraction of
k-mers present in the query string.

θ

Recall the Bloom Filter
•For a set of size N, store an array of M bits Use k different hash

functions, {h0, ..., hk-1}

•To insert e, set A[hi(e)] = 1 for 0 < i < k

•To query for e, check if A[hi(e)] = 1 for 0 < i < k

Image by David Eppstein

Is element e in my set S? 

If yes, always say yes 

If no, say no with large probability

Useful b/c: if we can
tolerate false positives,
we can query our set in

very small space!

๏ A binary tree of bloom filters, where leaves represent the k-mer set of a single sample.

Sequence Bloom Trees (S&K ’16)

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

One inefficiency of this approach is that all Bloom filters must be the same size.

๏ Bloom filter of parent is logical union (= bitwise OR) of children.

๏ Check both children, stop descending into tree when ϴ threshold is not satisfied

Two improved SBT-related papers (RECOMB 2017)Two improved SBT-related papers (RECOMB ’17)

Happy to chat about details offline

Both papers share a very interesting core idea, but each also

introduces its own, distinct improvements as well.

Split Sequence Bloom Trees
Split Sequence Bloom Trees : Solomon & Kingsford (RECOMB ’17)

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

Solomon, B. and Kingsford, C., Improved search of large transcriptomic sequencing databases using split sequence bloom trees. In International Conference on Research in Computational Molecular Biology (pp.
257-271). Springer, Cham.

Comparison of query times using different thresholds θ for SBT and SSBT using the
set of data at TPM 100 (i.e. high-expression transcripts).

Starting to

approach

“interactive”

Build statistics for SBT & SSBT constructed from a 2652 experiment set. The sizes
are the total disk space required to store a Bloom tree before or after compression.

In SSBT’s case, this compression includes the removal of non-informative bits.

Small enough

to fit in RAM

on a “reasonable”

server.

Build

Query

A fundamentally different approach

SIGMOD 2017

Interesting observation

about patterns of k-mer occurrence

WABI 2017

Our initial idea: “The Bloom Filter is limiting. What can we get by replacing it with a better AMQ ?”

“I bet we can exploit

that for large-scale search”

RECOMB 2018 & Cell Systems

Bioinformatics 2018

K-mer index

RECOMB 2019

“I bet we can make

it even smaller”

“I bet we can make

it scale and updatable”

Bioinformatics 2022

The Counting Quotient Filter (CQF)
Approximate Multiset Representation

Works based on quotienting* & fingerprinting keys

Clever encoding allows low-overhead storage of element counts

(use key slots to store values in base 2r-1; smaller values ⇒ fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

Let k be a key and h(k) a p-bit hash value

h(k) }
q-bits

}
r-bits

p-bits

Value stored in

r-bit slot (fingerprint)

=

* Idea goes back at least to Knuth (TACOP vol 3)

Determines position in
array of size 2 r-bit slotsq

Mantis
Observation 1 : If I want to index N k-mers over E experiments, there
are possible distinct “patterns of occurrence” of the

k-mers … there are usually many fewer.

 min
⇣
N, 2|E|

⌘

Observation 2 : These patterns of occurrence are far from uniform.
Specifically, k-mers don't occur independently; occurrences are
highly correlated.

What if we add a layer of indirection: Store each distinct pattern
(color class) only once. Label each pattern with with an index, s.t.
frequent patterns get small numbers (think Huffman encoding)

https://github.com/splatlab/mantis

David Wheeler approves … we think.

Why? Consider e.g. a gene G (~1000 k-mers). If it is present

in an experiment at moderate to high abundance, we will likely
observe all of it’s k-mers.

https://github.com/splatlab/mantis

The Mantis Index: Core Idea

No tree!

๏Build a CQF for each input experiment

(can be different sizes, since CQFs of different sizes are mergeable)

๏Combine them via multi-way merge
๏CQF : key = k-mer, value = color class ID

Compressed using RRR*

๏Estimate a good ordering of color class IDs from first few million k-mers
*Raman, et al. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 233–242.

E1

ACTT

E2

ACTG

TTTC

GCGT

AGCC

E3

ACTG

CTTG

TTTC

GCGT

AGCC

E4

CTTG

GCGT

Input Experiments

CQF
Color class tablek-mer Color ID

ACTG 0

ACTT 10

CTTG 1

TTTC 0

GCGT 11

AGCC 0

E1 E2 E3 E4

0 0 1 1 0
10 0 0 1 1
1 1 0 0 0

11 0 1 1 1

Mantis Index

Most k-mers have small IDs?
The distribution of k-mers / color class is highly skewed

~3.7 Billion k-mers from ~2,600 distinct sequencing experiments

Mantis : Comparing to SSBT

Bonus: If the quotient + remainder bits = original key size & we use
an invertible hash, the CQF is exact.

Mantis is compact enough to exactly index all experiments.

This lets us ask useful questions about how other approaches perform.

Construction Time — How long does it take to build the index?

Index Size — How large is the index, in terms of storage space?

Query Performance — How long does it take to execute queries?

Result Accuracy — How many FP positives are included in query results?

Mantis : Construction Time & Index Size

Note: both results assume you already have per-experiment AMQs
(either Bloom Filters or CQFs)

๏ Mantis can be constructed ~24x faster than a comparable
SSBT

Indexed 2,652 human RNA-seq (gene expression) experiments
~4.5TB of (Gzip compressed) data

๏ The final Mantis representation is ~20% smaller than the
comparable SSBT representation.

Tool Mantis SSBT

Build time 03 hr 56 min 97 hr

Representation size. 32 GB 39.7 GB

Mantis : Query Speed
Querying for the presence of randomly selected genes across all
2,652 experiments.

θ threshold for SSBT query

Mantis doesn’t require a θ threshold for queries, though one can
be applied post hoc.

Mantis returns the fraction (true θ) of query k-mers contained in the

experiment.

๏ Mantis is ~6 — 109x faster than (in memory) SSBT

Query includes index loading

(will return to this later)

Mantis : Query Accuracy
Querying for the presence of randomly selected genes across all
2,652 experiments. SSBT θ = 0.8

Due to a small number of corrupted SSBT filters — able to discover this
b/c of Mantis’ exact nature.

๏ Recall : Mantis is exact! Returns only experiments having ≥ θ
fraction of the query k-mers.

Data from: https://
www.ncbi.nlm.nih.gov/
Traces/sra/sra_stat.cgi

Where are we now?

*Principles of Quantum Mechanics 2nd edition, Chapter XIII, Section 81 (p. 297)

Terabyte

Petabyte

“It seems that some essentially new … ideas are here needed”

— Paul Adrien Maurice Dirac*

We can search this, but want to search this … and beyond

Some Remaining Challenges
๏ It improves greatly upon existing solutions; takes a different approach

๏ We demonstrate indexing on the order of 103 experiments, we
really want to index on the order of 105 - 106

๏ Can be made approximate while providing strong bounds :

but maybe not enough

Need a fundamentally better color class encoding; exploit
coherence between rows of the color class matrix

๏ K-mers grow at worst linearly

๏ Color classes increase super-linearly

Key Observation:

Each color class is a vertex

Every pair of color classes is connected by an edge whose weight
is the hamming distance between the color class vectors

Consider the following color class graph

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2

1

4

2

1
3

Unfortunately:

1) There are many color classes (full graph too big)

2) They are high-dimensional (# of experiments), neighbor

search is very hard (LSH scheme seem to work poorly)

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

1

2

1

build MST of

this graph

1

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.

Each CQF key represents a kmer → can explicitly query neighbors

Each k-mer associated with color class id → vector of occurrences

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1

1

0

1

0

1

1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

1

0

0

0

0

Mantis implicitly represents a colored dBG

1

0

1

0

0

1

0

1

0

1
1

0

1

0

0
1

0

1

0

1
1

1

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

0

0

0

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

0

1

1

1

1

1

1

0

1

0

1

1

1

2

1

1

2

2

1

0

1

0

1

1

0

0

0

0

Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix

of u is the same as k-1 prefix of v

4

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2 2

1

4

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2 2

1

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

1

2

1
1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2

1

4

2

1

CCG derived from dbG

Complete CCG

MST on our Graph

3

Optimal MST

The MST efficiently encodes related color classes

1

0

1

0

1

1

0

1

0

0

1

1

1

1

1

1

0

0

0

0

2 2

1

Augment with all 0 color class to guarantee one, connected MST

0

0

0

0

0
1

{0}

{2,4}

{4}

{1,3}

To reconstruct a vector, walk from your node to the root,

flipping the parity of the positions you encounter on each edge.

The MST approach scales very well

dataset from SBT / SSBT / Mantis paper

Improvement

over RRR improves

with # of samples

now the

k-mer table

is the bottleneck

One concern is that replacing O(1) lookup with

MST-based decoding will make lookup slow; does it?

Turns out a caching strategy (an LRU over popular internal nodes)

keeps it just as fast as lookup in the RRR matrix

How does MST approach affect query time?

Data from: https://
www.ncbi.nlm.nih.gov/
Traces/sra/sra_stat.cgi

Where we are now?

*Principles of Quantum Mechanics 2nd edition, Chapter XIII, Section 81 (p. 297)

Terabyte

Petabyte

“It seems that some essentially new … ideas are here needed”

— Paul Adrien Maurice Dirac*

We can search this, but want to search this … and beyond

Some Remaining Challenges
๏ We can scale to even larger datasets by compressing color class

representation.

๏ We demonstrate indexing on the order of 103 experiments, we
really want to index on the order of 105 - 106

๏ We need to scale out of RAM and also support adding new
experiments.

Need a fundamentally better construction which can support
adding new experiments and can scale out of RAM to disk.

๏ We can take a static representation and make it updatable
using the Bentley-Saxe construction[Bentley and Saxe (1980).].

๏ We can reduce the memory usage using minimizers.

Key Observation:

Mantis-LSM design

Level
0

Level
1

Level
2

Level
3

Build
Mantis Merge

Merge

Merge

Level
0

Level
1

Level
2

Level
3

Compact

Level
0

Level
1

Level
2

Level
3

Insert

Level
0

Level
1

Level
2

Level
3

Insert
squeakr

๏ Level 0 resizes in RAM

๏ L1…Ln remain on disk

๏ Level grow in size exponentially

• Minimizers to partition the k-mer
index on disk

• Helps to minimize RAM usage during
merging and queries.

Mantis-LSM design

Data from: https://
www.ncbi.nlm.nih.gov/
Traces/sra/sra_stat.cgi

Where we are now?

*Principles of Quantum Mechanics 2nd edition, Chapter XIII, Section 81 (p. 297)

Terabyte

Petabyte

“It seems that some essentially new … ideas are here needed”

— Paul Adrien Maurice Dirac*

We can search this, but want to search this … and beyond

A special thanks to my collaborators!!

Funding:
Jamshed Khan  

(UMD)
Fatemeh Almodaresi

(OICR)

Rob Johnson 
(VMware Research)

Mike Ferdman 
(Stony Brook)

Michael Bender 
(Stony Brook)

Rob Patro

(UMD)

https://prashantpandey.github.io/

