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Facing a New Challenge

The Sequence Read Archive (SRA) ..
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is not searchable by sequence* ! (Yes, | know!)

This renders what is otherwise an immensely valuable public resource largely inert

* there is an SRA BLAST, but functionality is limited



A Huge Amount of Information is Available
in Raw Sequencing Data

___a
«....ATGGAGATAGGATG
AGATAGATGATAGA....

Assembly Assembled data

Sequencing

Raw sequencing
data

Individuals

Assembled data is hugely lossy. A lot of variability information is lost
during assembly.

And a lot of raw sequencing data never gets assembled.



"'he Ability to Perform Searches on Raw Sequencing

Data would Enable Us to Answer Lots of Questions

Q: What if I find a new putative disease-related transcript, and want to

see 1f 1t appeared 1n other biological samples?

Q : What if I discover a new fusion event 1n a particular cancer subtype

and want to know 1if 1t 1s common among samples with this subtype?

Q: What if I find an unexpected bacterial contaminant in my data;

which other samples might contain this?



The ability to perform searches on raw sequencing
data would enable us to answer lots of questions

Q: What 1f I find a new putative disease-related transcript, and want to

see 1f 1t appeared 1n other biological samples?

Q : What 1f I discover a new fusion event 1n a particular cancer subtype

and want to know if it 1s common among samples with this subtype?

Q: What if I find an unexpected bacterial contaminant in my data;

which other samples might contain this?

A: 1 need to search through tons of raw sequencing data.



Facing a New Challenge

Contrast this situation with the task of searching assembled, curated genomes,

For which we have an excellent tool; BLAST.

o blastn \ blastp | blastx | tblastn | tblastx

Enter Query Sequence SEASTN
Enter accession number(s), gi(s), or FASTA sequence(s) & Clear Query subrange &
TGAAAAAGGGTAACCTCAAAGCTAAAAAGCCCAAGAAGGGGAAGCCCCATTGCAGCCGCAAC From
CCTGTCCTTGTCAGAGGAATTGGCAGGTATTCCCGATC
To
..»" Sequences producing significant alignments:
Or, upload file Choose File ' No file chosen (%) ’,’__.—" Select: All None Selected:0
Sees ”,—"’, i1 Alignments O
Enter a descriptive title for your BLAST search &) x’,_.-" Max | Total | Query — —
Align two or more sequences & score score cover value
“‘__x Eukaryotic synthetic construct chromosome 18 185 371 100% 2e-43 100.00% CP034496.1
'f BI_AST \'I PREDICTED: Pan paniscus 60S ribosomal protein L6-like (LOC100976413), mRNA 185 185 100% 2e-43 100.00% XM_008963989.2
‘“\Q ~| PREDICTED: Pan paniscus 60S ribosomal protein L6 pseudogene (LOC100995849), misc RNA 185 185 100% 2e-43 100.00% XR 610957.3
\*.\\ PREDICTED: Pan paniscus 60S ribosomal protein L6 (LOC100995836), mRNA 185 185 100% 2e-43 100.00% XM _003812574.3
\"\\ PREDICTED: Pan troglodytes 60S ribosomal protein L6 pseudogene (LOC737972), misc_RNA 185 185 100% 2e-43 100.00% XR 680356.3
\"*.\ ~] PREDICTED: Pan troglodytes ribosomal protein L6 (RPL6), transcript variant X8, mRNA 185 185 100% 2e-43 100.00% XM_024347583.1
\\\ PREDICTED: Pan troglodytes ribosomal protein L6 (RPL6), transcript variant X7, mRNA 185 185 100% 2e-43 100.00% XM_024347582.1
\\\’ Human ORFeome Gateway entry vector pPENTR223-RPL6, complete sequence 185 185 100% 2e-43 100.00% LT737273.1
" | PREDICTED: Gorilla gorilla gorilla ribosomal protein L6 (RPL6), transcript variant X5, mRNA 185 185 100% 2e-43 100.00% XM_019038370.1

Essentially, the “Google of genomics”: ™

Basic local alignment search tool

SF Altschul, W Gish, W Miller, EW Myers... - Journal of molecular ..., 1990 - Elsevier Paperpile

A new approach to rapid sequence comparison, basic local alignment search tool (BLAST),
directly approximates alignments that optimize a measure of local similarity, the maximal
segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP ...

w oy (Cited by 76248) Related articles Web of Science: 52272 Import into BibTeX

However, even the scale of reference databases requires algorithmic innovations:

COMMENTARY

Y. William Yu,"22 Noah M. Daniels,’-22 David Christian Danko,? and Bonnie Berger?-2*
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Compressive genomics

: Po-Ru Loh, Michael Baym & Bonnie Berger

3Co-first author
*Correspondence: bab@mit.edu
http://dx.doi.org/10.1016/j.cels.2015.08.004

A

1
3 Algorithms that pute directly on p g ic data allow analyses to keep pace with data generation.

2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
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Entropy-Scaling Search of Massive Biological Data :




The Computational Problem

So, why can’t we just use BLAST for searching “raw” data?

o Patterns of interest might be spread across many reads (no
contiguous substring)

e The pattern we are looking for may not be present in an assembled
genome (we have genomes for only a small fraction of the ~8.7
Million* species on the planet — most can't even be cultivated in

labs)

e Even if we had those genomes, there is so much more information in
raw data. A reference genome reduces entire populations (e.g.

humans) to a single string — hugely lossy (gene expression could
change wildly in the same genome)

o BLAST-like algorithms & data structures just dont seem to scale!

*Mora, Camilo, et al. "How many species are there on Earth and in the ocean?." PLoS biology 9.8 (2011): e1001127.



Retraming the problem

Some recent work reframes this problem slightly, and
suggested a direction toward a potential solution ...

| nature :
. biotechnology :

 Fast search of thousands of short-read
' sequencing experiments

1
i Brad Solomon & Carl Kingsford

1

. Nature Biotechnology 34, 300-302 (2016) Received: 28 April 2015

: d0i:10.1038/nbt.3442 Accepted: 23 November 2015

: Download Citation Published online: 08 Februarv 2016

Proposal:

A hierarchical index of k-mer content represented approximately
via Bloom filters.

Returns “yes/no” results for individual experiments = “yes” results
can be searched using more traditional methods



K-mers as search primitives*

,TATCAGACAGTACTAGACCCATTCAGACATCA
2nd 9—me|[
3rd 9-mer

o For a given molecule (string), a k-mer is simply a k-length
sub-string.

o Akin to n-grams as used in NLP (except DNA/RNA have no
natural “tokens” ... this complicates things quite a bit)

o ldea: Similarity of k-mer composition = similar sequence

*Note: This is related to the way we sped up transcript expression
estimation by >20x in our “sailfish” work.



Sample discovery problem

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

..ACACGTA...
Check if this new
transcript has
been seen before? TAAACGTGA
SRA Samples
(> 100K samples)

Return all samples that contain at least some user-defined fraction 6 of
k-mers present in the query string.



Sample discovery problem

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
0>0.75? ACGTTGTGC
GTGCGTGCG

TAAACGTGA
CGTCACGTA

ACACG
.ACACGTA... - CACGT

o ACGTA
Check if this new
transcript has
been seen before?
k-mers

> 10 Billion

SRA Samples
(> 100K samples)

Return all samples that contain at least some user-defined fraction 6 of
k-mers present in the query string.



Recall the Bloom Filter

e [-or a set of size N, store an array of M bits Use k different hash
functions, {hQ, ..., hk-1}

e JOo insert g, set Alhj(e)]=1forO< i<k

e [0 query for e, check if Alhj(e)] = 1forO<i<Kk

{x,y, 2}

1{joy1{1(1{0(010j0(0|1}(0]1T]0(0]1

s element e in my set S? " Useful b/c: if we can
tolerate false positives,
f yes, always say yes .
we can query our set In
It no, say no with large probability very small space!

Image by David Eppstein



Sequence Bloom Trees (S&K '16)

o A binary tree of bloom filters, where leaves represent the k-mer set of a single sample.
e Bloom filter of parent is logical union (= bitwise OR) of children.

e Check both children, stop descending into tree when © threshold is not satisfied

6

Bloom filter:

v: () 6

] EEE B HEE B
SRA 00005
H BN O O Ml [Cl B HE E EpE B B
SRA 00003 SRA 00007 SRA 00004 SRA(00001 SRA(00008
HE BN L]
SRA 00002 SRA|00006 Analysis Analysis

Analysis

One inefficiency of this approach is that all Bloom filters must be the same size.

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.



Two improved SBT-related papers (RECOMB '17)

Improved Search of Large Transcriptomic Sequencing Databases
' Using Split Sequence Bloom Trees

Brad Solomon! and Carl Kingsford*!

AllSome Sequence Bloom Trees

Chen Sun*!, Robert S. Harris*? Rayan Chikhi3, and Paul Medvedev 145

Both papers share a very interesting core idea, but each also
introduces its own, distinct improvements as well.

Happy to chat about details offline




Split Sequence Bloom Trees
Split Sequence Bloom Trees : Solomon & Kingsford (RECOMB '17)

Build
Data Ind SBT Split SBT
e SHOCR P Small enough
Build Time 18 Hr 78 Hr to fit in RAM
Compression Time 17 Hr 19 Hr

---------------------------------------------------

on a "reasonable”
e server.

Build statistics for SBT & SSBT constructed from a 2652 experiment set. The sizes
are the total disk space required to store a Bloom tree before or after compression.
In SSBT's case, this compression includes the removal of non-informative bits.

Query
Qllel‘y Time: 9=007 9=0.8 9=0.9 Sta r‘“ng to
SBT 20Min 19Min 17 Min approach
SSBT 3.7Min 3.5 Min 3.2 Min /”inte ractive”
'RAM SSBT 31Sec 29Sec 26 Sec:

Comparison of query times using different thresholds 6 for SBT and SSBT using the
set of data at TPM 100 (i.e. high-expression transcripts).

Solomon, Brad, and Carl Kingsford. "Fast search of thousands of short-read sequencing experiments." Nature biotechnology 34.3 (2016): 300-302.

Solomon, B. and Kingsford, C., Improved search of large transcriptomic sequencing databases using split sequence bloom trees. In International Conference on Research in Computational Molecular Biology (pp.
257-271). Springer, Cham.



A fundamentally ditferent approach

Our initial idea: "The Bloom Filter is limiting. What can we get by replacing it with a better AMQ ?”

EAn incrementally updatable and scalable system for
' large-scale sequence search using the Bentley-Saxe
: transformation

' Fatemeh Almodaresi ©® ', Jamshed Khan © ', Sergey Madaminov?, Michael Ferdman?,
1 Rob Johnson?, Prashant Pandey and Rob Patro ©® *

]
1 'Department of Computer Science, University of Maryland, USA, Department of Computer Science, Stony Brook University, USA and

A General-Purpose Counting Filter: Making Every Bit
Count

Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro

SIGMOD 2017: 1 VMo Research, Palo AL, A L U e g m i mmm e em————————
| g Bioinformatics 2022
Interesting observation K-mer index | bet we can make
about patterns of k-mer occurrence;-------------- I S it scale and updatable”
! Squeakr: an exact and approximarte x-mer | ;
................................................ -coun;l'lnn.gue:l'nm__________Dm..n{nzmoj-mo_on‘lQ______:___________________
Rainbowfish: A Succinct Colored de Bruijn Graph :: An Efficient, Scalable and Exact Representation of High-Dimensional ;
Representation* :.PraSha" Color Information Enabled via de Bruijn Graph Search
1 1Departmeni
:Palo Alto, C}

" Fatemeh Almodaresi!, Prashant Pandey!, Michael Ferdman!, Rob Johnson?!, and Rob Patro!

1
1
1
1
1
1
1
1 Fatemeh Almodaresi!, Prashant Pandey?, and Rob Patro3
1
1
1
1
1
1
1
1

__________________________________ WABI 2017: . RECOMB 2019
e SRS ro-f..43 -0 A
"l bet we can exploit
that for large-scale search”
v “| bet we can make

Mantis: A Fast, Small, and Exact Large-Scale Sequence-Search Index it even smaller”

E Prashant Pandey', Fatemeh Almodaresi®, Michael A. Bender!, Michael Ferdman®, Rob Johnson?'!, and Rob Patro! E\_/

RECOMB 2018 & Cell Systems



The Counting Quotient Filter (CQF)

0 6 7
Approximate Multiset Representation “unends |0 0 11
remainders hi(f)
Works based on quotienting* & fingerprinting keys
Let k be a key and h(k) a p-bit hash value Determines position in

—

array of size 27 r-bit slots

h(k) A/\ Value stored in

I
it W‘ﬂ r-bit slot (fingerprint)
p-bits

g-bits r-bits

Clever encoding allows low-overhead storage of element counts
(use key slots to store values in base 2r-1; smaller values = fewer bits)

Careful engineering & use of efficient rank & select to resolve
collisions leads to a fast, cache-friendly data structure

* |dea goes back at least to Knuth (TACOP vol 3)



Mantis

Observation 1 : If | want to index N k-mers over E experiments, there
are < min (N, 2|E') possible distinct “patterns of occurrence” of the
k-mers ... there are usually many fewer.

Observation 2 : These patterns of occurrence are far from uniform.
Specifically, k-mers don't occur independently; occurrences are
highly correlated.

Why?Consider e.g. a gene G (~1000 k-mers). If it is present
in an experiment at moderate to high abundance, we will likely
observe all of it's k-mers.

What if we add a layer of indirection: Store each distinct pattern
(color class) only once. Label each pattern with with an index, s.t.
frequent patterns get small numbers (think Huffman encoding)

David Wheeler approves ... we think.

https://github.com/splatlab/mantis


https://github.com/splatlab/mantis

The Mantis Index: Core ldea

Input Experiments

ACTG || ACTG
ACTT
CTTG || CTTG
TTTC || TTTC
GCGT || GCGT || GCGT
AGCC || AGCC
No tree!

/ Mantis Index
CQF

ColorID

k-mer

~

Color class table

N —

Compressed using RRR

-/

oBuild a CQF for each input experiment

(can be different sizes, since CQFs of different sizes are mergeable)

e Combine them via multi-way merge

«CQF : key = k-mer, value = color class ID

e Estimate a good ordering of color class IDs from first few million k-mers

*Raman, et al. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 233-242.



Most k-mers have small |IDs?

The distribution of k-mers / color class is highly skewed
10°

107

Number of k-mers in given color class
o <) S S
w ~ (6] (o)}

-
(&)
N

-
(&)

10°
10° 10" 102 10° 104 10° 10° 107 108 10°
Color class id's in Mantis order

~3.7 Billion k-mers from ~2,600 distinct sequencing experiments



Mantis : Comparing to SSBT

Construction Time — How long does it take to build the index?
Index Size — How large is the index, in terms of storage space?
Query Performance — How long does it take to execute queries?

Result Accuracy — How many FP positives are included in query results?

Bonus: If the quotient|+ remainder|bits =|original key size|& we use
an invertible hash, the CQF is exact.

Mantis is compact enough to exactly index all experiments.

This lets us ask useful questions about how other approaches perform.



Mantis : Construction Time & Index Size

Indexed 2,652 human RNA-seq (gene expression) experiments
~4.,5TB of (Gzip compressed) data

Table 1. Time and Space Measurement for Mantis and SSBT

Tool Mantis SSBT

Build time 03 hr 56 min 97 hr

Representation size. 32 GB 39.7 GB

e Mantis can be constructed ~24x taster than a comparable
SSBT

e The final Mantis representation is ~20% smaller than the
comparable SSBT representation.

Note: both results assume you already have per-experiment AMQs
(either Bloom Filters or CQFs)



Mantis : Query Speed

Querying for the presence of randomly selected genes across all
2,652 experiments.

Query includes index loading 8 threshold for SSBT query

(will return tclthis later) Aﬂ\

Mantis SSBT (0.7) |SSBT (0.8) | SSBT (0.9)
10 Transcripts 25 s 3min8s 2min25s | 2min7s
100 Transcripts | 28 s 14 min55s [1I0mMin56s| 7 min57s
1000 Transcripts | 1 min3s |2hr22min |1 hr54 min | 1 hr 20 min

e Mantis is ~6 — 109x faster than (in memory) SSBT

Mantis doesn't require a O threshold for queries, though one can
be applied post hoc.

Mantis returns the fraction (true B) of query k-mers contained in the

experiment.



Mantis : Query Accuracy

Querying for the presence of randomly selected genes across all
2,652 experiments. SSBT 0 = 0.8

Both Only Mantis |Only SSBT Precision

10 Transcripts 2,018 19 1,476 0.577
100 Transcripts 22,466 146 10,588 0.679
1000 Transcripts 160,188 | 1,409 95,606 0.626

S~

o Recall : Mantis is exact! Returns only experiments having = 0
fraction of the query k-mers.

Due to a small number of corrupted SSBT filters — able to discover this
b/c of Mantis’ exact nature.



Where are we now?
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Some Remaining Challenges

o It improves greatly upon existing solutions; takes a different approach

« We demonstrate indexing on the order of 103 experiments, we
really want to index on the order of 105 - 10¢

« Can be made approximate while providing strong bounds :

Theorem 1. A query for q k-mers with threshold 0 returns only experiments containing at least 0q—O(dq-+logn) queried
k-mers w.h.p.

but maybe not enough

Key Observation:

» K-mers grow at worst linearly
» Color classes increase super-linearly

Need a fundamentally better color class encoding; exploit
coherence between rows of the color class matrix



Consider the following color class graph

Fach color class is a vertex

Every pair of color classes is connected by an edge whose weight
is the hamming distance between the color class vectors

: 1 : j’ 1
Z’ &ld MST : 1 2 :
5 this\arabh 3
N A

Y
5 Iio i i =

Unfortunately:
1) There are many color classes (full graph too big)
2) They are high-dimensional (# of experiments), neighbor
search is very hard (LSH scheme seem to work poorly)

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.



Mantis implicitly represents a colored dBG

Each CQF key represents a kmer = can explicitly query neighbors
Each k-mer associated with color class id — vector of occurrences

1




Use the de Bruin graph (dBG) as an
efficient guide for near-neighbor
search in the space of color classes!

dBG common in genomics. Nodes u,v
are k-mers & are adjacent if k-1 suffix
of u is the same as k-1 prefix of v



CCG derived from dbG MST on our Graph

o |o]|-=|o |-

1 ; 1
2
2 S 2
4
Complete CCG Optimal MST
l 1 : ; 1
1 \& Z ? °
2 3
N N

D I B BO B
=N =3 =3 =N 3




The MST efticiently encodes related color classes

Augment with all 0 color class to guarantee one, connected MST

To reconstruct a vector, walk from your node to the root,
flipping the parity of the positions you encounter on each edge.



The MST approach scales very well

2001
150-

m Representation

o

> -+ CQF

E’ 100+ A MST

7 * RRR

501 now the
k-mer table
01 is the bottleneck
0 2500 5000 7500 10000
# of samples
Dataset # samples [ RRR | Total Parent Delta  Boundary %
matrix space vector vector  bit-vector
200 0.42 0.15 0.08 0.06 0.01 0.37 ™.
. 500 1.89 0.46 0.2 0.24 0.03 0.24 " Improvement
fﬁﬁf\msi"s 1,000 5.14 1.03 0.37 0.6 0.06 0.2 over RRR imoroves
N 2,000 14.2 2.35 0.71 15 0.14 0.17 . P
P 5,000 59.89 7.21 1.72 5.1 0.39 0.12 _ with # of samples
10,000 190.89 16.28 3.37 12.06 0.86 0.085
Blood, Brain,
2586 15.8 2.66 0.63 1.88 0.16 0.17 .+

Breast (BBB)

dataset from SBT / SSBT / Mantis paper



How does MST approach affect query time?

One concern is that replacing O(1) lookup with

MST-based decoding will make lookup slow; does it?

Turns out a caching strategy (an LRU over popular internal nodes)

keeps it just as fast as lookup in the RRR matrix

Mantis with MST

10 Transcripts
100 Transcripts
1000 Transcripts

index load + query query
1 min 10 sec 0.3 sec
1 min 17 sec 8 sec
2 min 29 sec 79 sec

space
118GB
119GB
120GB

Mantis
index load + query query space
32 min 59 sec 0.5 sec  290GB
34 min 33 sec 11 sec  290GB
46 min 4 sec 80 sec  290GB




Where we are now?
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Some Remaining Challenges

« We can scale to even larger datasets by compressing color class
representation.

« We demonstrate indexing on the order of 103 experiments, we
really want to index on the order of 105 - 10¢

« We need to scale out of RAM and also support adding new
experiments.

Key Observation:

» We can take a static representation and make it updatable
using the Bentley-Saxe constructionlBentley and Saxe (1980).],
» We can reduce the memory usage using minimizers.

Need a fundamentally better construction which can support
adding new experiments and can scale out of RAM to disk.



Mantis-LSM design
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L1...Ln remain on disk  Helps to minimize RAM usage during

, , . merging and queries.
o Level grow in size exponentially



Mantis-LSM design

(a) (b)
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Fig. 4. Performance of the Dynamic Mantis update process. The spikes in time (Fig. a) and memory (Fig. b) happen when the cascading merge happens with deeper and thus
larger indexes. Cumulative Time (Fig. ¢) shows the total time required to addd all the samples up to thae current one. and index size (Fig. d) is total size of the index
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of Health
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https://prashantpandey.github.io/




