
Timely Reporting of Heavy
Hitters using External Memory

Prashant Pandey, Shikha Singh, Michael A. Bender, Jonathan W. Berry,
Martin Farach-Colton, Rob Johnson, Thomas M. Kroeger,

Cynthia A. Phillips

Open problem from Sandia National Labs

● A high-speed stream of key-value pairs arriving over time

● Goal: report every key as soon as it appears 24 times without

missing any

Why should we care about this problem

● Defense systems for cyber security monitor

high-speed stream

● Malicious traffic forms a small portion of

the stream

● Automated systems take defensive actions

for every reported event.

● Firehose benchmark simulates the stream

○ https://firehose.sandia.gov/

https://firehose.sandia.gov/

Timely event detection problem

● Stream of elements arrive over time

S1

Time

S2 St

● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in

(s1,s2….st)

S1

Time

S2 St

t

Timely event detection problem

● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in

(s1,s2….st)

S1

Time

S2 St

t

Event!

Suppose T= 4

Timely event detection problem

● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in

(s1,s2….st)
● In timely event-detection problem (TED), we want to report

all events shortly after they occur.

S1

Time

S2 St

t

Event!

Suppose T= 4

Report

Timely event detection problem

Features we need in the solution

● Stream is large (in terabytes) and high-speed
(millions/sec)

High throughput ingestion

Features we need in the solution

● Stream is large (in terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Features we need in the solution

● Stream is large (in terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

Features we need in the solution

● Stream is large (in terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

One-pass streaming has errors

● Heavy hitter problem: report items whose frequency ≥ φN
● Exact one-pass solution solution requires Ω(N) space

RAM

One-pass streaming has errors

● Approximate solution: report all items with count ≥ φN, none
with < (φ−ε)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.

16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

● Approximate solutions requires: Ω(1/ε)

RAM

Real time with false-positives!

Maintain count
estimates in RAM
Misra & Gries ‘82

One-pass streaming has errors

● Approximate solution: report all items with count ≥ φN, none
with < (φ−ε)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.

16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

● Approximate solutions requires: Ω(1/ε)

RAM

Real time with false-positives!

Maintain count
estimates in RAM
Misra & Gries ‘82

For Sandia, φN is a small constant (24),
 So Ω(1/ε) is very very large!!

Can’t solve in RAM for very small φ

One-pass solution has:

● Stream is large (in terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

Two-pass streaming isn’t real-time

● A second pass over the stream can get rid of errors
● Store the stream on SSD and access it later

RAM

Scales to very small φ
but offline!

Second pass

SSD

Two-pass solution has:

● Stream is large (in terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

If data is stored: why not access it?

RAM

SSD

Why wait for second pass?

Our contribution

Combine streaming and EM algorithms to solve
real-time event detection problem

Streaming
model

External memory
algorithms

● How computations work:
○ Data is transferred in blocks between RAM and disk.

○ The number of block transfers dominate the running time.

● Goal: Minimize number of block transfers
○ Performance bounds are parameterized by block size B, memory size M,

data size N.

RAM DISK

M

B

B

External memory model Aggarwal+Vitter ‘08

● Maintains item counts using a variable length
encoding
○

● Good cache locality
● Enumerability/Mergeability
● Efficient scaling out-of-RAM
● Deletions

Counting quotient filter Pandey et al. ‘17

Asymptotically optimal space: O(∑ |C(x)|)

We build an efficient EM counting data
structure using the quotient filter.

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Cascade filter: write-optimized quotient filter
Bender et al. ‘12, Pandey et al. ‘17

Mr1

MrL

Efficient merging

● The Cascade filter efficiently scales out-of-RAM
● It accelerates insertions at some cost to queries

L

0

1

RAM

FLASH

log(N/M)

Items are initially inserted in the RAM level

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items in level 0 to i-1

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items in level 0 to i-1

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items in level 0 to i-1

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items in level 0 to i-1

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items in level 0 to i-1

L

0

1

RAM

FLASH

log(N/M)

N

Query (x)M

Mr1

MrL

Cascade filter: query
Bender et al. ‘12, Pandey et al. ‘17

A query operation requires a lookup in each non-empty level

Cascade filter operations

Insert Query

Cascade filter operations

Insert Query

< 1 I/O per
observation

Cascade filter operations

Insert Query

< 1 I/O per
observation

> 1 I/O per
observation

Cascade filter doesn’t have real-time reporting

Insert Query

< 1 I/O per
observation

> 1 I/O per
observation

But every insert is also a query in
real-time reporting!

Cascade filter doesn’t have real-time reporting

Insert Query

< 1 I/O per
observation

> 1 I/O per
observation

But every insert is also a query in
real-time reporting!

Traditional cascade filter doesn’t solves
the problem! But we can use insights

This talk: Leveled External-Memory Reporting
Table (LERT)

● Given a stream of size N and φN > Ω(N/M) the amortized
cost of solving real-time event detection is

● For a constant time stretch in reporting, can support
arbitrarily small thresholds φ with amortized cost

Takeaway: Online reporting comes at the cost of throughput but
almost online reporting is essentially free!

This talk: Leveled External-Memory Reporting
Table (LERT)

● Given a stream of size N and φN > Ω(N/M) the amortized
cost of solving real-time event detection is

● For a constant time stretch in reporting, can support
arbitrarily small thresholds φ with amortized cost

Takeaway: Online reporting comes at the cost of throughput but
almost online reporting is essentially free!

Can achieve timely reporting at effectively
the optimal insert cost; no query cost

This talk: Leveled External-Memory Reporting
Table (LERT)

● Given a stream of size N and φN > Ω(N/M) the amortized
cost of solving real-time event detection is

● For a constant time stretch in reporting, can support
arbitrarily small thresholds φ with amortized cost

Takeaway: Online reporting comes at the cost of throughput but
almost online reporting is essentially free!

This talk!

For a time-stretch of 1+ 𝛼, we must report an element a no later

than time I1 + (1 + α)FT , where FT is the flow time of a

1st occurrence
(I1)

T-th occurrence
(IT)

Report time
(IR)

Timeline FT

RT

Time stretch

For a time-stretch of 1+ 𝛼, we must report an element a no later

than time I1 + (1 + α)FT , where FT is the flow time of a

1st occurrence
(I1)

T-th occurrence
(IT)

Report time
(IR)

Timeline FT

RT

Time stretch

Main idea: the longer the flow time of an
item, the more leeway we have in reporting it

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Divide each level into 1+1/𝛼, equal-sized bins.

Mr1

MrL

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

When a bin is full, items move to the adjacent bin

Mr1

MrL

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

When a bin is full, items move to the adjacent bin

Mr1

MrL

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Last bin flushed to first bin of the next level

Mr1

MrL

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Last bin flushed to first bin of the next level

While flushing consolidate
counts; report if hits threshold

Mr1

MrL

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Last bin flushed to first bin of the next level

While flushing consolidate
counts; report if hits threshold

Mr1

MrL

Main idea: item is not put on a deeper
level until it’s “aged sufficiently”

Time-stretch LERT correctness

1/𝛼 bins of size

L

0

1

log(N/M)

1/𝛼 bins

Time-stretch LERT correctness

1/𝛼 bins of size

L

0

1

log(N/M)

1/𝛼 bins

Let i + 1 be the lowest level a key is at when it
hits the threshold count

Time-stretch LERT correctness

1/𝛼 bins of size

L

0

1

log(N/M)

1/𝛼 bins

Let i + 1 be the lowest level a key is at when it
hits the threshold count

Must have waited 1/𝛼 bins at each level up to i
since its first arrival, dominated by wait at i

Time-stretch LERT correctness

1/𝛼 bins of size

L

0

1

log(N/M)

1/𝛼 bins

Let i + 1 be the lowest level a key is at when it
hits the threshold count

Must have waited 1/𝛼 bins at each level up to i
since its first arrival, dominated by wait at i

That is,

Time-stretch LERT correctness

1/𝛼 bins of size

L

0

1

log(N/M)

1/𝛼 bins

Let i + 1 be the lowest level a key is at when it
hits the threshold count

Must have waited 1/𝛼 bins at each level up to i
since its first arrival, dominated by wait at i

That is,

Level i + 1 will participate in a flush again in

time steps — key will be reported

Time-stretch LERT I/O complexity

Optimal insert cost for
Write-optimized data

structure

Time-stretch LERT I/O complexity

Extra cost because we only
move one bin during a
flush. Constant loss for

constant 𝛼

Optimal insert cost for
Write-optimized data

structure

2

0

1

RAM

FLASH
Cones

Supporting high ingestion throughput

Divide into multiple smaller LERTs called cones, each with
the same number of levels and growth factor.

2

0

1

RAM

FLASH
Cones

Supporting high ingestion throughput

Use uniform-random hashing to route items to cones.
Each thread first acquires a lock on the cone and then performs
insertion.

Threads

2

0

1

RAM

FLASH
Cones

Avoiding contention for skewed distributions

If there is contention, threads make progress by inserting items in
the local buffer.
Local buffer is flushed at regular intervals.

Local CQF Local CQF Local CQF Local CQF

Threads

Evaluation

● Empirical timeliness

● Insertion throughput

● Effect of cones/threads on instantaneous throughput

● Scalability with threads

Evaluation: empirical time stretch

Average time stretch is 43% smaller than theoretical upper bound.
Multithreading has negligible effect on the empirical time stretch.

Evaluation: instantaneous throughput

Multithreading achieves smoother throughput with any jitters.
Cones and multithreading improve both instantaneous throughput
and average throughput.

Evaluation: scalability

The insertion throughput increases as we add more threads.
We can achieve > 11M insertions/sec.

LERT: supports scalable and real-time reporting

● Stream is large (in terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

● This work bridges the gap between streaming & external
memory.

● We can solve timely event detection problem at a level of
precision that is not possible in the streaming model.

● What other streaming problems can be solved in external
memory at comparable speed?

● What is the right model for streaming in modern external
memory?

Conclusion

Acknowledgements

Kingsford Group

Carl Kingsford
Guillaume Marcais
Natalie Sauerwald
Cong Ma
Laura Tung
Hongyu Zheng
Yihang Shen
Yutong Qiu
Minh Hoang
Mohsen Ferdosi

https://prashantpandey.github.io

Funding

● A counting filter is a lossy representation of a multiset
● Operations: insert, count, and delete
● False-positive errors ≈ Over counts

Counting filters

Counting
filter

insert(X)

count

getCount(X)

delete(X)

● Maintains count estimates

● Space and computationally efficient

● Can be used as a map for small key-value pairs

● Uses variable-sized encoding for counts

○ Asymptotically optimal space: O(∑ |C(x)|)

The quotient filter (QF)

 h(x)x

QF uses Quotienting Knuth. Searching and Sorting Vol. 3, ‘97

● Store fingerprints compactly in a hash table.
○ Take a fingerprint h(x) for each element x.

● Only source of false positives:
○ Two distinct elements x and y, where h(x) = h(y)
○ If x is stored and y isn’t, query(y) gives a false positives

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

q rb(x)

b(x) t(x)

t(x)

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index

Storing fingerprints compactly

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?

q rb(x)

b(x) t(x)

t(x)

0

1

2

3

4

5

6

h(x)

b(y)

t(y)

2q

Tag
Bucket index

Storing fingerprints compactly

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing.

q rb(x)

b(x) t(x)

t(x)

t(y)

0

1

2

3

4

5

6

h(x)

b(y)

t(y)

2q

Tag
Bucket index

Storing fingerprints compactly

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing.

q rb(x)

b(x) t(x)

t(x)

t(y)

0

1

2

3

4

5

6

h(x)

b(y)

t(y)

2q

Tag
Bucket index

Storing fingerprints compactly

t(y) belongs to
slots 4 or 5?

● QF uses two metadata bits to resolve collisions
and identify home bucket

● The metadata bits group tags by their home
bucket

Resolving collisions in the QF

1 1

t(u) t(v) t(w) t(x) t(y)

● QF uses two metadata bits to resolve collisions
and identify home bucket

● The metadata bits group tags by their home
bucket

insert v

Resolving collisions in the QF

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

● QF uses two metadata bits to resolve collisions
and identify home bucket

● The metadata bits group tags by their home
bucket

The metadata bits enable us to identify the slots
holding the contents of each bucket.

Resolving collisions in the QF

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

● Good cache locality

● Efficient scaling out-of-RAM

● Deletions

● Enumerability/Mergeability

● Resizing

Quotienting enables many features in the QF

Bloom filter: ~1.44log2(1/ε) bits/element.
Quotient filter: ~2.125 + log2(1/ε) bits/element.

Quotient filters use less space than Bloom filters
for all practical configurations

Bloom filter: ~1.44log2(1/ε) bits/element.
Quotient filter: ~2.125 + log2(1/ε) bits/element.

Quotient filters use less space than Bloom filters
for all practical configurations

False-positive rate
< 1/64 (or 0.15).

● Insert performance is similar to the state-of-the-art non-counting filters
● Query performance is significantly fast at low load-factors and slightly slower

at higher load-factors

Inserts Lookups

Quotient filters perform better (or similar) to
other non-counting filters

Cascade filter doesn’t have real-time reporting

● Stream is large (in terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

