
Timely Reporting of Heavy 
Hitters using External Memory

Prashant Pandey, Shikha Singh, Michael A. Bender, Jonathan W. Berry, 
Martin Farach-Colton, Rob Johnson, Thomas M. Kroeger, 

Cynthia A. Phillips



Open problem from Sandia National Labs

● A high-speed stream of key-value pairs arriving over time

● Goal: report every key as soon as it appears 24 times without 

missing any



Why should we care about this problem

● Defense systems for cyber security monitor 

high-speed stream

● Malicious traffic forms a small portion of 

the stream

● Automated systems take defensive actions 

for every reported event.

● Firehose benchmark simulates the stream

○ https://firehose.sandia.gov/

https://firehose.sandia.gov/


Timely event detection problem

● Stream of elements arrive over time
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● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in 

(s1,s2….st)
● In timely event-detection problem (TED), we want to report 

all events shortly after they occur.
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Event!

Suppose T= 4

Report

Timely event detection problem
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One-pass streaming has errors

● Heavy hitter problem: report items whose frequency ≥ φN  
● Exact one-pass solution solution requires Ω(N) space

RAM
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16,  Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

● Approximate solutions requires: Ω(1/ε) 

RAM

Real time with false-positives!

Maintain count 
estimates in RAM
Misra & Gries ‘82

For Sandia, φN is a small constant (24), 
 So Ω(1/ε) is very very large!!

Can’t solve in RAM for very small φ
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Two-pass streaming isn’t real-time

● A second pass over the stream can get rid of errors
● Store the stream on SSD and access it later

RAM

Scales to very small φ 
but offline!

Second pass

SSD



Two-pass solution has:

● Stream is large (in terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream 
size)

High throughput ingestion
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Very small reporting thresholds



If data is stored: why not access it?

RAM

SSD

Why wait for second pass?



Our contribution

Combine streaming and EM algorithms to solve 
real-time event detection problem

Streaming 
model

External memory 
algorithms



● How computations work:
○ Data is transferred in blocks between RAM and disk.

○ The number of block transfers dominate the running time.

● Goal: Minimize number of block transfers
○ Performance bounds are parameterized by block size B, memory size M, 

data size N.

RAM DISK

M

B

B

External memory model Aggarwal+Vitter ‘08



● Maintains item counts using a variable length 
encoding
○

● Good cache locality
● Enumerability/Mergeability
● Efficient scaling out-of-RAM
● Deletions

Counting quotient filter Pandey et al. ‘17

Asymptotically optimal space: O(∑ |C(x)|)                  

We build an efficient EM counting data 
structure using the quotient filter.
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Cascade filter: write-optimized quotient filter
Bender et al. ‘12, Pandey et al. ‘17
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Efficient merging

● The Cascade filter efficiently scales out-of-RAM
● It accelerates insertions at some cost to queries



L

0

1

RAM

FLASH

log(N/M)

Items are initially inserted in the RAM level

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17



L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

When RAM is full, items are flushed to the smallest level on 
disk i with space to insert items in level 0 to i-1



L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

When RAM is full, items are flushed to the smallest level on 
disk i with space to insert items in level 0 to i-1



L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

When RAM is full, items are flushed to the smallest level on 
disk i with space to insert items in level 0 to i-1



L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

When RAM is full, items are flushed to the smallest level on 
disk i with space to insert items in level 0 to i-1



L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
Bender et al. ‘12, Pandey et al. ‘17

When RAM is full, items are flushed to the smallest level on 
disk i with space to insert items in level 0 to i-1



L

0

1

RAM

FLASH

log(N/M)

N

Query (x)M

Mr1

MrL

Cascade filter: query
Bender et al. ‘12, Pandey et al. ‘17

A query operation requires a lookup in each non-empty level
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Cascade filter doesn’t have real-time reporting

Insert Query

< 1 I/O per 
observation

> 1 I/O per 
observation

But every insert is also a query in 
real-time reporting!

Traditional cascade filter doesn’t solves 
the problem! But we can use insights



This talk: Leveled External-Memory Reporting 
Table (LERT)

● Given a stream of size N and φN > Ω(N/M) the amortized 
cost of solving real-time event detection is

● For a constant time stretch in reporting, can support 
arbitrarily small thresholds φ with amortized cost 

Takeaway: Online reporting comes at the cost of throughput but 
almost online reporting is essentially free!
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the optimal insert cost; no query cost



This talk: Leveled External-Memory Reporting 
Table (LERT)

● Given a stream of size N and φN > Ω(N/M) the amortized 
cost of solving real-time event detection is

● For a constant time stretch in reporting, can support 
arbitrarily small thresholds φ with amortized cost 

Takeaway: Online reporting comes at the cost of throughput but 
almost online reporting is essentially free!

This talk!



For a  time-stretch of 1+ 𝛼, we must report an element a no later 

than time I1 + (1 + α)FT , where FT is the flow time of a

1st occurrence
(I1)
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For a  time-stretch of 1+ 𝛼, we must report an element a no later 

than time I1 + (1 + α)FT , where FT is the flow time of a

1st occurrence
(I1)

T-th occurrence
(IT)

Report time
(IR)

Timeline FT

RT

Time stretch

Main idea: the longer the flow time of an 
item, the more leeway we have in reporting it



Time-stretch LERT
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Time-stretch LERT
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Quotient filterM

Last bin flushed to first bin of the next level

While flushing consolidate 
counts; report if hits threshold 

Mr1

MrL

Main idea: item is not put on a deeper 
level until it’s “aged sufficiently”
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Time-stretch LERT correctness

1/𝛼 bins of size  
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1/𝛼 bins

Let i + 1 be the lowest level a key is at when it  
hits the threshold count

Must have waited 1/𝛼 bins at each level up to i  
since its first arrival, dominated by wait at i 

That is, 

Level i + 1 will participate in a flush again in 

time steps — key will be reported
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Time-stretch LERT I/O complexity

Extra cost because we only 
move one bin during a 
flush. Constant loss for 

constant 𝛼

Optimal insert cost for 
Write-optimized data 

structure
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Supporting high ingestion throughput

Divide into multiple smaller LERTs called cones, each with 
the same number of levels and growth factor.
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Supporting high ingestion throughput

Use uniform-random hashing to route items to cones.
Each thread first acquires a lock on the cone and then performs 
insertion.

Threads



2

0

1

RAM

FLASH
Cones

Avoiding contention for skewed distributions

If there is contention, threads make progress by inserting items in 
the local buffer.
Local buffer is flushed at regular intervals.

Local CQF Local CQF Local CQF Local CQF

Threads



Evaluation

● Empirical timeliness

● Insertion throughput

● Effect of cones/threads on instantaneous throughput

● Scalability with threads



Evaluation: empirical time stretch

Average time stretch is 43% smaller than theoretical upper bound.
Multithreading has negligible effect on the empirical time stretch.



Evaluation: instantaneous throughput

Multithreading achieves smoother throughput with any jitters.
Cones and multithreading improve both instantaneous throughput 
and average throughput.



Evaluation: scalability

The insertion throughput increases as we add more threads.
We can achieve > 11M insertions/sec.



LERT: supports scalable and real-time reporting 

● Stream is large (in terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream 
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds



● This work bridges the gap between streaming & external 
memory.

● We can solve timely event detection problem at a level of 
precision that is not possible in the streaming model.

● What other streaming problems can be solved in external 
memory at comparable speed?

● What is the right model for streaming in modern external 
memory?

Conclusion
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● A counting filter is a lossy representation of a multiset
● Operations: insert, count, and delete
● False-positive errors ≈ Over counts

Counting filters

Counting 
filter

insert(X)

count

getCount(X)

delete(X)



● Maintains count estimates

● Space and computationally efficient

● Can be used as a map for small key-value pairs

● Uses variable-sized encoding for counts

○ Asymptotically optimal space: O(∑ |C(x)|)                  

The quotient filter (QF)



       h(x)x

QF uses Quotienting Knuth. Searching and Sorting Vol. 3, ‘97

● Store fingerprints compactly in a hash table.
○ Take a fingerprint h(x) for each element x.

● Only source of false positives:
○ Two distinct elements x and y, where h(x) = h(y)
○ If x is stored and y isn’t, query(y) gives a false positives



• b(x) = location in the hash table
• t(x) = tag stored in the hash table
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• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing.
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Tag
Bucket index

Storing fingerprints compactly

t(y) belongs to 
slots 4 or 5?



● QF uses two metadata bits to resolve collisions 
and identify home bucket

● The metadata bits group tags by their home 
bucket

Resolving collisions in the QF
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● QF uses two metadata bits to resolve collisions 
and identify home bucket

● The metadata bits group tags by their home 
bucket

The metadata bits enable us to identify the slots 
holding the contents of each bucket.

Resolving collisions in the QF

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)



● Good cache locality

● Efficient scaling out-of-RAM

● Deletions

● Enumerability/Mergeability

● Resizing

Quotienting enables many features in the QF



Bloom filter: ~1.44log2(1/ε) bits/element.
Quotient filter: ~2.125 + log2(1/ε) bits/element.

Quotient filters use less space than Bloom filters 
for all practical configurations



Bloom filter: ~1.44log2(1/ε) bits/element.
Quotient filter: ~2.125 + log2(1/ε) bits/element.

Quotient filters use less space than Bloom filters 
for all practical configurations

False-positive rate 
< 1/64 (or 0.15).



● Insert performance is similar to the state-of-the-art non-counting filters
● Query performance is significantly fast at low load-factors and slightly slower 

at higher load-factors

Inserts Lookups

Quotient filters perform better (or similar) to 
other non-counting filters



Cascade filter doesn’t have real-time reporting

● Stream is large (in terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

● Very small reporting threshold T << N (stream 
size)

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds


