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A typical genomic pipeline

DNA/RNA extraction and 
fragmentation into smaller 

pieces suitable for 
sequencing

High-throughput 
sequencing generates 

millions of short/long reads 
from DNA fragments

Raw sequencing reads 
undergo quality 
assessment and 
preprocessing

Overlapping reads are 
assembled into contiguous 

sequences (contigs) and 
scaffolds

Complete or draft genome 
assembly ready for 

downstream analysis



Sample Prep 
Metadata, quality metrics,


sample information

Raw Sequencing 
FASTQ files with

millions of reads

Quality Control 
Trimmed & filtered


FASTQ files

Assembly Process 
Intermediate files,

graphs, overlaps

Final Assembly 
FASTA genome

assembly file

~1-10 MB

50-500 GB
30-300 GB

10-100 GB

0.1-10 GB

Data Reduction: 500 GB → 1 GB (500x compression) 

Assembled data is hugely lossy
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Raw sequencing data contains biological diversity information

*Mora, Camilo, et al. "How many species are there on Earth and in the ocean?." PLoS biology https://doi.org/10.1371/journal.pbio.1001127

Population Diversity 

Reference genomes reduce 

populations to single sequences, 
losing massive amounts of genetic 

variation and expression data.

Missing Species

We only have assembled genomes 

for a tiny fraction of Earth's ~8.7 
million species. Most can't even be 

grown in labs!

A lot of variability information is lost during assembly. And a lot of raw sequencing data never gets assembled.

https://doi.org/10.1371/journal.pbio.1001127


Raw sequencing data can unlock biological insights

Q. What if I find a new putative disease-related transcript, and want to see if it 
appeared in other biological samples?


Q. What if I discover a new fusion event in a particular cancer subtype and want to 
know if it is common among samples with this subtype?


Q. What if I find an unexpected bacterial contaminant in my data; which other samples 
might contain this?

?



Raw sequencing data can unlock biological insights

Q. What if I find a new putative disease-related transcript, and want to see if it 
appeared in other biological samples?


Q. What if I discover a new fusion event in a particular cancer subtype and want to 
know if it is common among samples with this subtype?


Q. What if I find an unexpected bacterial contaminant in my data; which other samples 
might contain this?

?
A. I need to perform string searches through tons of 
raw sequencing data.



Sequence Read Archive (SRA) is growing rapidly

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

SRA is a publicly available dataset from NIH containing raw sequencing data

Petabyte

Terabyte



Basic Local Alignment Search Tool (BLAST) 
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Basic Local Alignment Search Tool (BLAST) 
Contrast this situation with searching assembled, curated genomes, for which we have an excellent tool; BLAST

Essentially, the “Google of Genomics”

BLAST performs substring matching (based on seed-search-align) using traditional succinct string 
data structures.



Why can’t we use BLAST for searching “raw” data?

Scale Limitations

BLAST algorithms and data 

structures simply don't scale to 
handle millions of raw sequencing 

experiments efficiently.

Fragmented Patterns 

The sequence you're looking for 
might be spread across multiple 

reads, making it impossible for BLAST 
to find as a contiguous match.



Reframing the problem as vector search
Solomon and Kingsford 2016 reframed the problem, and suggested a direction…

Proposal:

Represent each sample from SRA as a set of tokens 

Similarity of token composition — similar sequence — small edit distance

Returns “yes/no” results for individual samples — “yes” results can be searched using traditional methods



K-mers as search primitives

ATCAGACAGTACTAGACCCATTCAGACATCA

1st 9-mer
2nd 9-mer

3rd 9-mer

• For a given molecule (string), a k-mer is simply a k-length sub-string


• Akin to n-grams used in NLP (except DNA/RNA have no natural “tokens”)


• Idea: Similarity of k-mer composition — similar sequence



Sample discovery problem
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Sample discovery problem

Return all samples that contain at least some  fraction of k-mers present in the query transcriptθ
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Sample B: 79% match

Sample C: 51% match



Sample discovery       Vector search 

K-mer representation of 
sequences is employed 
as vector embeddings.


k ranges between 21-31

Distance threshold is 
employed as a proxy for 

the top-k nearest neighbor 

Hamming distance between 
k-mer embeddings is 

employed as a proxy for 
sequence similarity

Underlying biological generative model claims that similar species have similar k-mer content.

Hamming distance is often not a good proxy for sequence similarity*. (More on this later in the talk.)

*Guillaume Marcais, Dan DeBlasio, Prashant Pandey, Carl Kingsford "Locality Sensitive Hashing for the Edit Distance" ISMB 2019

https://prashantpandey.github.io/publication/ismb19/


Several indexing methods for raw sequence search

Vibrant area with exciting work over the past several years; excellent review by Marchet et al. 2021.

ACA
ATA
ATC
CAT
GCA

Color aggregative methods

ACA,ATC,CAT
ATA,CAT,GCA

k-mer aggregative methods

K-mer set 
data structure Hash tables, CQF, BWT, BF trie Bloom filters

Aggregation 
data structure Color matrices

Search tree/forests, Bloom filter 
matrices

Method 
names

Mantis, SeqOthello, Bifrost, 
Metanot, BFT, VARI, 

SBT (variants), BIGSI, COBS, 
RAMBO 



K-mer aggregative methods: SBT [Solomon & Kingsford 2016]

• A binary-tree of Bloom filters, where 
leaves represent the k-mer set of a 
single sample


• Bloom filter of parent is logical 
union (= bitwise OR) of children


• Check both children, stop 
descending into tree when  
threshold is not satisfied

θ



Several limitations in Bloom filter-based methods

All Bloom filter are of same 
size — creating skewness 

in the query results


Bloom filters cause false 
positives in the results 


Hard to associate any 
attributes such as 

abundance, position etc.


SRA sample sizes range between few MBs to a few GBs. Results in high variance in 
Bloom filter false-positive rates.
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A fundamentally different approach 
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SIGMOD 2017

Interesting observation 
about patterns of k-mer occurrence

WABI 2017

Our initial idea: “The Bloom Filter is limiting. What can we get by replacing it with a better filter ?”

“I bet we can exploit 
that for large-scale search”

RECOMB 2018 & Cell Systems 

Bioinformatics 2018

K-mer index

RECOMB 2019 & JCB 2020 

“I bet we can make 
it even smaller”

“I bet we can make 
it scale and updatable”

Bioinformatics 2022

A fundamentally different approach 



No tree! Compressed using RRR*

E1

ACTT

E2

ACTG

TTTC

GCGT

AGCC

E3

ACTG

CTTG

TTTC

GCGT

AGCC

E4

CTTG

GCGT

Input Experiments

CQF
Color class tablek-mer Color ID

ACTG 0

ACTT 10

CTTG 1

TTTC 0

GCGT 11

AGCC 0

E1 E2 E3 E4

0 0 1 1 0
10 0 0 1 1
1 1 0 0 0

11 0 1 1 1

Mantis Index

Color aggregative methods: Mantis [Pandey et al. 2018]

*Raman, et al. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. SODA

• Build a counting quotient filter for 
each input sample (can be different 
sizes based on the number of k-mers)


• CQF: key=k-mer value=color class ID


• Combine them via multi-way merge


• Estimate a good ordering of color 
class IDs from first few million k-mers 



Mantis is faster, smaller, and accurate than SBT

Indexed 2,652 human BBB RNA-seq (gene expression) samples ~4.5TB of (Gzip compressed) data

Tool Mantis SSBT

Build time 03 hr 56 min 97 hr

Representation size. 32 GB 39.7 GB

θ threshold for SSBT queryQuery includes index loading

The final Mantis representation is ~20% smaller than the comparable SSBT representation.

Mantis can be constructed ~24x faster than a comparable SSBT* [Solomon & Kingsford 2017]

Mantis is ~6 — 109x faster than (in memory) SSBT



Where we are now

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

Petabyte

Terabyte

We can search this, but want to search this … and beyond



Some remaining challenges

We demonstrate indexing on the order 
of 103 samples, we really want to index 
on the order of 106 samples


Key observations: 

• K-mers grow at worst linearly


• Color classes increase super-
linearly

Need a fundamentally better color class encoding; exploit coherence between rows of the 
color class matrix

Color classes



Each color class is a vertex in the graph

Every pair of color classes is connected by an edge whose weight is the hamming distance between the 
color class vectors
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Consider the following color class graph



Each color class is a vertex in the graph

Every pair of color classes is connected by an edge whose weight is the hamming distance between the 
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1) There are many color classes (> 1 Billion, full graph too big)

2) They are high-dimensional (# of samples), neighbor search is hard (LSH scheme seem to work poorly)
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De Bruijn graph (dBG) over k-mers
Read 1: ….CAAAAT….

Read 2: ….CAAAAC….

CAAAA
AA
AA
T

AAAAC

CAAA AAAA

AAAT

AAAC

Use the de Bruin graph (dBG) as an efficient guide for near-neighbor search in the space of color classes!

dBG common in genomics. Nodes u, v are k-mers & are adjacent if k-1 suffix of u is the k-1 prefix of v



Each CQF key represents a k-mer → can explicitly query neighbors

Each k-mer associated with color class id  → vector of occurrences
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encounter on each edge.

The MST efficiently encodes related color classes



dataset from SBT / SSBT / 
Mantis paper Improvement 


over RRR improves

with # of samples

MST-based 

compression of bit 

vectors

The MST approach scales very well



One concern is that replacing O(1) lookup with 

MST-based decoding will make lookup slow; does it?

How does MST approach affect query time?



One concern is that replacing O(1) lookup with 

MST-based decoding will make lookup slow; does it?

Turns out a caching strategy (an LRU over popular internal nodes) 

keeps it just as fast as lookup in the RRR matrix

How does MST approach affect query time?



Where we are now

https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/

Petabyte

Terabyte

We can search this, but want to search this … and beyond



๏ We can scale to even larger datasets by compressing color class representation

๏ We demonstrate indexing on the order of 103 experiments, we really want to 
index on the order of 105 - 106

๏ We need to scale out of RAM and also support adding new experiments

Need a fundamentally better construction which can support adding new samples and 
can scale out of RAM to disk.

๏ We can take a static representation and make it updatable using 
the Bentley-Saxe construction[Bentley and Saxe (1980)]


๏ We can reduce the memory usage using minimizers.

Key Observation:

Some remaining challenges



Level
0

Level
1

Level
2

Level
3

Build
Mantis Merge

Merge

Merge

Level
0

Level
1

Level
2

Level
3

Compact

Level
0

Level
1

Level
2

Level
3

Insert

Level
0

Level
1

Level
2

Level
3

Insert
squeakr

๏ Level 0 resides in RAM

๏ L1…Ln remain on disk

๏ Levels grow in size exponentially

• Minimizers to partition the k-mer index on disk


• Helps to minimize RAM usage during merging 
and queries.

Mantis-LSM design



Mantis-LSM performance 

LSM-Mantis can index up to 40K samples on a single machine



Mantis Distributed
• We now have a distributed Mantis (publicly-hosted search service over SRA)


• Each individual machine runs Mantis-LSM (written in RUST)


• Employ minimizers to efficiently distribute samples across machines


• Indexes 100K samples from SRA (~200TB compressed data)


• 47 machines each with 32GB RAM


• Support real-time queries (< 1 sec)

https://query.bio/



Major insights from sample discovery problem

Domain specific knowledge enables to develop efficient solutions

K-mer embeddings 
appropriately capture 
sequence similarity

K-mer de Bruijn graph is 
a good proxy for the 
neighborhood graph

However, scale of the SRA is still the biggest challenge!



K-mer set representation ignores relative order

K-mer representation might not be the right proxy*. Can introduce a large number of false positives.


Need to evaluate the end-to-end accuracy of k-mer-based methods. 

*Guillaume Marcais, Dan DeBlasio, Prashant Pandey, Carl Kingsford "Locality Sensitive Hashing for the Edit Distance" ISMB 2019

x and y have the same k-mer representation but low sequence similarity

https://prashantpandey.github.io/publication/ismb19/


Employing ML/vector databases for genomic discovery

Samples from 
sequence read 

archive

ML model optimizing 
for edit distance

Embeddings 
produced by the ML 

model

Vector database 
indexing the 
embeddings

Neighborhood search 
using VecDB

A ton of publicly-available data from SRA



Major takeaways

• Sequence search over SRA promises to unlock deep biological insights


• Scalability is the biggest challenge; there’s still a long way to go to index/
search all of SRA


• Exploiting domain knowledge enables simpler, more scalable solutions


• Time to employ ML and vector databases to solve sequence search
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