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A typical genomic pipeline

DNA/RNA extraction and High-throughput Raw sequencing reads Overlapping reads are
o . . . . Complete or draft genome
fragmentation into smaller sequencing generates undergo quality assembled into contiguous
. . . . assembly ready for
pieces suitable for millions of short/long reads assessment and sequences (contigs) and

. . nstream analysi
sequencing from DNA fragments preprocessing scaffolds downstream analysis



Assembled data Is hugely lossy
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Metadata, quality metrics, FASTQ files with Trimmed & filtered Intermediate files, FASTA genome
sample information millions of reads FASTQ files graphs, overlaps assembly file

0.1-10 GB

Data Reduction: 500 GB — 1 GB (500x compression)
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Raw sequencing data contains biological diversity information

?

o
Missing Species Population Diversity
We only have assembled genomes Reference genomes reduce
for a tiny fraction of Earth's ~8.7 populations to single sequences,
million species. Most can't even be losing massive amounts of genetic
grown in labs! variation and expression data.

A lot of variability information is lost during assembly. And a lot of raw sequencing data never gets assembled.

*Mora, Camilo, et al. "How many species are there on Earth and in the ocean?." PLoS biology https://doi.org/10.1371/journal.pbio.1001127



https://doi.org/10.1371/journal.pbio.1001127

Raw sequencing data can unlock biological insights

Q. What if | find a new putative disease-related transcript, and want to see if it
appeared in other biological samples?

Q. What if | discover a new fusion event in a particular cancer subtype and want to
know if it iIs common among samples with this subtype?

Q. What if | find an unexpected bacterial contaminant in my data; which other samples
might contain this?

"What biological
insights can |
discover?"




Raw sequencing data can unlock biological insights

Q. What if | find a new putative disease-related transcript, and want to see if it
appeared in other biological samples?

Q. What if | discover a new fusion event in a particular cancer subtype and want to
know if it iIs common among samples with this subtype?

Q. What if | find an unexpected bacterial contaminant in my data; which other samples
might contain this?

"What biological
insights can |
discover?"

A. | need to perform string searches through tons of
raw sequencing data.




Sequence Read Archive (SRA) is growing rapidly
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SRA is a publicly available dataset from NIH containing raw sequencing data



Basic Local Alignment Search Tool (BLAST)



Basic Local Alignment Search Tool (BLAST)

Contrast this situation with searching assembled, curated genomes, for which we have an excellent tool; BLAST

blastn | blastp | blastx | tblastn | tblastx

Enter Query Sequence SEASTR
Enter accession number(s), gi(s), or FASTA sequence(s) & Clear Query subrange &)
TGAAAAAGGGTAACCTCAAAGCTAAAAAGCCCAAGAAGGGGAAGCCCCATTGCAGCCGCAAC From
CCTGTCCTTGTCAGAGGAATTGGCAGGTATTCCCGATC
To
. uences producing significant alignments:
Or, upload file Choose File No file chosen ?) ::I(lct: Al l\;o_Pr:: Se;qectzd:o g
Job Title L 1T Alignments o
Enter a descriptive title for your BLAST search &) Max | Total | Query | E . .
Align two or more sequences & score score cover value I Sccession
- Eukaryotic synthetic construct chromosome 18 185 371 100% 2e-43 100.00% CP034496.1
BI__AST PREDICTED: Pan paniscus 60S ribosomal protein L6-like (LOC100976413), mRNA 185 185 100% 2e-43 100.00% XM _008963989.2
PREDICTED: Pan paniscus 60S ribosomal protein L6 pseudogene (LOC100995849), misc_RNA 185 185 100% 2e-43 100.00% XR 610957.3
’\\\\ PREDICTED: Pan paniscus 60S ribosomal protein L6 (LOC100995836), mRNA 185 185 100% 2e-43 100.00% XM 003812574.3
\u\‘x PREDICTED: Pan troglodytes 60S ribosomal protein L6 pseudogene (LOC737972), misc_RNA 185 185 100% 2e-43 100.00% XR 680356.3
~\’~\ PREDICTED: Pan troglodytes ribosomal protein L6 (RPL6), transcript variant X8, mRNA 185 185 100% 2e-43 100.00% XM _024347583.1
~“~\\\ PREDICTED: Pan troglodytes ribosomal protein L6 (RPL6), transcript variant X7, mRNA 185 185 100% 2e-43 100.00% XM 024347582.1
~ Human ORFeome Gateway entry vector pPENTR223-RPL6, complete sequence 185 185 100% 2e-43 100.00% LT737273.1

PREDICTED: Gorilla gorilla gorilla ribosomal protein L6 (RPL6), transcript variant X5, mRNA 185 185 100% 2e-43 100.00% XM _019038370.1
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PREDICTED: Gorilla gorilla gorilla ribosomal protein L6 (RPL6), transcript variant X5, mRNA 185 185 100% 2e-43 100.00% XM _019038370.1

Essentially, the “Google of Genomics”

Basic local alignment search tool

SF Altschul, W Gish, W Miller, EW Myers... - Journal of molecular ..., 1990 - Elsevier

... Anew approach to rapid sequence comparison, basic local alignment search tool (BLAST),
directly approximates-alignmants.that optimize a measure of local similarity, the maximal ...

v% Save Y9 Cite | Cited by 117758 | Related articles All 41 versions
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BLAST performs substring matching (based on seed-search-align) using traditional succinct string
data structures.



Fragmented Patterns Scale Limitations
The sequence you're looking for BLAST algorithms and data
might be spread across multiple structures simply don't scale to
reads, making it impossible for BLAST handle millions of raw sequencing

to find as a contiguous match. experiments efficiently.



Reframing the prbm as vector search

—_ —— e e ———————— —

Solomon and Kingsford 2016 reframed the problem, and suggested a direction...

na}ture
biotechnology

Fast search of thousands of short-read
sequencing experiments

Brad Solomon & Carl Kingsford

Nature Biotechnology 34, 300-302 (2016) Received: 28 April 2015
doi:10.1038/nbt.3442 Accepted: 23 November 2015
Download Citation Published online: 08 Februarv 2016

Proposal:
Represent each sample from SRA as a set of tokens
Similarity of token composition — similar sequence — small edit distance

Returns “yes/no” results for individual samples — “yes” results can be searched using traditional methods



K-mers as search primitives

ATCAGACAGTACTAGACCCATTCAGACATCA

TT N
2nd 9-mer

i
3d 9-mer

e

* For a given molecule (string), a k-mer is simply a k-length sub-string

» Akin to n-grams used in NLP (except DNA/RNA have no natural “tokens”)

* ldea: Similarity of k-mer composition — similar sequence



Sample discovery problem



Sample discovery problem
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Query transcript
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Sample discovery problem

Query transcript
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Sample discovery problem

Query transcript Samples from SRA Query results
(> 70% match)
= o [GGTGT: rGGCAAj [TGTGA]
[O\ ATCGATCGATCGAATCG] g% AACTG | [ | [
p k=5) 1T—= LS ; kA - - Sample A: 71% match
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r N ( N ( ) ]
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\_ J J _ prm— _ DAE _J _J
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_ _J _J _ ) - -~ - -
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R=| | TTI6T | ... I emeeeen ) Sample C: 51% match
Sample C

Return all samples that contain at least some @ fraction of k-mers present in the query transcript



Sample discovery — Vector search

ATCAGACAGT, ’
] st C)—mer‘r T + A
3rd 9-mer

K-mer representation of Hamming distance between Distance threshold is
sequences Is employed k-mer embeddings Is employed as a proxy for
as vector embeddings. employed as a proxy for the top-k nearest neighbor

k ranges between 21-31 seqguence similarity

Underlying biological generative model claims that similar species have similar k-mer content.

Hamming distance is often not a good proxy for sequence similarity*. (More on this later in the talk.)

*Guillaume Marcais, Dan DeBlasio, Prashant Pandey, Carl Kingsford "Locality Sensitive Hashing for the Edit Distance" ISMB 2019


https://prashantpandey.github.io/publication/ismb19/

Several indexing methods for raw sequence search

Color aggregative methods K-mer aggregative methods
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® ACA,ATC,CAT

' ATA @ ® ATA,CAT,GCA

' ATC o : mmmsmmmssmmsmmees -

' CAT @ @ |

' GCA o
K-mer set
data structure Hash tables, CQF, BWT, BF trie Bloom filters
Aggregation Search tree/forests, Bloom filter
data structure Color matrices matrices
Method Mantis, SegOthello, Bifrost, SBT (variants), BIGSI, COBS,
names Metanot, BFT, VARI, RAMBO

Vibrant area with exciting work over the past several years; excellent review by Marchet et al. 2021.



K-mer aggregative methods: SBT seemenskngsors 2016

Bloom filter:

e A binary-tree of Bloom filters, where
leaves represent the k-mer set of a
single sample

* Bloom filter of parent is logical
union (= bitwise OR) of children

SRA 00005

H BN 1
: SRA 00003 SRA 00007 SRA 00004 SRA|00001 SRA|00008
e Check both children, stop
descending into tree when @ ] V y
threshold is not satisfied SESRUNCE SN Analysis | | Analysis

Y

Analysis




Several limitations in Bloom filter-based methods

= BY 9

All Bloom filter are of same . Hard to associate any
. . Bloom filters cause false .
Size — creating skewness attributes such as

In the query results positives In the results abundance, position etc.

SRA sample sizes range between few MBs to a few GBs. Results in high variance in
Bloom filter false-positive rates.



A fundamentally different approach

Our initial idea: “The Bloom Filter is limiting. What can we get by replacing it with a better filter ?”



A fundamentally different approach

Our initial idea: “The Bloom Filter is limiting. What can we get by replacing it with a better filter ?”

' A General-Purpose Counting Filter: Making Every Bit
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A fundamentally different approach

Our initial idea: “The Bloom Filter is limiting. What can we get by replacing it with a better filter ?”
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Color aggregativ

—_— e . ——— e . =

e Build a counting quotient filter for
each input sample (can be different
sizes based on the number of k-mers)

 CQF: key=k-mer value=color class |ID
 Combine them via multi-way merge

e Estimate a good ordering of color
class IDs from first few million k-mers

*Raman, et al. (2002). Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. SODA

ACTT

No tree!

ACTG

TTTC
GCGT
AGCC

Input Experiments

ACTG

CTTG
TTTC
GCGT
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k-mer

ColorID

Compressed using RRR
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Mantis Is faster, small

o e e e . ————

Indexed 2,652 human BBB RNA-seq (gene expression) samples ~4.5TB of (Gzip compressed) data

Table 1. Time and Space Measurement for Mantis and SSBT Query includes index loading Othreshold for SSBT query
Tool Mantis SSBT l ﬂ\
Mantis SSBT (0.7) |SSBT (0.8) | SSBT (0.9)
Build time 03 hr 56 min 97 hr 10 Transcripts |25 s 3min8s [2min25s | 2min7s
100 Transcripts | 28 s 14 min55s [10mMin56s| 7 min57 s
Representation size. 32GB 377 GB 1000 Transcripts | 1 min3s |2hr22min |1 hr54 min | 1 hr 20 min

Mantis can be constructed ~24x faster than a comparable SSBT* [Solomon & Kingsford 2017]

Mantis is ~6 — 109x faster than (in memory) SSBT

The final Mantis representation is ~20% smaller than the comparable SSBT representation.



VWhere we are now
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Some remaining challenges

We demonstrate indexing on the order
of 103 samples, we really want to index
on the order of 106 samples

200+

Color classes

150+

Key observations:

size in GB
o
o

 K-mers grow at worst linearly

501

e Color classes increase super-
linearly

0 2500 5000
# of samples

7500

10000

Representation

< CQF

#+ RRR

Need a fundamentally better color class encoding; exploit coherence between rows of the

color class matrix



Consider the following color class graph

Each color class is a vertex in the graph
Every pair of color classes is connected by an edge whose weight is the hamming distance between the
color class vectors

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.
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Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.



Consider the following color class graph

Each color class is a vertex in the graph
Every pair of color classes is connected by an edge whose weight is the hamming distance between the

Minimum Spanning Tree (MST)

2 3 of this graph
ﬁ

A

E a
Unfortunately:

1) There are many color classes (> 1 Billion, full graph too big)
2) They are high-dimensional (# of samples), neighbor search is hard (LSH scheme seem to work poorly)

o |o | =~ |]OC |-

o |o]|—~|O |-

N

Bookstein, Abraham, and Shmuel T. Klein. "Compression of correlated bit-vectors." Inf. Syst. 16.4 (1991): 387-400.



Read 1: ....CAAAAT....
Read 2: ....CAAAAC....

Use the de Bruin graph (dBG) as an efficient guide for near-neighbor search in the space of color classes!

dBG common in genomics. Nodes u, v are k-mers & are adjacent if k-1 suffix of u is the k-1 prefix of v



Mantls |mpI|C|tIy represents a Colored dBG

Each CQF key represents a k-mer — can explicitly query neighbors
Each k-mer associated with color class id — vector of occurrences
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Complete CCG Optimal MST
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Complete CCG Optimal MST
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CCG derived from dbG MST on our Graph
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The MST efficiently encodes related color classes




The MST efficiently encodes related color classes

Augment with all O color class to guarantee one, connected MST
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The MST efficiently encodes related color classes

Augment with all O color class to guarantee one, connected MST
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The MST efficiently encodes related color classes

Augment with all O color class to guarantee one, connected MST
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To reconstruct a vector, walk from your node to the root, flipping the parity of the positions you
encounter on each edge.



very well

200
150-
m Representation
cg * CQF
 100- & MST
C + RRR
50+
MST-based
- compression of bit
0 2500 5000 7500 10000 vectors
# of samples
MST
Dataset # samples [ RRR| [ Total Parent Delta  Boundary Sslizzi((‘ggg ))
matrix space vector vector  bit-vector
dataset from SBT/ SSBT/ 200 0.42 0.15 0.08 0.06 0.01 0.37 | ™~
RN A-se 1,000 0.14 1.03 0.37 0.6 0.06 0.2 RRR i
oo 2,000 14.2 2.35 0.71 1.5 0.14 0.17 over IMProves
P 5000 | 59.89 721 1.72 5.1 0.39 012 With # of samples
10,000 190.89 16.28 3.37 12.06 0.86 0.085 "
Blood, Brain,
Breast (BBB) 2586 15.8 2.66 0.63 1.88 0.16 0.17 »




How does MST approach affect query time?
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One concern is that replacing O(1) lookup with
MST-based decoding will make lookup slow; does it?



How does M1 approach affect query time?
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One concern is that replacing O(1) lookup with
MST-based decoding will make lookup slow; does it?

Turns out a caching strategy (an LRU over popular internal nodes)
keeps it just as fast as lookup in the RRR matrix

Mantis with MST

10 Transcripts
100 Transcripts
1000 Transcripts

index load + query
1 min 10 sec
1 min 17 sec
2 min 29 sec

query
0.3 sec
8 sec

79 sec

space

118GB
119GB

120GB

Mantis
index load + query query space
32 min H9 sec 0.5 sec  290GB
34 min 33 sec 11 sec 290GB
46 min 4 sec 80 sec 290GB




VWhere we are now
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SRA growth

} — Open Access Bytes

1016-
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0 Petabyte
© . .
§ 107 We can search this, but want o search this ... and beyond
o
-
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v
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https://www.ncbi.nim.nih.gov/sra/docs/sragrowth/
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» \We can scale to even larger datasets by compressing color class representation

o \We demonstrate indexing on the order of 103 experiments, we really want to
index on the order of 10> - 106

» \We need to scale out of RAM and also support adding new experiments

Key Observation:

o We can take a static representation and make it updatable using
the Bentley-Saxe constructionlBentley and Saxe (1980)]

» We can reduce the memory usage using minimizers.

Need a fundamentally better construction which can support adding new samples and
can scale out of RAM to disk.



» Level O resides in RAM * Minimizers to partition the k-mer index on disk

o L1...Ln remain on disk * Helps to minimize RAM usage during merging

o , and queries.
o Levels grow in size exponentially



Mantis-LSM performance

(a) (b)
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Fig. 4. Performance of the Dynamic Mantis update process. The spikes in time (Fig. a) and memory (Fig. b) happen when the cascading merge happens with deeper and thus
larger indexes. Cumulative Time (Fig. c) shows the total time required to addd all the samples up to thae current one. and index size (Fig. d) is total size of the index

LSM-Mantis can index up to 40K samples on a single machine



Mantis Distribute |

 We now have a distributed Mantis (publicly-hosted search service over SRA)

e Each individual machine runs Mantis-LSM (written in RUST)

 Employ minimizers to efficiently distribute samples across machines

* |Indexes 100K samples from SRA (~200TB compressed data)

« 47 machines each with 32GB RAM https://query.bio/

e Support real-time queries (< 1 sec)




Major insights from sample discovery problem

Domain specific knowledge enables to develop efficient solutions

- ATCAGACAGT.

]st ‘?—mer‘r *
2nd 9-mer
3rd 9-mer
K-mer embeddings K-mer de Bruijn graph is
appropriately capture a good proxy for the
sequence similarity neighborhood graph

However, scale of the SRA is still the biggest challenge!



K-mer set representation ignores relative order

AAAA, AAAC, AACA, AACC, ACAA, ACAC,

x = CCCCACCAACACAAAACCC —— ACCA,ACCC,CAAA,CAAC,CACA, CACC,
CCAA, CCAC, CCCA, CCCC

AAAA, AAAC, AACA, AACC, ACAA, ACAC,

y = AAAACACAACCCCACCAAA — ACCA,ACCC, CAAA, CAAC, CACA, CACC,
CCAA, CCAC, CCCA, CCCC

x and y have the same k-mer representation but low sequence similarity

K-mer representation might not be the right proxy*. Can introduce a large number of false positives.

Need to evaluate the end-to-end accuracy of k-mer-based methods.

*Guillaume Marcais, Dan DeBlasio, Prashant Pandey, Carl Kingsford "Locality Sensitive Hashing for the Edit Distance" ISMB 2019


https://prashantpandey.github.io/publication/ismb19/

Employing ML/vector databases for genomic discovery

— 11100 &
— 11O
§§ — N\ionoff — —
= Ol0lII
Samples from ML model optimizing Embeddings Vector database Neighborhood search
sequence read for edit distance produced by the ML indexing the using VecDB
archive model embeddings

A ton of publicly-available data from SRA



Major takeaways = -

ifi

e Sequence search over SRA promises to unlock deep biological insights

o Scalability is the biggest challenge; there’s still a long way to go to index/
search all of SRA

* Exploiting domain knowledge enables simpler, more scalable solutions

 Time to employ ML and vector databases to solve sequence search



Fatemeh Almodaresi Rob Patro
(OICR) (UMD)

Funding:

National
Science
Foundation

Mike Ferdman Rob Johnson Michael Bender
\ U.S. DEPARTMENT OF

y \ EN ER GY (Stony Brook) (VMware Research) (Stony Brook)

https://prashantpandey.github.io/






