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Abstract

Traditional filter data structures, such as Bloom filters, do
not offer necessary features that modern high-performance
data analytics applications need in order to efficiently per-
form complex data analysis tasks. For example, MetaHip-
Mer, a de novo metagenome assembler, can use filters to
weed out singleton k-mers and reduce memory usage by
30%-70%. However, the filter needs the ability to associate
values with k-mers in order to perform the analysis in a
single communication pass. Bloom filters do not support
value associations and cause the application to perform an
extra communication pass, thereby increasing the run time.
Therefore, MetaHipMer faces a trade off between memory
and speed due to the limited capabilities of traditional filters.

In this paper, we overcome the memory and speed
trade off in MetaHipMer by integrating a GPU-based
feature-rich filter, the Two-Choice filter (TCF), in the
MetaHipMer pipeline. The TCF uses key-value association
to approximately store k-mers with extensions. This allows
MetaHipMer to perform k-mer analysis on the GPUs in a
single communication pass. Our empirical analysis shows a
50% reduction in memory usage in k-mer analysis on each
node in MetaHipMer without any effect on the overall run
time or assembly quality. The memory reduction in turn
results in a 43% reduction in the number of nodes required
to assemble datasets and enables MetaHipMer to scale to
much larger datasets.

1 Introduction

Many modern-day high performance data analytics
(HPDA) applications are designed to scale to thousands
of nodes and process petabyte scale data sets, stressing the
memory and computing capacity of the largest machines
available today. These systems often use GPUs to achive
massive parallelism and scale up computations. GPUs
offer both an opportunity for performance improvement
and a challenge for data analytics due to the limited GPU
memory that is available compared to CPUs.
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An example of HPDA application is metagenomic
assembly in computational biology. Metagenome assembly
is the process of transforming a set of short, overlapping,
and potentially erroneous DNA segments from environ-
mental samples into the accurate representation of the
underlying microbiomes’s genomes. MetaHipMer [14, 15] is
an exa-scale de novo metagenome assembler that leverages
GPUs to speed up raw data processing and is designed
to scale out to thousands of nodes to handle petabyte scale
data. However, raw data processing is the most-memory
intensive phase in the MetaHipMer pipeline and using
the GPUs results in an overall increase in the number of
nodes required because of the limited memory available
on individual GPU nodes.

Filters, such as Bloom [5], quotient [22, 10, 11, 3, 25, 27]
and cuckoo filters [12, 6], maintain an approximate rep-
resentation of a set or a multiset1. The approximate
representation saves space by allowing queries to occa-
sionally return a false-positive. For a given false-positive
rate ε: a membership query to a filter for set S returns
present for any x∈S, and returns absent with probability
at least 1−ε for any x /∈S. A filter for a set of size n uses
space that depends on ε and n but is much smaller than
explicitly storing all items of S.

HPDA applications can greatly benefit from using
filters on the GPU. For example, k-mer analysis is the very
first data processing step in MetaHipMer and numerous
other pipelines in computational biology [4, 21]. In k-mer
analysis, we start by parsing the raw sequencing data
into length-k subsequences (called k-mers) and counting
the occurrences of each k-mer using a GPU-based hash
table. K -mer counting is used to weed out erroneous
data (singleton k-mers) caused by sequencing errors,
estimate sequencing depth, prepare sequencing data for
assembly, and many other downstream tasks [21]. A filter
is often used in k-mer counting to separate out singleton
k-mers [18, 20] before inserting them in the hash table.

Weeding out singletons saves a considerable amount

1Counting filters maintain count estimates of items in a multiset.
A counting filter may have an error rate δ. Queries return true counts

with probability at least 1−δ. Whenever a query returns an incorrect
count, it must always be greater than the true count.
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of space in the hash table during counting as singleton
k-mers form a majority of unique k-mers. Each k-mer is
first queried in the filter and if it returns true then only the
k-mer is counted otherwise the k-mer is simply inserted
in the filter and not counted.

However, modern data analysis pipelines have evolved
and they require additional features in filters in order to be
truly useful. Specifically, filters are often required to support
associating small values with items, counting the frequency
of fingerprints, deletions, and efficient mergeability.

For example, in k-mer analysis in MetaHipMer, along
with the k-mers, the prefix and suffix sequence extensions
of the k-mers are recorded to traverse the k-mer graph in
later phases [15]. These extensions are also preserved with
the first instance of the k-mer in the filter. The k-mer
extensions are critical for allowing the filter construction
to occur in the same phase as k-mer hash table insertion.
Without it, the user must either pass over the data twice
or lose the extensions of the k-mers stored in the table.
While these extensions are not necessary for singletons,
they are critical for k-mers inserted into the hash table as
they are used in later phases of the pipeline.

Apart from associating small values filters are also
often required to support counting and deletions in order to
remove unwanted items in the later phases of the pipeline
and avoid rebuilding them from scratch. For example,
filters are used to represent an approximate representation
of the de Bruijn graph by storing k-mers and their count
estimates [24, 23].

Traditional filters do not support the features required
by modern HPDA applications. For example, Bloom
filters [5] do not support associating small values with keys,
counting, or efficient mergeability. Furthermore, existing
work on GPU filters is limited in terms of performance
and features [8, 16, 13].

Due to the lack of feature-rich filters, modern GPU-
based applications face a trade off between memory and
speed. The applications often work around the limitations
of filters which in turn result in sub-optimal use of resources
and further hinder their scalability to larger datasets. For
example, MetaHipMer would require an additional commu-
nication phase while using the Bloom filter to save memory
during the k-mer analysis phase as Bloom filters do not sup-
port associating extensions with k-mers. This would result
in lower memory usage, but at the cost of increased running
time, thus negating the computational benefits of the GPUs.

The lack of high-performance and feature-rich
GPU-based filters can constrain how efficiently exascale
applications utilize GPU resources. These issues occur
in single-node applications, but they are exacerbated in
distributed environments by the additional movement of
data, as an additional pass can move terabytes of data.

Recently, there have been major advancements in

building filters that can support the necessary features
required by modern HPDA applications. For example, the
cuckoo filter [12] supports deletions at no additional space
cost compared to the Bloom filter. The counting quotient
filter [25] supports counting, associating values, deletions,
and mergeability at no additional space cost.

There are also GPU implementations of these filters
which can be directly integrated in the GPU-accelerated
modern data analytics applications [19]. The Two-choice
filter (TCF) [19] is a recently introduced GPU filter that
offers massive parallelism and high performance on GPUs
and important features such as value association and
deletion required by HPDA applications. The ability to
associate small values with keys is an especially important
property that can be used to reduce the memory usage
in k-mer analysis pipelines. This property has also been
shown to be useful in database applications to speed up
I/O in a log-structure merge tree [9].

Our contribution. In this paper, we show how to over-
come the inherent trade off between memory and speed in a
GPU-accelerated data analysis application using advanced
GPU filters. We analyze the raw data processing pipeline in
MetaHipMer and understand the various trade offs in terms
of memory usage of the hash tables and communication
passes. We then integrate the two-choice filter (TCF) [19], a
GPU-enabled feature-rich filter, into MetaHipMer to reduce
the memory usage of the most memory intensive phase with-
out introducing any slow down. Specifically, we show that
when using the TCF, MetaHipMer’s memory usage goes
down by around 2× during the k-mer analysis phase, which
was the main bottleneck in terms of memory usage among
all phases. We further show that using the TCF in MetaHip-
Mer has no slowdown in the overall run time of the appli-
cation and has no impact on the final quality of the results.
The TCF enables MetaHipMer to tackle larger datasets
that were not possible to assemble before due the lack of
available memory resources, even on large supercomputers.

Our empirical evaluation (Section 6) shows that using
the TCF reduces the memory usage of the k-mer analysis
phase by up to 5.4×. This in turn results in the reduction
of the number of nodes required to perform an assembly
by 43% (from 64 nodes to 36 nodes for WA dataset) as
k-mer analysis is the most memory intensive phase in the
MetaHipMer pipeline.

2 Advanced filters

In this section, we describe the major GPU filter types
and discuss whether we can use them in modern data
analytics applications based on the features they support.
We will consider dynamic filters as they do not require
the set of items to be known in advance which is often the
case in data analytics applications. The dynamic filters are
broadly classified into four major types: Bloom filters [5],
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Filter Insert Query Delete Values Concurrency

GQF [19] ✓ ✓ ✓ ✓
TCF [19] ✓ ✓ ✓ ✓ ✓
BF [17] ✓ ✓ ✓
CF [12] ✓ ✓ ✓ ✓

Table 1: Various filters and supported features. The GPU
quotient filter (GQF) is the only filter that supports a range
of operations. However, it does not offer massive parallelism
on GPUs. The two choice filter (TCF) can support value
associations and massive parallelism but does not support
counting and efficient mergeability. The cuckoo filter (CF)
can also offer value association but does not achieve massive
parallelism on GPUs due to random hoping during inserts.
The Bloom filters (BF) does not offer features but achieves
massive parallelism due to bitwise operations and simplicity.

quotient filters [3, 26, 10, 22, 11], cuckoo filters [12, 6], and
two-choice filters [27].

We compiled the list of features needed by MetaHipMer
and show the presence and absence of those features in
the four major filter types in Table 1.

Bloom filters do not support deletions and associating
small values with items that many data analytics applica-
tions require. However, Bloom filters are easily parallelizable
and can exploit massive parallelism on GPUs. Cuckoo hash-
ing involves multiple random writes during inserts which
make it challenging to achieve high speed operations in
a GPU implementation. The quotient filter [25, 19] sup-
ports deletion and associating small values with items by
explicitly storing small values with the remainders in the
table [28]. However, due to Robin Hood hashing, the opera-
tions in a quotient filter require large move operations which
hurts concurrency on GPUs. It is hard for quotient filters to
exploit massive parallelism on GPUs, especially for point op-
erations. They can be parallelized for bulk operations [13].

Based on Table 1, we see that only the two
choice filter (TCF) supports the basic operations (in-
serts/deletes/queries), features like associating values with
items, and high GPU concurrency. The TCF [19] is the
most appropriate filter among all the dynamic filters to be
integrated in the data analytics applications like MetaHip-
Mer and reduce their memory consumption on GPUs.

3 Two Choice Filter

In this section, we give the implementation details of the
two choice filter [19] (TCF) on the GPU. In the TCF, the
table is organized into blocks. Each block can store B f-bit
tags, where a tag is the lower order f-bits of a fingerprint.
The blocks are sized to fit inside a GPU cache line.
The TCF uses the power-of-two-choice (POTC) hashing
scheme [27] to perform operations. In a POTC scheme, ev-
ery item is hashed to two blocks via a pair of unique hashes.
The secondary hash is computed using the XOR operation

between the primary bucket and the stored tag in order to
delete items without introducing a false negative [12, 27].
For inserts, the fill of each block is queried, and the item is
inserted into the less full block. Queries return true if the
queried item is found in either block. POTC hashing helps
to reduce the load variance across blocks, reducing the size
of the largest block to O(loglogn), where n is the number
of items, as shown by Azar et al. [1]. This allows the table
to achieve a high load factor without any combination of
two blocks where both the blocks are full.

To avoid insertion failures (no empty slot in both
blocks) before reaching a 90% load factor the filter comes
with a small backing table. This table is sized to be 1/100
of the total size of the filter. Since <<1% items fail to be
inserted, the extra cost required to insert and query from
this table is negligible, and it has no measured effect on
the speed of inserts or positive queries. However, it does
have an effect on the performance of negative queries, as
at least one extra block will have to be searched. The TCF
can achieve 90% load factor using the backing table.

The backing table is based on linear probing. In
linear hashing, we first use a hash function to determine
a location for the item. If that location is occupied then
we linearly step forward until we find an empty location
or until a cutoff depth has been reached.

The false-positive rate for the TCF is given by 2B
2f

,
where B is the size of the blocks and f is the tag size. A
larger tag size decreases the false-positive rate but increases
the space. In CUDA, the minimum size for an atomicCAS
(Compare-and-Swap) transaction is 2 bytes. With keys
set to the minimum CAS size and a block size of 16, the
error rate is .04%. Smaller keys are also permissible as long
as the total size of the key and value fit within a CUDA
atomic CAS operations (2,4, or 8 bytes).

3.1 GPU Implementation The original TCF imple-
mentation [19] uses cooperative groups to collectively scan
and insert tags into buckets. This is efficient as the threads
in a warp share a memory pipeline, so collating them
to work on the same operation reduces both warp and
memory contention in the streaming multiprocessors (SM).
This also allows for relatively large buckets to be used,
which helps in achieving high load factors by reducing the
variance across the buckets in the table.

Using cooperative groups is currently not possible in
MetaHipMer, as the GPU data structures already present
assign one GPU thread per k-mer. In order to account for
this, we make some small modifications to the filter to allow
it to run at maximum throughput. Using the bucket size of
16 for the primary table, we found that the computational
cost of 1 thread scanning 16 tags per bucket dominated
performance. By reducing the bucket size to 8, we were
able to reclaim this lost performance and double the
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throughput of the filter. Reducing the bucket size increases
the variance across bucket and causes more items to be
sent to the backing table. We account for this by increasing
the size of the backing table to be 10% of the total size of
the filter rather than 1%. The final result of these changes
was a per-thread GPU filter with 800 million inserts and
2.4 billion queries per second on an NVIDIA V100.

4 MetaHipMer

Metagenome assembly involves reconstructing long contigu-
ous sequences (contigs) of genetic material from short input
reads. These reads are strings of bases (the DNA alphabet
A,C,G,T) of length 150 to 250 that are produced by gene
sequencing machines. For metagenomes, these reads are ex-
tracted from environmental samples (e.g. gut bacteria, or a
soil sample) that contain the genes of potentially thousands
of microbes, existing at varying abundances. The reads
are error prone (typically about 0.24% error per base) and
sequencing is done multiple times to ensure every region of
genetic material is covered with some error free sequences.

In the approach used by MetaHipMer, the reads are
first divided into overlapping substrings of fixed length k,
called k-mers, which are then used to form a de Bruijn
graph [7]. In a de Bruijn graph, the vertices are k-mers
and edges connect any two k-mers that have an overlap
of k−1 bases. These vertices are stored in a hash table
that is distributed across all the compute processes. The
size of the hash table is dependent on the number of
unique k-mers. Traversal of the de Bruijn graph enables
the construction of the contigs (longer sequences). This
approach is more efficient than an all-to-all alignment of
the reads, which would be prohibitive for the size of typical
metagenome datasets (up to billions of reads).

Forward and backward extensions of the k-mer and
the counts of those extensions are also maintained in the
hash table along with the k-mer. Information regarding
the extensions and their counts is critical to identifying
correct paths in the de Bruijn graph and requires 28 to
52 bytes (depending on k) to store each k-mer.

To ensure accurate contigs, the k-mers that occur only
once (singletons) are treated as errors and dropped. In a
typical set of metagenome reads, 70 to 80% of unique k-mers
are singletons, but they still need to be stored and counted
in the distributed hash table. In the default MetaHipMer
implementation, storing the unique k-mers is the most mem-
ory intensive part of the computation and can be roughly an
order of magnitude larger than the input data. The space
required to store the k-mers can be much larger than the
size of the original raw dataset (up to 10× larger) as k-mers
contain a lot of redundant information due to their overlaps.

Figure 1 shows different parts of the k-mer analysis
phase in MetaHipMer. In the standard pipeline, all k-mers
are counted in the hash table and then a separate phase

Dataset Percentage singleton k-mers

k=21 k=33 k=55 k=77 k=99

WA 66 73 76 78 78
Rhizo 67 75 80 83 85

Tymeflies 63 62 67 69 71

Table 2: Distribution of singleton k-mers in metagenomic
datasets with different values of k.

is required to purge all the singleton k-mers. Filters help
avoid adding singletons in the hash table and therefore a
separate phase is not required to purge singletons. However,
in practice some sinegletons can still pass through the filter
due to false positives which are removed in MetaHipMer
in a separate compress and off load to CPU phase.

The distributed hash table in MetaHipMer is imple-
mented as a collection of local hash tables, one per process,
with communication happening via UPC++ remote
procedure calls (RPCs). In the hash table insertion phase,
the k-mers are hashed to a remote process, aggregated,
dispatched over the network, and inserted in bulk into
the local hash tables, which are running on GPUs. This
hashing helps achieve good load balance across processes.
A special minimizer-based scheme is used to reduce
the communication volume [21]. Using GPUs boosts
performance, but further constrains memory (e.g. the
Summit supercomputer [30] has an aggregate of 96GB
GPU memory and 512GB CPU memory per node).

4.1 k-mer distribution Table 2 shows the distribution
of singleton k-mers in three different metagenomic datasets.
Singleton k-mers form a majority fraction of the total
number of distinct k-mers. The distribution often depends
on the sequencing depth and the size of k. A larger value
k results in larger fraction of singleton k-mers. This is due
to the higher probability of seeing an erroneous base in
the k-mer given the higher value of k. These erroneous
bases result in singleton k-mers.

Weeding out singleton k-mers before inserting them
in the hash table to count is critical in any k-mer analysis
phase to reduce the memory usage of the counting phase.
These singleton k-mers can also be pruned from the hash
table after the counting phase. However, that results in
high peak memory usage and a much slower running time.

Using a space-efficient filter to weed out singleton
k-mers helps to reduce the memory pressure on the
counting hash table, thereby reducing the peak memory
usage and increased run time. See Figure 1.

5 TCF Integration in MetaHipMer

We integrated the TCF into MetaHipMer [14, 15] and
achieved a reduction of about 2× in the peak memory usage
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Figure 1: The k-mer analysis pipeline in MetaHipMer. A filter can help weed out singleton k-mers from being inserted
into the hash table.

of the k-mer counting phase which is the most memory
intensive phase in the MetaHipMer pipeline. MetaHipMer
is written in UPC++ [2], and is the only metagenome
assembler that scales to thousands of distributed memory
nodes and tens of terabytes of input data.

5.1 GPU-based TCF in MetaHipMer Most of the
memory required to store unique k-mers in the hash table
is wasted as the singletons are not needed in the later
phases of the assembly. We can use a filter to keep track
of the singletons, only storing k-mers in the hash table
that appear more than once. This reduces the memory
considerably, since the storage cost per k-mer and the
count of its extensions is 28 to 52 bytes (depending on the
value of k), whereas a filter only requires ≈1 byte per item
plus 1 byte to store an encoding of the extensions.

When using the filter to track the singletons, the first
instance of each k-mer is inserted in the filter and only
upon seeing subsequent instances of the k-mer is it inserted
into the hash table. However, recall that we also need
to record both extensions of each instance of the k-mer.
Therefore, we need a filter where we can also record the
extensions of the first instance of the k-mer. The TCF

supports associating a small value with each item unlike
other filters which can only store items.

This small value is critical for allowing the filter
construction to occur in the same phase as k-mer hash table
insertion. Without it, you must either pass over the data
twice or lose the extensions of the k-mers stored in the table.
While these extensions are not necessary for singletons, they
are critical for k-mers inserted into the hash table.

Each k-mer is parsed, hashed, and communicated
to the process that owns the corresponding hash table,
where it is checked to see if the k-mer exists. If it does, the
existing counts for the relevant extensions are increased.
If it is not in the hash table, then we query for the k-mer
in the TCF. If it is found then we insert the k-mer in the
hash table along with the extensions found in the TCF. If
it is not in the TCF, then we insert the k-mer along with
its two extensions in the TCF.

This implementation adds one call to the TCF for
each unique k-mer, and an additional call to the hash table
for each non-unique k-mer. With the typical frequency of
a non-unique k-mer being at least 10, this translates to a
relatively small number of extra operations. See Figure 2.

Insert if not exists. When adding TCFs to MetaHipMer,
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Figure 2: TCF integration in the k-mer counting phase
in MetaHipMer.

we modify the internal point functions for inserts and
queries to better support MetaHipMer’s use case. Given
the use case in MetaHipMer, we do not need to count the
k-mers as each k-mer will only be stored once with its
extensions and queried thereafter. That means every time
a new k-mer arrives we have to first check if that k-mer
is already present in the TCF and insert it only if it does
not exist. This requires first invoking a query and then
performing an insert if necessary.

MetaHipMer does not require counting, but does reveal
an important usage pattern of a lookup followed by an insert.
To avoid multiple calls for every k-mer, we expose a grouped
function, insert if not exists, that retrieves an element x
from the table, returning the stored extensions if found or
encoding and storing the extensions if this is the first time
the k-mer is seen. This new API call first looks to find the k-
mer in the TCF by probing the remainders stored in the run
corresponding to the k-mer. However, if it does not find the
expected remainder in the run then it performs an insert op-
eration by creating space for the new remainder. This avoids
the redundant work needed to identify the run correspond-
ing to the k-mer in the TCF and the cache misses that would
have happened with separate query and insert function calls.

Deleting items from the TCF. As shown in Figure 2,
you can stage the TCF after the hash table, so that only
k-mers that have been seen less than two times are queried
in the TCF. In this scenario, a non-singleton k-mer will
never be queried in the TCF more than twice. Therefore,
the k-mer can be safely deleted from the filter once it is
queried twice as it is now present in the hash table and will
never be queried in the filter again.To delete an item in the
filter, we replace it with a tombstone which can then be
overwritten by a new insertion. This saves space in the filter
as we do not have to store non-singleton k-mers in the TCF.

Storing k-mer extensions. k-mer extensions are encoded
using 3 bits corresponding to one of the five possible
extensions:{A, C, T, G, Low Confidence}. Each k-mer has
both a forward and backward extension that are packed

together into a 6-bit value to be stored with the remainder.
Therefore, each k-mer has a corresponding 6-bit value
stored along with a 10-bit tag in the TCF.

The TCF is a single-GPU data structure, which fits
well within the MetaHipMer architecture, where each
process is written as though it has exclusive access to a
single GPU, and inter-process communication happens
through UPC++ operations. As described earlier, all
processes share all available GPUs through the Nvidia
MPS, and hence MetaHipMer fully exploits all GPUs on
all nodes in a distributed system.

5.2 Choosing the right filter for MetaHipMer
In Section 2, we discuss the major filter designs. For the
GPU case, the TCF supports all the necessary features
required by MetaHipMer.

Apart from the TCF, GPU quotient filters (GQF) are
also an adequate option for inclusion in MetaHipMer. We
include the results of integrating the GQF in Section 6.4.
However, the performance of quotient filters is only
guaranteed up to load factors of 95%. Due to the variance
in the number of k-mers processed by nodes during k-mer
analysis, the maximum load factor in the filter is not
bounded, so the quotient filter often stalls due to higher
load factors, thereby slowing down the entire system.

Vector Quotient Filters or other CPU filters with value
association and high performance at high load factors
could be suitable. However, as discussed in Section 6.5, the
effect of memory savings on the pipeline is less impact full
on the CPUs due to their increased RAM.

6 Evaluation

In this section, we evaluate the performance of MetaHip-
Mer with and without the GPU-based two choice filter
(TCF) [19]. Our goal is to understand the impact of the
TCF integration on the performance of MetaHipMer. We
first perform a series of microbenchmarks to test different
TCF configurations and determine the best configuration.
We then use that configuration to evaluate MetaHipMer’s
performance for run time, peak memory usage, number of
nodes required to finish an assembly, and assembly quality
for three large metagenomic datasets.

We address the following questions about the
MetaHipMer performance:

1. What is the impact of the TCF on peak memory usage?
2. What is the impact of the TCF on run time?
3. What is the impact of the TCF on assembly quality?

We assemble three different datasets during the
evaluation: the WA dataset, which is a collection of marine
microbial communities from the Western Arctic Ocean and
consists of 813GB of 2.4 billion reads of length 150 [14, 15];
the Rhizo dataset, which is the rhizosphere of three biofuel
crops and consists of 129GB of 393 million reads of length
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150 [29]; and Tymeflies, a sample of freshwater microbial
communities from Lake Mendota composed of 1,000GB
of 3 billion reads of length 150.

We run all microbenchmarks on a 40 GB subsection
of the WA dataset, which was used to profile and select
the best filter configuration for the assemblies.

Machine specification. Our microbenchmarks and
large-scale experiments were run Summit’s [30] GPU nodes.
Each summit node consists of 2 IBM Power9 nodes with a
total of 42 available cores and 512GB DDR4 memory, and
6 NVIDIA Volta V100s, each with 16GB HBM2 memory.
MetaHipMer runs with one process per core, and all of the
processes share all 6 GPUs.

Configuring nodes in MetaHipMer. For the WA
dataset, we experimented to find the minimum number of
nodes needed to assemble the dataset without loss of quality.
The quality of the final assembly drops when the hash table
reaches the maximum capacity during the k-mer analysis
phase and starts failing to insert new k-mers. The point just
before k-mers start to be dropped represents the minimum
memory required for the k-mer analysis stage, since that is
the most memory intensive of all the stages in the default
implementation of MetaHipMer. The larger WA dataset
required 64 nodes without the TCF and 37 nodes with the
TCF and 36 nodes when items were deleted from the TCF.
When using the TCF, the k-mer analysis phase is not the
most memory intensive phase. Instead, the assembler is now
memory-bound by the local assembly phase and requires at
least 56% of the nodes needed when the TCF is not used.

MetaHipMer setup. The default setup for MetaHipMer
is hereafter referred to as NO TCF. This is the current
state-of-the-art for GPU k-mer analysis. It does not use
filters to weed out singleton k-mers. The Bloom filter (BF)
was used in an earlier CPU version of MetaHipMer, however,
the BF was removed in subsequent versions as it resulted in
an overall slowdown. The BF does not support associating
small values (prefix-suffix extension in MetaHipMer’s case).
Without value association the extensions associated with the
first occurrence of the k-mer will be lost, resulting in poor
assembly quality. To avoid this, MetaHipMer ran two com-
munication passes, one to identify singletons and another to
count true k-mers. This resulted in more than 2× slowdown.

Host-Device communication is automatically handled
by MetaHipMer, as k-mers are batched into compressed
variants called supermers [21]. These supermers allow
for efficient communication of k-mers across the network,
and one kernel call is applied per supermer to unpack and
insert the stored k-mers into the device hash table. The
block size and thread size are determined by the size of
an incoming supermer, and are not configurable. All GPU
operations in MetaHipMer are thread-independent, so we
use cooperative groups of size 1.

6.1 Performance microbenchmarks The impact
of the TCF on run time can be seen in Table 3. Using
the TCF in MetaHipMer does not increase the GPU
computation time used to insert k-mers into the hash table,
but lowers the GPU computation time for large datasets,
as it lowers the fill ratio of the hash table which leads to
better performance. The microbenchmarks were chosen to
run on 8 nodes. With less than 8 nodes, the limited space
affects assembly quality even with filters enabled, and the
assembler can crash in local assembly phase due to the
low memory available. We include a reference assembly
of 8 nodes without the filters enabled, but this assembly
achieves poor assembly quality due to memory constraints.

6.1.1 TCF sizing comparison A minimum of 6 bits
required to store the extensions in the filter. We can
configure the TCF to maintain either 2 byte or 4 byte
containers composed of a tag and a value. Therefore, there
are two options for the TCF storage configuration: 10
bits for the tag with tag-value pairs packed into two bytes;
or 26 bit tags with tag-value pairs packed into four bytes.
The two configurations offer a different trade off in terms
of space usage and false-positive rate. With larger tags
the false positive rate goes down but the space usage is
higher. Even with 10-bit tags and 8 tags in each block, the
false-positive rate is 1.5% which is fairly small for k-mer
analysis phase. As table 3 shows, we did not find there to
be a substantial difference in run time, hash table load, or
final assembly quality between using the two byte or four
byte TCF configuration. As the two byte filter has half
the space usage, we use that as the default configuration.

6.1.2 Order swap microbenchmark There are two
places where a filter can be inserted into the k-mer analysis
pipeline, and the performance of these placements is based
on the relative number of singletons in the dataset. The
first option is to pass all k-mers through the filter: every
k-mer is queried in the filter first, with its extensions stored
if the k-mer has not been seen before. Successful filter
queries return the set of stored extensions, and if the k-mer
has not been stored in the dataset, then both it and the
stored extensions are placed in the hash table. Otherwise,
only the new extensions are placed inside the hash table.
This setup has the advantage that novel k-mers are stored
in the filter, and do not have to query the hash table.
The disadvantage of this design is that every k-mer passes
through the filter, which can make the filter a bottleneck
for performance. In addition, deleting items is not possible
in this scheme, as items that should be stored in the hash
table must pass through the filter.

The other insertion place is after an initial hash table
update. If the item is found in the hash table, the k-mer ex-
tensions are updated without ever touching the filter. Novel
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Dataset Method Nodes TCF TCF HT HT HT effective GPU insert k-mer analysis Assembly Size
mem load mem load size time time (quality)

WA 0

No TCF 8 0 0.0 958.48 0.96 920.14 3.98 108.73 1291371078
TCF 2 Byte 8 82.16 0.52 750.99 0.32 240.32 6.05 111.81 1739419860

TCF 2 Byte Delete 8 82.23 0.38 750.99 0.32 240.32 6.72 111.82 1739052630
TCF 2 Byte Reversed 8 92.34 0.52 750.99 0.32 240.32 3.61 112.59 1739101182

TCF 4 Byte 8 164.44 0.52 750.99 0.31 232.81 5.65 109.05 1740182469
TCF 4 Byte Delete 8 164.58 0.39 750.99 0.32 240.32 6.12 111.35 1740023061

Table 3: TCF and hash table memory usage and running time during the MetaHipMer microbenchmark. Effective
HT size is the hash table size times the load factor, and is a measure of the memory being used by the table. Memory
is in MB per-process and time is in seconds.

k-mers are sent to the filter as a secondary query, and if the
k-mer is found in the filter both sets of extensions are passed
back to the hash table to be inserted. The advantage of this
design is that every unique k-mer interacts with the TCF
at most twice. Depending on the ratio of unique k-mers
in the dataset, this can vastly reduce the number of mem-
ory operations required to process the dataset, although it
comes at the expense that every singleton must first query
the hash table, which can cause performance degradation
if the dataset is mostly composed of unique k-mers.

Table 3 shows the two schemes, with the filter before
the hash table marked as ”TCF Reversed”. The two
schemes show no difference in load factor, memory saved,
or assembly quality. The reversed version is faster because
we have replaced all queries to the hash table with queries
to the filter, which has faster accesses than the hash table.
However, we cannot delete k-mers from the filter which
results in sub-optimal space usage. Therefore, we use the
filter after the hash table as the default configuration.

6.1.3 Delete microbenchmark The final design con-
sideration of using the TCF is whether or not to delete
items once they are found in the filter and are inserted in
the hash table. Given the default configuration above, only
unique k-mers are sent to the filter, so we can delete the
stored tag of a non-unique k-mer without affecting the inser-
tion of any future copies. This can theoretically save space
and reduce the number of erroneous extensions passed to
the hash table, as a false positive can only occur before two
copies of the correct k-mer pass through the filter. However,
these gains come at the cost of reduced performance, as the
filters must perform extra work on insertions to account for
the tombstone keys used to delete items.

Table 3 shows that deleting k-mers from the filter
once they are seen twice and inserted into the hash table
saves roughly 20% of the filter memory. However, it does
not save memory in the hash table, as only non-singleton
k-mers in the filter can be removed by deletion. While
this does not save overall memory as the filters are sized
statically in MetaHipMer, we can size the filters more
aggressively with deletions.
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Figure 3: Aggregate Memory usage of the TCF and hash
table in MHM for WA, Rhizo, and TYMEflies datasets.

6.2 Incremental assembly benchmark The incre-
mental benchmark holds the number of nodes constant,
and increases the number of reads assembled by passing
in successively more lanes from the Western Artic dataset.
Each lane contains roughly 40GB of raw reads and is pulled
from a subset of 5 space-time samples in the Western Artic.
These samples may be skewed over the local ecosystem
but are all pulled from the same underlying distribution.
With 32 nodes, we can assemble ∼325GB of data without
the TCF before the limited space begins to affect assembly
quality. With the TCF, we can assemble over 670GB before
the assembly quality begins to drop. Figure fig. 5a shows
the load factor of the filter and hash table as we increase
the amount of data being processed, with assembly quality
suffering once the load of the hash table exceeds ∼90%.

6.3 Performance in MetaHipMer MetaHipMer is
designed to allocate as much GPU memory as possible for
the hash table to reduce the overhead due to high load fac-
tors. Therefore, the memory used increases with available
GPU memory. However, the minimum required memory
can be computed by taking the number of items stored
in the hash table and TCF, and multiplying those values
by the amount of space required per item. The results of
this computation with k=99 are shown in Figure 3. The
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Figure 4: Load factor of the hash table in MHM for three
different datasets. WA dataset was run on 43 and 64 nodes,
the Rhizo dataset was run on 32 nodes, and TYMEflies
on 96 nodes.

TCF uses 2 bytes per k-mer, whereas the hash table uses
52 bytes per k-mer. Without the TCF, the hash table has
one entry per unique k-mer, but with the TCF, it does
not store the erroneous singletons. In WA, 75% of k-mers
are singletons, and in Rhizo there are 83%. Hence, the
minimum memory required is significantly reduced, by a
factor of 2.86× for WA and 5.4× for Rhizo dataset.

Memory usage. The effect of the TCF on the minimum
memory required does not translate directly into a
reduction in the number of nodes because there are other
data structures that are not reduced in size by the TCF.
Consequently, for practical purposes, the use of the TCF
enables an approximately 43% reduction in the minimum
number of nodes needed to assemble these datasets. This
is supported by the load factor for the hash table, as shown
in Figure 4. We can see that at the same node count (64
for WA and 24 for Rhizo), the load factor when using the
TCF is a third to half of that without the TCF. Also, the
variation in load of the hash table across nodes is more
pronounced without the TCF, e.g., on WA, the average
load factor for a process is 0.6 but the maximum is 0.9,
which also means a less efficient use of memory.

Run time performance. Using the TCF in MetaHipMer
does not substantially increase the GPU computation
time used to insert k-mers into the hash table. In the 64
node runs, the dataset was assembled in 934 seconds with
the filter and 940 seconds without, which is less than a
1% variation in the total run time and can be attributed
to random variation from the Summit nodes. When the
system operates at a high load factor, the time taken for
k-mer analysis increases significantly. This is because the

hash tables have a quadratic probing scheme, so if the
hash table is filled to more than 77% full, future inserts
become significantly slower. As the TCF reduces the load
factor of the hash tables, fewer k-mers are inserted into
the hash table, preventing this from being an issue until
the memory pressure is so high that other parts of the
assembler begin to run out of memory.

Assembly quality. One aspect of the TCF that could
cause problems for MetaHipMer is the approximate nature
of the data structure. We have configured two versions of
the TCF, a two byte version and a 4 byte version. The
two byte configuration uses 10 bits for the keys, giving it
an error rate of 16

1024 or 1.56%. Since all errors are false
positives, this means that there may be some k-mers which
are singletons but are not detected as such. However, this
will only result in overestimation of the k-mer counts by at
most 2, which should reduce their impact on the assembly
quality. And indeed, we find that the assembly quality is
not impaired when using the two byte version of the TCF.
Total length assembled (a measure of quality) is within
.1%. The 4 byte version uses 26 bit tags. This is accurate
enough that false positives have no noticeable effect on
assembly quality, even on small datasets. For this reason,
the filter uses 10 bit keys over 26 bit keys as operations
are half-word aligned which leads to better performance.

6.4 Using other GPU filters in MetaHipMer
In addition to testing the TCF, we also benchmarked
MetaHipMer with the GQF. We found that using the
GQF resulted in an increase of over 2× the run time of the
GPU phase of k-mer analysis, although it should be noted
that this is a small section of the overall k-mer analysis run
time. In addition, we found that on some runs the GQF
would increase the overall run time for k-mer analysis
by over 500 seconds. This is due to the load imbalance
resulting in one node being overloaded and the GQF being
due to high load factor. While the GQF does provide the
same memory savings as the TCF, the high performance
cost reduces its viability for GPU memory savings.

6.5 GPU Acceleration of MetaHipMer The GPU
version of MetaHipMer is up to an order of magnitude
faster than the CPU implementation, and in the worst-case
is still over 2× faster in all phases. The performance boost
in the different phases of assembly are shown in Figure 6.
This speedup comes at the cost of reduced memory, as most
GPUs are memory-constrained compared to their CPU
counterparts. CPU filters like the VQF [27] could perform a
similar function to the TCF, but saving memory on GPU op-
erations is more critical than saving memory on the CPUs.
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(Total number of base pairs assembled).

K-mer
Analysis

Alignment Local
Assembly

Overall
0

5

10

3
.1
5

5
.8

4
.2
7

3
.1
1

3
.6
7

9
.4
2

3
.2
2 4
.5
3

3
.3
5

2
.3
2

5
.7

2
.2
4

4
.7
9

2
.1
3

4
.6
9

2
.2
6

G
P
U

S
p
ee
d
u
p

AS N=1 AS N=8 WA0 N=32 WA N=256

Figure 6: Performance comparison between the CPU and
GPU implementations of MetaHipMer. The y-axis repre-
sents the relative speedup of the GPU version compared to
the CPU version. Results were gathered on Summit. AS
is ArticSynth, WA 0 is the first lane of Western Artic, and
WA is the full Western Artic dataset. N is the #nodes.

7 Discussion

In this paper, we show how the GPU-based TCF can help
overcome the memory and speed trade off in an exascale
data analytics application MetaHipMer. Using the TCF,
MetaHipMer can perform the k-mer analysis in a single
communication pass thereby reducing the peak memory
usage without affecting the running time. This further
allows MetaHipMer to make use of accelerators like GPUs
which help speed up data processing but are constrained
in terms of available memory.

GPU filters can alleviate the memory problems
associated with working on GPUs while maintaining all

the performance gains of these accelerators. New filter
designs such as the TCF offer advanced features that can
accelerate exascale applications with no downsides. This
makes their inclusion an ideal choice when it comes to
building applications at scale.

High-performance and feature-rich GPU filters such
as the TCF can be further be utilized in other high-
performance data analytics applications to help scale to
large scale datasets. For example, the TCF can be used to
accelerate de Buijn graph construction and traversal similar
to the approaches used by Pandey et. al. [24, 26] on CPUs.
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