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Abstract

Joins are among the most time-consuming and data-intensive
operations in relational query processing. Much research effort
has been applied to the optimization of join processing due
to their frequent execution. Recent studies have shown that
CDF-based learned models can create smaller and faster indexes,
accelerating in-memory joins. However, their effectiveness for
external-memory joins, which are crucial for large-scale databases,
remains underexplored.

This paper evaluates the impact of learned indexes on
external-memory joins for both sorted and unsorted data. We
compare learned index-based joins against traditional join
methods such as hash joins, sort joins, and indexed nested-loop
joins on real-world and simulated datasets. Additionally, we
analyze learned index-based joins across multiple dimensions,
including storage device types, data sorting, parallelism,
constrained memory environments, and varying model error. The
detailed evaluation enables us to determine the most appropriate
learned index to employ for external-memory joins.

Our experiments reveal that, unlike in-memory settings,
learned indexes in external-memory joins can trade off accuracy
for space without significantly degrading performance. While
learned indexes provide smaller index sizes and faster lookups,
they perform similarly to B-trees in external-memory joins since
the total amount of I/O, which dominates runtime, remains
unchanged. Additionally, the construction times of learned
indexes are ~1000x longer, and although they are 2-4x smaller
than the internal nodes of a B-tree, these nodes only represent
0.4%—1% of the data size and typically fit in main memory.

1 Introduction

The join operation is a fundamental operation in database
management systems. Data normalization spreads data
across multiple relational tables, and the join operation
enables combining tuples from two or more relations based on
a common attribute. Implementing join efficiently is challeng-
ing as it involves iterating through the tuples across multiple
relations, incurring large amounts of disk I/Os. The join
operation is often critical for the overall database performance
as it is expensive and frequently executed. This is especially
true for online analytics processing (OLAP) systems where
the data is static and large-scale multidimensional analytical
queries are frequent. This has resulted in extensive research
on optimizing joins in recent decades [l @], [7 10} BT} 291 21].

Recently, machine learning has significantly influenced the
automation of fundamental database functions and design
choices. Specifically, researchers have shown that indexes
based on learned models that approximate the cumulative
distribution function (CDF) [20]—which is effectively the
rank function for items in a dataset — are faster and
smaller than traditional indexing data structures [25]. These
learned structures and algorithms often outperform their
traditional counterparts because they can accurately capture
data trends and optimize performance for specific instances.
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A recent survey [3] identifies close to 100 proposed learned
indexes in the last five years.

A recent benchmarking study [25] demonstrates that
learned index structures such as the PGM-Index [I4],
RMI [20] and RadixSpline [I8] can deliver superior lookup
performance on sorted data compared to traditional indexes.
Kristo et al. [22] show that learned models can speed
up sorting in main memory for integer keys. Sabek and
Kraska [29] demonstrate that learned models can improve
in-memory indexed nested loop joins by 5—25% and can
improve the partitioning step in parallel hash and sort-joins.

While recent work on in-memory benchmarks has shown
promising results, the benefits of learned indexes in the ex-
ternal memory settings do not appear to be as clear. Lan et
al. [23] adapt multiple updatable learned indexes to external
memory and evaluate performance on read, scan, and write
workloads. They observe that in their current iterations,
none of the updatable learned indexes are competitive with
traditional B-trees. Zhang et al. [35] identify that directly
extending learned indexes to disk environments often re-
sults in suboptimal performance compared to traditional
B-trees. However, they show that employing optimizations
such as leaf-page fetching strategies, prediction granularity,
and adapting for disk characteristics can help bridge this gap.

Existing benchmarking studies involving learned indexes
have not focused on external memory database joins, which
are crucial for large-scale databases. External-memory joins
offer vastly different trade-offs and challenges compared to
in-memory joins. For relations stored in external memory,
the dominating cost in performing the join is the I/O cost.
Random I/Os are more expensive compared to sequential
ones, resulting in different trade-off choices [34, [I', 27].
Additionally, different storage devices such as hard disks and
SSDs offer different I/O bandwidths and latencies, leading to
a different choice of indexing parameters to achieve optimal
performance. Therefore, the insights gained from employing
learned models for accelerating in-memory joins are relevant
but not directly applicable in the context of external memory.

This paper. We investigate the applicability of learned
indexes for external-memory joins, a common operation
in large-scale databases. Through an extensive empirical
evaluation, we assess whether the performance advantages
of learned indexes in in-memory settings extend to
external-memory environments.

To utilize learned indexes for external-memory joins
(learned index-based join), we replace the traditional index
in the indexed nested-loop join with a learned index and
introduce optimizations tailored for external-memory settings
to enhance performance. This approach aligns with the
methodology used by Sabek and Kraska [29] in their study
on in-memory learned joins. We conduct a comprehensive

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



empirical evaluation, comparing learned index-based join

with various traditional external-memory join algorithms.

Our study results in the following key contributions:

o We evaluate the performance of the indexed-nested loop
join using learned indexes on real-world and synthetic
sorted datasets.

e We evaluate learned indexes across a range of parameter
settings, including table-size ratios (selectivity), concur-
rency, model accuracy, and types of storage devices (SSDs
and HDDs).

e We evaluate the performance of learned indexes for
joins on unsorted data to produce a sorted output by
partitioning the data using the learned CDF model and
evaluate its performance under memory pressure.

e We analyze experimental results and make several key
observations that will benefit future work in incorporating
learned indexes as part of the query execution engine in
large-scale databases.

Key Takeaways. Here we list the key takeaways from our

experimental evaluation:

e For external-memory joins, learned indexes can benefit
from using higher errors, and in turn achieve lower memory
usage without loss in join performance. Using a larger
error window size for the learned model helps increase disk-
bandwidth utilization for learned indexes when the join
no longer does sequential 1/Os, which can happen when
the sizes of two sorted tables being joined differ by a large
factor. This enables smaller indexes and faster operations.

e While learned indexes provide smaller index sizes and
faster lookups, they do not reduce total I/O costs,
leading to performance that is comparable to B-trees in
external-memory joins.

e On SSDs, learned indexes improve the time to perform
a join on sorted data compared to B-trees by 1.2—1.6x
when the input tables must be completely scanned. The
improvement in performance on SSDs comes from faster
CPU performance in querying for items.

e Learned indexes scale similarly to B-trees with increasing
threads, but they become I/O-bound at high levels of
parallelism.

e Learned indexes have an order-of-magnitude higher
build time than B-trees when built on the entire dataset.
Sampling keys to build the learned index enables faster
index construction without a noticeable impact on the
join performance. However, even with sampling, the
learned index build time is 10x larger than B-trees.

2 Background & Related work

In this section, we briefly describe the various learned
index designs and their usage in database applications.
We highlight the key insights and unanswered questions
pertaining from these studies.

Kraska et al. [20] showed that machine learning models
can help reduce the memory footprint and increase the
performance of traditional indexing data structures such as
B-trees, hash tables, and filters. More specific to databases,
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Figure 1: Modeling the CDF using piecewise linear approx-
imation and indexing into the individual linear models.

there is considerable interest in designing learned indexes
for sorted data that deliver better performance with lowered
space usage than B-trees that are commonly used to
implement database indexes.

Various learned index designs have been proposed, includ-
ing read-only indexes such as the Recursive model index
(RMI) [20], RadixSpline [I8] and Piecewise geometric model
(PGM) index [14] and updatable learned indexes such as
ALEX [12], FITing Tree [15] and LIPP [33] as replacements
for B-trees in static and dynamic workloads, respectively.
For a more detailed history of the work in this area, please
refer to [3] which extensively surveys learned indexes.

There has also been considerable research showing the
applicability of learned models in other applications. Recent
works include improvements to fundamental algorithms such
as sorting and joins [22] 29], range index designs [12] B3, [14],
query performance in log-structured merge-trees [I1], ],
multi-dimensional and spatial indexes [24] [36] and genome
sequencing [19] [16].

2.1 Learned indexes In this section, we briefly describe
various types of learned indexes.

Range indexes are CDF models. The key insight
that ties machine learning techniques and deterministic
problems such as indexing is that all range indexes model
the cumulative distribution function (CDF) of the data they
index [20]. The cumulative distribution function of a list is
a function F'(x) that maps the probability that x is greater
than an item picked randomly from that list L. When the
CDF value for an item =z is scaled by the number of items
in the list, it returns the position where = would fit in that
list, i.e. pos(x)=F(z).|L|, where |L| is the size of the list.
CDF-based models. Learned index implementations follow
a common design trend in modelling the CDF. They often
employ regression techniques (as opposed to deep neural
networks) to model the CDF. As a single model is practically
not enough to model the entire CDF, the CDF is modelled
in a piecewise manner with a hierarchical structure indexing
individual piecewise models. This is illustrated in Figure

The CDF model only approximates the position of a key in
the list, i.e., it cannot accurately determine the position of the
key. However, this is not a significant issue in practice as the
model error is usually bounded and a local last-mile search
can be performed to return the exact answer to a query (Fig-
ure . The model error is a training parameter that trades
accuracy for space usage, i.e., high-accuracy models require
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Figure 2: Query path using a learned index. The inner levels
direct the query to the approximate location in the dataset.
A last-mile search is performed to find the query key.

more space but a smaller last-mile search and vice versa.

2.2 Learned index designs Multiple learned index
designs have been proposed, each using a unique modelling
technique and data layout to implement the index. Below,
we go over a few learned indexes that we use as candidates
in our external-memory join implementation.

Recursive model index (RMI). RMI [20] builds a hierar-
chy of models on the dataset given a specification by the user.
The user specification provides various parameters, such as
the type of models and learning techniques to use, the maxi-
mum branching factor of each level, and the maximum size of
the final model. To help with tuning, the RMI implementa-
tion provides an optimizer that performs a grid search of RMI
models against the space/performance curve, allowing users to
choose the RMI configuration appropriate for their use case.

RadixSpline. RadixSpline [I8] is a single-pass learned
index that uses a linear spline to model the CDF and
employs a radix table to speed up the lookup of spline
points. To perform a key search, the radix table is first
consulted to return a range of linear spline segments. The
returned linear spline segments are then used to find the
error-bounded position of the lookup key. The RadixSpline
is parametrizable in two parameters, the error-bound of the
linear spline model and the number of the bits to use for
the radix table. A larger error bound reduces the number of
linear spline segments used to model the CDF but increases
the last-mile search window. Similarly, using more bits for
the radix table speeds up finding the correct linear spline
model for a query at the cost of a larger radix table.

Piecewise geometric model (PGM) index. The PGM
index [14] is a learned index that is similar to the RMI
in that it builds a hierarchical structure of models. Each
level is an error-bounded linear regression model built using
piecewise linear approximation (PLA), i.e., the model is a
piecewise function where each component is a linear function.
The model can be visualized as a list of line segments that
approximate a curve. The lowest level model approximates
the CDF curve of the data, while higher levels are PLA
models approximating the CDF curve of line-segment end
points of the next level. Similar to the RadixSpline, the
PGM is configurable by two parameters, the error bound
and the maximum height of the index.

Adaptive Learned Index (ALEX). The aforementioned

learned indexes are read-only indexes. ALEX [12] is an
updatable learned index that augments the traditional
B-tree nodes with learned models. ALEX maintains the
invariant that the data inside a node follows the distribution
of the learned model associated with the node. ALEX uses
a cost model to help with decisions related to rebalancing
the tree when new items are inserted or deleted. While
ALEX is implemented as an in-memory data structure, we
use the implementation adapted for disks by Lan et al. [23].

2.3 Related work In this section, we describe related
research work evaluating learned indexes.

Benchmarks for learned indexes. The Search on Sorted
Datasets (SOSD) benchmark [25] evaluates the lookup
performance of various learned indexes in main memory on
sorted data. Lan et al. [23] adapt multiple updatable learned
indexes to external memory and evaluate performance on
read, scan, and write workloads. They observe that in their
current iterations, none of the updatable learned indexes
are competitive with B-trees on all workloads.

Learned indexes for in-memory joins and sorting.
Sabek and Kraska [29] show that learned indexes can improve
the performance of in-memory joins. They show that learned
indexes must be carefully adapted for each of the three main
types of joins — hash, index-nested loop, and sort join — and
using them as black-box replacements for traditional indexes
is not optimal. For instance, they observe that index-nested
loop joins benefit from removing the last-mile search by redis-
tributing elements according to the learned model predictions.
As another example, hash and sort join benefit from using
the sampled CDF to uniformly partition the workload across
different cores. Similarly, Kristo et al. [22] show that utilizing
CDF approximations to recursively partition unsorted data
into buckets results in a sorting algorithm that is 1.49—5x
faster than various state-of-the-art sorting algorithms.

3 Approach and Analysis

In this section, we describe and analyze the usage of learned
indexes for external-memory joins. We describe the overall
approach of the learned index-based join and then describe
specific optimizations. Finally, we analyze the performance
in I/O cost using the affine memory model [§].

3.1 Approach We use a learned index to support the
indexed nested-loop join. During the join, keys from the
smaller table are streamed, and each key is looked up in the
learned index of the larger table to determine if it contributes
to the join result (see Figure . Since the join is performed
using indexes, the resulting output is naturally sorted.
For sorted tables, the learned index-based join uses two
optimizations. The first optimization reduces the overall
cost of the learned index look-up. The second optimization
minimizes the size of the last mile search. We describe both
optimizations below.
Optimization 1. The first optimization is to avoid traversing
the entire height of a learned index for each query. Typically, a
learned index query needs to start from the root and traverses
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Figure 3: Tllustration of the learned index-based join: Tables R and S (with S being the larger table) reside on disk,
while the learned index for S is kept in memory. Pages of table R are sequentially loaded into memory, and for each

key, the learned index predicts the corresponding page in .S

down to the leaf that contains the model assigned to handle
queries for the query key (Figure [2]). However, we can take
advantage of the fact that queries increase monotonically
during the join operation to reduce the query cost. Instead
of traversing the entire height of the learned index for each
query, we use a leaf node iterator that traverses the breadth
of the last level. This iterator will advance to the next model
when the query (which is the candidate join key) exceeds
the range assigned to the model of the current leaf.

Optimization 2. The second optimization also takes
advantage of the fact that queries during a join on sorted
data occur in monotonically increasing order. In other words,
the search window only advances forward. For example, if
the lower bound for key K; is at L;, and the learned index
returned a search window [L;,H;] for key K; where j >4,
then the last-mile search for key (K;) can be constrained

to [MAX(L“LJ ), Hj] .

3.2 Analysis We analyze the cost of using a learned
index for indexed nested loop joins.

Setup. We perform the join on two input tables R,.S
containing |R| and |S| number of keys respectively. We
will assume that the tables are large enough such that their
combined size exceeds main memory, and that a learned
index for S has already been built offline. We will also
assume that the learned index fits in memory. Without loss
of generality, we will assume that |R| < |S|. For a query key
q, the learned index of table S will return a search window
for where ¢ might exist. The size of the window will never
exceed €, the maximum error bound of the learned index,
and is a training parameter for the learned index.

The affine model. We analyze the performance of the
learned index-based join in the affine model [§]. Traditionally,
the disk-access machine (DAM) [2] model has been used
to evaluate the performance of external-memory algorithms
and data structures in terms of the number of I/O transfers
in the memory hierarchy. However, the DAM model does
not assign a cost to each I/O. On HDDs, it does not model
the faster speeds of sequential I/O versus random I/0. On
SSDs, it does not model internal device parallelism or the
incremental cost of larger 1/Os.

The affine model [28] 5l 8] makes small refinements to

to perform the final lookup.

the DAM model, but yields a surprisingly large improvement
in predictability without sacrificing ease of use. The affine
explicitly account for seeks (in spinning disks) by modelling
the cost of an I/O of k words as 1+ak, where a <1 is a
hardware parameter.

I/O cost analysis. We will divide the I/O cost of the
learned index into two components, one for reading R, and
the other for reading S. Assuming R is read in blocks of size
B, the block transfer size - the cost of reading R is %‘. For
S, we assume that the learned index-based join will perform
a single I/O of € words for each query. The cost of I/O is
then O(|R|(1+a)), where a is the hardware parameter
according to the affine model. This cost is also bounded by
O(@(H—a%)) as we do not read any item in S more than

once. Hence, the I/O cost for reading S is O(min( |R|,|—f‘)(1+
a)). The overall I/O cost can now be summarized as
1+o¢i

of 1 By 140 )

B e
In the case of |R| < @, this analysis shows that increasing
the size of the last-mile search window by building less accu-
rate learned indexes does not significantly increase the overall
I/O cost as a << 1. When the table sizes are very similar

(|R| > Lf‘), the I/O cost of the learned index is essentially
the same as linearly scanning both tables. In this case, the
affine model predicts that increasing e actually decreases the
I/0O cost - we perform fewer but larger I/Os to completely
scan .S. Note that this analysis also holds for unsorted tables,
the only difference being that the indexes are unclustered.

(3.1) +min(|R|,

Index size analysis. While there are no tight bounds
proven for the size of learned indexes, empirically they
occupy less space than B-trees. Analyzing the size of
learned indexes is not straightforward as it depends on the
distribution of the data, the specific design of the learned
index, and the training parameters used to build the learned
index. The most critical training parameter common to
all learned index designs is the size of the last-mile search
window. Ferragina et al. [I3] find that when the gaps
between elements follow a distribution with finite mean and
variance, the size of the learned index is O(n/€?), where € is
the size of the search window and n is the number of keys.

Copyright (©) 2025 by SIAM
Unauthorized reproduction of this article is prohibited



In general, we can assume that learned indexes occupy
less space than B-trees, and that the space decreases by
more than a linear factor with the accuracy of the learned
index. This is in contrast to B-trees whose size decreases
linearly with the node size. We will assume that the size
of the learned index is O(n/ f(€)), where f is a function that
is polynomially greater than a linear function.

3.3 Takeaways We now compare the cost of using
the learned index compared to ithe B-tree in the indexed
nested-loop join (INLJ). We then compare the learned
index-based join proposed above with the sort join. We
compare these in terms of I/O cost, CPU cost, and index size.

Learned index vs B-trees in INLJ. Both indexes have the
same I/O cost for the same search window size (e for learned
indexes, node size for B-trees). Increasing € or the node size in-
creases the I/O cost marginally (o << 1) for both the indexes.
However, learned indexes occupy less memory and are faster
to query compared to B-trees. The learned index also has
a better memory performance trade-off curve. Although the
size of both the learned index and B-tree can be reduced by in-
creasing the size of the search window, the size of the learned
index decreases by more than a linear factor of € compared to
the B-tree size that only decreases linearly with the node size.

Learned index-based INLJ vs sort join. The comparison
between the sort join and learned index-based join is similar
to comparing the sort join with INLJ. The I/O cost for both
methods depends on the size of the input tables. When the
tables are of similar size, the I/O cost of both the join methods
are equal. In this case, the differentiating factor of both the
join methods is the CPU cost. The cost of the sort join is one
key comparison per element from the larger table, resulting in
a total CPU cost of O(|S|). For the index-based approaches,
the CPU cost is one index lookup per element from the smaller
table, leading to a total CPU cost of O(|R|-log|S|). When

table sizes vary by a factor of more than e (that is, |R| < @),
the learned index-based join, similar to the index nested-loop
join, costs less I/O and CPU compared to the sort join.

4 Implementation

We now describe our implementation of join methods. We
first describe how our tables are stored on disk, followed
by the join and merge implementations. We then describe
our join implementation for unsorted data. In both cases,
the tables are stored on disk.

4.1 Tables While fully featured database systems will
use more complex data storage layouts and robust page man-
agement strategies, we intentionally choose a very simplistic
layout to focus on the effects of learned indexes for joins.

Storage Layout. A table is a list of key-value tuples. The
keys and values are of a fixed size of 8 byte keys and 8
byte values. The keys are distinct in a table. Tables are
stored as a dense sorted array on disk in a single file. The
first 16 bytes of the file are reserved for a header to store
the number and size of the key-value tuples, followed by

the key-value tuples themselves. We do not perform any
compression of the actual key-value tuples.

Reading and writing tables. Tables are logically divided
into blocks, each 4096 bytes in size. To read a key-value
tuple from the table, the block corresponding to that key
must be loaded into memory. The blocks are stored in an
internal buffer that holds a contiguous set of blocks in main
memory. We configure the internal buffer size to hold enough
blocks so that the search window of the learned index can
be fully held in memory. If a key that we are searching for
is already in the internal buffer, we immediately return the
key. Otherwise, the set of contiguous blocks starting with the
block containing the key is loaded into memory. Similarly,
when writing the output join table, we store keys in an
internal buffer and flush them to disk once the buffer is full.

4.2 Indexes Indexes are built offline and serialized to
disk. When used for a join, the indexes are loaded from disk
and stored fully in main memory.

Index APIL. Given a query for a key, all indexes (learned
or B-trees) return a search window whose size is bounded,
representing the range in which the table contains the lower
bound of the query key, which is the largest key in the
table that is greater than or equal to the query key. More
formally, a table T" is an array of [K7,K5,...K ], such that
K;>K;_1. The index is a function Ir(x) that returns the
pair (lo,hi) such that Kj, >x < K}p; and (hi—lo) <e, where
€ is the error bound of the learned index.

B-tree index. We use the interpretation defined in [20],
where the inner nodes of the B-tree are interpreted as a
learned model and the leaf nodes are the search window
ranges that these learned models ultimately return. When
interpreted this way, the B-tree can be decomposed into
two distinct entities - a learned index (inner nodes) and the
data (leaf nodes). For the sorted tables, we only create the
learned index part of the B-tree by evenly sampling keys
(these are keys that would have been the first key of their
leaf nodes) and insert them into a B-tree.

Learned indexes. We consider various learned index
implementations (as described in Section [5.1)) in our
evaluation. We ensure that all learned indexes use the
same search window size (except RMI, where this is not
configurable). We discuss the exact configuration used for
each learned index in the experimental setup (Section .

Constructing learned indexes using sampling.
Constructing learned indexes on sorted arrays can be
expensive due to the computational cost of modeling the data
distribution. In contrast, building a B-tree is more efficient,
as pivots can be directly selected from the sorted array.
To reduce the cost of learned index construction, we sample
every k' element from the array and learn the distribution
over this subset. We then build a learned index on the sam-
pled array with error €’. A query returning the interval [lo,hi]
in the sampled array maps to the interval [k-lo, k-hi] in the
full array. This effectively gives a learned index on the original
array with error e=k-€’, constructed using only n/k elements.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



Unsorted input table (Disk)

Pass 1: Sample, —Ij]_l_l_l:l_l
sort and train ' =
learned index Main Memory S~ _

Learned
index

-
-
-
-

Pass 2: Store leaf

nodes of unclustered |
index on disk

Unclustered index leaf nodes(Disk)

Figure 4: An unclustered index using a learned index is built in two passes: the first pass samples the data to train
the learned index, and the second pass uses the index to assign each data item to its predicted position.

Learned Index Lookup. Using learned indexes to answer
lower_bound queries is a two-step process. First, a lookup
is performed on the index for the query key @ in table T.
The index will then return a range [lo,h], representing the
range containing the actual lower bound. The second step
is to perform a last mile search in the table to find the exact
lower bound in the table.

Last-mile search. To perform the actual last-mile search,
we use the branchless implementation of the binary search,
resulting in a fast and efficient last-mile search. The branch-
less search algorithm takes advantage of the conditional
move (CMOV) instruction to generate assembly code with
no branches [30]. We first check if the search range returned
by the index is partially loaded in our internal buffer. If
the lower bound is not found or the internal buffer contains
blocks that do not overlap with the search range, we load the
required contiguous set of blocks from the disk into memory.

4.3 Join on sorted tables We now describe implemen-
tation details of the various join implementations. The join
operation will output the common keys from the input tables
(R,S) as its own table to disk. We compare the indexed
nested loop join with B-tree and learned index-based join,
against each other and also with other join methods such
as hash join and sort join.

Indexed nested loop join. Similar to the hash join, we
start first by streaming all keys of R. For each key of R,
we query the index of S which will return a search window.
We then do a last-mile search inside S[lo,hi], outputting
the key to the final table if it is present.

Sort join. If RS are already sorted, we skip the sort phase
and proceed directly to the merge phase. We use a standard
two-pointer approach to find the common keys. We initialize
two iterators, comparing the iterator heads and advancing
the iterator with the smaller key. If the keys are equal, the
key is added to the output join table. The join ends if any of
the iterators reaches the end of its table and cannot advance.

Hash join. We first iterate over all keys of R and
insert them into an in-memory hash table Hr. We use
std: :unordered map as our in-memory hash table. We
then iterate over all the elements from S, adding the key
to the output if it exists in Hg.

4.4 Join on unsorted tables We now describe the
implementation details of the join methods for unsorted
tables. These methods will output the result of the join in
sorted order. Here we only implement two variants of the
indexed nested loop join, B-tree based and learned index
based. We build unclustered indexes for both input tables
as part of the join.

B-tree index. We first build a complete B-tree for each
input table by sequentially inserting keys along with a
pointer to its location in the table. We then perform a range
scan on the B-tree of the smaller table to stream the keys
in sorted order, checking if each key exists in the large table
by querying the B-tree of the larger table. The keys which
are common to both input tables are added to join table.

Learned index. To approximate the data distribution,
we build a learned index on a set of sampled keys from the
unsorted table. The learned index on the sampled subset
acts as a model for the distribution of data in the entire
dataset, as uniform sampling captures the overall data
distribution and also avoids the need to fully sort the data.

We use the approximate rank of a key in the sampled
learned index to partition all keys into the desired number

of partitions. Each key k is assigned to the partition

?\}“P, where Ry is the approximate rank of k, N is the

number of keys in the table, and P is the desired number
of partitions. We choose P so that the average partition
fits into a small constant number of pages. In practice, if
the keys were randomly sampled uniformly and the learned
index is reasonably accurate, the partition sizes have low
variance. As long as the Ry, returned by the learned index
is monotonic, the partitions will be disjoint. The partitions
are essentially leaf nodes of an unclustered index, and the
partitioning process is illustrated in Figure [}

Partitioning the data according to the position returned
by the CDF model is an idea that has been explored by
Kristo et al. [22] in the context of in-memory sorting, where
the data is sorted by recursively partitioning the data using
the learned index. Similarly, Abu-Libdeh et al. [I] build
tables that are sorted into blocks according to the position
predicted by the learned index. We adapt this idea for joins
on external memory by only partitioning the data once and
not sorting the data inside the partitions. Our partitioning
method uses only two passes on the data, one to sample
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the keys and build the CDF and the other to assign the
key to a bucket according to the built model.

After partitioning keys into buckets, we perform the
indexed nested-loop join. We store the learned index and
the partition map of both tables in memory. We sequentially
load each bucket of R into memory and process the keys
in sorted order. For each key, we query the index of S and
load the corresponding bucket into memory. The key is
added to the output if it is part of both tables.

5 Evaluation

| Dataset | Size | Key count | Description |
FB 3.2 GB | 200000000 | Facebook user ids
‘Wiki 1.44 GB | 90437011 Wikipedia edit timestamps
OSM 12.8 GB | 800000000 | OpenStreetMap locations
Books 12.8 GB | 800000000 | Amazon book popularity data.
udense 3.2 GB | 200000000 | sequential integers
usparse 3.2 GB 200000000 | Uniform sparse distribution
normal 3.2 GB 200000000 | Normal distribution
lognormal | 3.2 GB | 200000000 | Lognormal distribution

Table 1: Summary of datasets

In this section, we evaluate the usage of learned indexes
for external-memory joins against traditional join algorithms.
For learned index-based join, we employ the learned model to
replace the index in indexed nested loop joins. For all indexes,
we keep the leaf nodes on disk and the non-leaf nodes in
main memory. First, we evaluate various learned indexes
on construction time, in-memory space requirements and
join performance when used as part of learned index-based
join. We then pick the most appropriate learned index and
compare the learned index-based join against traditional
indexed nested loop joins, sort join (SJ) and hash join (HJ).

We evaluate the performance of the learned index-based
join against traditional join algorithms across multiple
dimensions: (1) storage device types (HDD/SSD), (2) data
ordering (sorted /unsorted), (3) concurrency, (4) constrained
memory settings and (5) trade off between error window
size and number of threads.

All  benchmarking source code and datasets
used in our evaluation are available at |https:
//github.com/saltsystemslab/learnedjoindiskexpl

5.1 Experimental Setup In this section, we describe
the experimental setup we use for our evaluation.

Environment. We run our experiments on an Intel(R)
Core(TM) i7-8700 CPU @ 3.20GHz with 1 NUMA node with
12 cores with a single 12MB L3 cache with 32GB of RAM. We
run our experiments on both SSD and HDD. The SSD model
used in our experiments is a 512GB SanDisk SD9SB8W5,
while the HDD is 2TB TOSHIBA DT01ACA200.
Datasets. We use real-world and synthetic datasets used in
the unified benchmarking paper by Marcus et al. [25]. Table
summarizes various datasets.

e Real-world datasets: Books is a collection of 800 mil-

lion keys representing book popularity data from amazon.
‘Wiki is a collection of 90 million wikipedia edit timestamps.
OSM is a collection of 800 million OpenStreetMap loca-
tions. FB is a collection of 200 million Facebook user ids.

e Synthetic datasets: All synthetic datasets contain 200M
items generated from a universe of 64-bit unsigned integers.
usparse represents a dataset of integers picked uniform
randomly, while udense represents a dense distribution
of sequential keys. normal and lognormal represent
data distributions that follow normal and lognormal
distributions, respectively.

Join processing. Each join operation is invoked as a
new process. Our join evaluation setup for static tables
is similar to previous join studies [4, [6] [7, 10, B1, 29, 21].
The indexes are constructed offline, stored on disk, and
loaded into memory before starting the join operation. For
multithreaded experiments, the input tables are partitioned
evenly across threads and work is distributed evenly. All
operations are performed with cold cache by dropping the
operating system page caches, and the input files are read
using O0_DIRECT to ensure that all data is always retrieved
from disk. We do not use 0_DIRECT for writes as the
output cost for all join methods is the same and increases
the duration of the experiment. To constrain the memory
during join process, we employ CGroupsV2 utility.

5.2 Evaluating learned indexes for joins on disk
In this section, we evaluate the performance of PGM,
RadixSpline, RMI, and ALEX against B-trees for index
construction, query latency, and in-memory index space.
We use the insights from this evaluation to identify the
appropriate learned index to employ for external-memory
joins on sorted and unsorted data.

Our evaluation of learned indexes extends the SOSD
benchmark [25] for disk-based evaluation and performance
on the join operation. Furthermore, our evaluation extends
the disk-based benchmarking study [23] by evaluating the
learned indexes on external memory joins.

Indexes. We use the B-tree index for implementing the index
nested-loop join. We use the STX-BTree v0.9 [9] library as
our B-tree implementation. For each of the learned indexes
(PGM [32], RadixSpline [I8] and the recursive model index
(RMI) [20]), we use the reference implementations provided by
the authors. For ALEX [12], we use the disk-based implemen-
tation used in the study by Lan et al. [23], which evaluates
updatable learned indexes in external memory. The specific
configuration used for building each index is described below:
e B-tree: B-tree node size is fixed to 4K bytes. To make
the comparison fair with static learned indexes, the B-tree
is built by bulk loading the keys. Furthermore, we build
the B-tree on every 256" key in the dataset. The leaf
nodes map their keys to the block they come from in
the dataset, where a block is a contiguous set of 256 keys.
Thus, the leaf nodes of a B-tree return a search window of
size 256, similar to how a learned index returns a search
window for the last-mile search.
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Figure 5: Index size, build time and performance of learned indexes and B-tree. Index Size is the space used by the
index in main memory. ALEX did not finish building the index using 32GB of RAM for OSM/Books datasets.

o Piecewise geometric model (PGM): The PGM index
is built with an error window of 256 with a single level.

¢ Piecewise geometric model (PGM) sampled: A
version of the PGM index that is built on every 128" key
with a maximum error of 2. The search window returned
by this index is then scaled up to get the search window
in the dataset.

e RadixSpline (RS): For each dataset, we choose the
Pareto-optimal index configuration of the RadixSpline
as evaluated by the SOSD benchmark [25]. The Pareto-
optimal index is an index configuration for which no other
index with lower memory usage has better performance.
Radix bits range from 16 to 28 across the various datasets.
We also set the RadixSpline maximum error to 256.

e Recursive model index: For each dataset, we use the
RMI model configuration from the SOSD benchmark
[25] with hyperparameters tuned using CDFShop [26].
Similar to the RadixSpline, we choose the Pareto-optimal
index for each dataset.

¢ ALEX: We use the disk-based implementation provided
by Lan et al.  [23] to evaluate the performance of
updatable learned indexes on disk. The data nodes are
stored as a contiguous file on disk, while the inner nodes
are stored in main memory.

Setup. The construction time is measured as the time to
build the index over the set of keys. We load all the keys
into memory before building the index to avoid counting the
disk I/O cost during index construction. All indexes, except
RMI, can be built in a single pass by streaming keys from
the disk. The query performance is evaluated by measuring
the time taken to perform the index nested-loop self-join
using the index. All indexes are loaded into main memory

while the data is kept on disk and loaded one page at a time.

The index evaluation experiments are constructed on flash
storage with the operating system page caches flushed before
the start of each experiment. Figure [5| plots the construction
time, index size, and the time to complete the self join on
all datasets using each index.

Index size. For real-world datasets, PGM indexes (both
sampled and full) have the lowest memory footprint among
all learned indexes, being 4x smaller than the B-tree. The
RadixSpline and RMI are an order of magnitude (30—80x)
larger than B-trees. ALEX was unable to construct the OSM
and Books datasets as it ran out of memory. For synthetic
datasets, PGM indexes were an order of magnitude smaller
in size compared to B-trees. The RMI and RadixSpline are
not able to model the usparse and lognormal distributions
well and needed several orders of magnitude of space to do so.

Index construction time. All learned indexes take at least
4 orders of magnitude longer to build than B-trees. Con-
structing the PGM index with sampling reduces the duration
by roughly two orders of magnitude. The higher construction
times of learned indexes can be reduced by sampling without
sacrificing query performance. As the time to construct the
PGM and RadixSpline indexes grows linearly with the size
of the dataset, evenly sampling keys to construct the index
reduces the number of keys used to train the index while still
effectively capturing the distribution of the data. The PGM
index built on the sampled data has performance identical to
that of the index built on the entire dataset. Additionally, the
PGM index is also simpler to construct, requiring only a single
parameter (the maximum error), compared to the RMI and
RadixSpline, which require tuning multiple parameters to find
the pareto-optimal configuration for space and performance.

Despite reducing the construction time using sampling,
learned indexes are slower to construct than B-trees. The

Copyright (©) 2025 by SIAM
Unauthorized reproduction of this article is prohibited



B-tree construction is extremely fast when built using bulk
loading because the B-tree only needs to perform fixed
memory allocations and data copying. On the other hand,
learned indexes need to perform more complex processing to
model the distribution leading to increased construction time.

Join performance. Across all datasets, we find that the
PGM index performs the most consistently, being 1.1—1.7x
faster than the B-tree. As disk I/O is the bottleneck, all
learned indexes (except ALEX) performed very similarly.
For ALEX, our results are consistent with the disk-resident
learned index study by Lan et al. [23], which showed that
the read performance of ALEX on disk is not competitive
in read-heavy workloads.

Takeaways. Overall, the PGM index with sampling offers
the best tradeoff in terms of query latency, construction
time, and space usage. Using sampling, the join can be
sped up by 1.1—1.7x compared to B-trees and also uses
4x less space. Although the PGM index takes 10x longer
to build compared to the B-tree, this is often an acceptable
tradeoff in large-scale analytics systems where the indexes
are built offline and are used several times to perform fast
joins. Therefore, we employ sampled PGM index in

our implementation of the learned index-based join.

5.3 Join methods on sorted data In this section, we
compare the single-threaded performance of the hash join
(HJ), indexed nested-loop join (INLJ), sort join (SJ), and
learned index-based join on sorted tables stored on disk
(both HDD and SSD) across varying table size ratios.

Setup. We use the sampled PGM index as the index for
the learned index-based join based on the analysis presented
in Section The indexed nested-loop join uses a B-tree
as the index. The sorting phase of sort join is skipped as
the data is already sorted on disk. The hash join uses STL
std: :unordered map as the hash table of the smaller table.
All indexes and hash tables are loaded in memory before
starting the join, while the data is streamed from disk in
pages using file I/O. The join time experiments on SSD and
HDD is plotted in Figure [0 and Figure[7} respectively.

Join selectivity. We employ different table ratios to evaluate
join algorithms for different selectivity values. A table size
ratio of 1 is a self-join. For other table size ratios (10, 100, and
1000), we sample a fraction of the keys uniformly randomly
from the table to create the smaller table for the join.

Index for indexed-nested loop join. We employ sampled
PGM index in our implementation of the learned index-
based join. This is based on the conclusions drawn from an
extensive study of learned indexes for construction time, size,
and query time detailed in Section @ A sampled version of
the PGM index is built on every 128" key with a max error
of 2. The search window returned by this index is scaled up
to get the actual search window in the dataset. We use the
B-tree index to implement the index-nested loop join. We use
the STX-BTree v0.9 [9] library as our B-tree implementation.

Join method evaluation on SSDs. The learned

index-based join is faster by 1.2 —1.6x compared to the
indexed nested-loop join with B-tree when the table size ratio
lies between 1 and 100. The learned index-based join is also
faster compared to the sort-join(1.1—1.4x) when the table
size ratio is between 10 and 100. When the table size ratio is
between 1 and 100, the I/O cost is identical for all methods
as items from the table are fetched in blocks of size 4KB
that contain 256 items. Thus, every block is expected to
contain a join key. At higher table size ratios (such as 1000),
both indexed-based joins, learned and B-tree based, perform
random I/Os on the inner table. In our tests, the learned
index-based join performed slightly worse than the B-tree
based index nested-loop join by about (1.1—1.6x). However,
the performance is still very similar in absolute terms due to
the small output size. In cases where both tables have
to be scanned completely, the learned index-based
join offers better performance compared to the
B-tree by 1.2—1.6x, and the sort join by 1.1—1.4x
(except when both input tables are of similar size).

Join method evaluation with HDDs. On hard disks,
the performance of the B-tree and learned index-based join
was similar across all table-size ratios and datasets. Both the
index-based methods were also faster than the sort-join except
for when the table sizes were equal. Indexed-based meth-
ods have similar performance on HDDs and are faster
than sort-join except for when table sizes are similar.

Takeaways. Learned indexes offer performance mostly
similar to the traditional B-tree-based index nested-loop
join in external memory settings. The PGM index is much
smaller in size compared to the B-tree. However, that does
not result in improved performance as the join operation
is bounded by the disk I/O. Using learned indexes for join
does not help in reducing the total I/O. This is especially
true when there is enough working memory to store the
B-tree. This is unlike in main-memory joins where learned
indexes can help speed up join performance [29).

5.4 Join methods on unsorted data In this section,
we compare the single-threaded performance of various
joins on unsorted tables to produce a sorted join output in
external memory.

Setup. We generate input tables for a dataset by shuffling
keys from the FB dataset and storing them on disk. We
compute the join using an indexed nested-loop join using
unclustered indexes (B-tree, PGM) on the keys. The index
stores keys and a pointer to its table entry. We use the
pointer to fetch the associated value of a join key from
the table on disk. We run the test under different memory
constraints using CGroupsV2 to limit the amount of memory
that a process is allowed to use and plot the time to complete
the join for the B-tree and PGM index in Section [5.3
Similar to joins on sorted data, we test for different table
size ratios of the input tables. We summarize the index
construction and implementation of the join for each index.
e B-tree: We build the B-tree by streaming keys from disk.

The leaf nodes of the B-tree are stored on disk, while the
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Figure 7: Performance of various join methods for sorted tables on hard disks (HDD).

intermediate nodes are held in memory. Nodes are 4KB
in size. To compute the join, we scan the keys from the
smaller table and for each key perform a lookup in the
B-tree of the larger table.

PGM Index: As the tables are not sorted, we partition
the data into disjoint ranges with the help of a PGM index
built on a sampled subset (1%) of the dataset. The rank
of a key according to the sampled PGM index is used
to determine its partition. As the rank returned is only
an approximation, it is not necessary that partitions are

equally sized. The more accurate the learned index, the
less the variance in the size of the partitions. We set the
expected partition size to be that of a single page (4KB).
Partitions are flushed to disk 8 keys at a time to improve
write efficiency. The index and partition map for each table
are stored in main memory, and during the join only a single
partition per table is kept in memory. To compute the
join, we sequentially process the partitions of the smaller
table. For each key in the partition, we use the PGM
index of the larger table to determine the corresponding
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(a) Join duration on unsorted data after index creation under
different memory constaints using the FB dataset.

‘ | Index creation (sec) |

| Memory Limit | B-tree | PGM |
2GB 10777.06 | 2993.49
32GB 1406.33 411.28

(b) Time to create the index on unsorted data under memory
constraints using the FB dataset.

Figure 8: Join performance on unsorted data

partition in the larger table. Our approach for learned
joins on unsorted data is based on learned sorting [22].

Results summary. The performance of different join
approaches is largely similar. Joins on unsorted data incur
more I/O operations than those on sorted tables. Since
I/O cost dominates the join performance, faster queries
of the learned index-based join do not yield significant
improvements. The PGM index also performs similarly to
the B-tree when memory is constrained using CGroupsV2.
Although the PGM index is significantly smaller at 3MB
compared to 12MB for B-tree, this 75% reduction in index
size is insufficient to reduce the I/O performed to swap pages
to disk due to constrained memory. However, partitioning
the data to partially sort the data using the PGM index
is faster (3—3.5x) compared to constructing a B-tree with
random inserts. This is due to the higher write amplification
of B-tree to keep items sorted under random inserts.

Takeaways. Although partitioning and constructing an
unclustered index for a unsorted table using the CDF model
is upto 3.5x faster compared to building the B-tree index,
the join itself performs similar. The benefits of smaller
indexes and faster queries are not apparent, as the memory
savings of the learned index-based join are only over the inner
nodes of B-tree, which is tiny compared to the space required
to store the dataset. The benefits of smaller indexes and
faster queries on the join itself are not apparent even
when operating under constrained memory settings.

5.5 Multithreading In this section, we evaluate the
effect of scaling up external-memory join methods using
multiple threads. We will further study the performance

Index size (MB) ‘

| Dataset | e=256 | €=2048 | e=4096 |
FB 3.1623 0.7314 0.0910
Wiki 0.1121 0.0507 0.0064
OSM 8.6735 2.4492 0.6454
Books 3.140 0.092 0.024
udense 48 KB | 48KB | 48 KB
usparse 0.0505 0.0034 0.0002
normal 0.0109 0.0054 0.0027
lognormal | 0.0152 0.0076 0.0038

Table 2: Index size of PGM index as search window size varies.

tradeoff between search window size and number of threads.

Setup. We partition the smaller table into equal size
partitions based on the number of threads and assign a single
partition to each thread. We build an index on the larger table
and query it for keys from the smaller table to find a match
for the join. Each thread writes its output to a separate file on
disk. The threads are synchronized to block until all threads
finish writing their join output. Once all threads are finished,
we merge the output file for the final join output. To do this,
each thread computes the offset of where its output lies in the
merged output and writes it to the final join output. We test
for thread sizes of 1, 2, 4, 6, and 8. We compare the learned
index-based join with the indexed nested-loop join with B-
tree, hash join, and sort join and plot the results in Figure [0

Results summary. Adding more threads makes the join
operation more I/O bound. Both the learned index-based join
and B-tree indexed joins scale linearly with increasing threads
before becoming I/O bound at some point. For example,
when the table size ratio is 100, the learned index-based join
becomes completely 1/0 bound with 4 threads. At this point,
adding more threads does not improve the overall process as
the join is I/O bound. The performance of sort join does not
scale with more threads as it is already I/O bound. The hash
join is mostly CPU bound and almost linearly scales with
increasing threads all the way up to 8 threads. The runtime
does not include the time to build the hash table. Thus, the
time for hash join measurement avoids the time to perform
I/O on the smaller table. This makes the hash join less I/O
bound compared to the other joins. Note that the hash join
uses much more memory compared to indexed and sort joins
as it stores a hash table of size O(|R|) in memory. It is only
included in the evaluation only as a baseline for comparison.

Takeaway. The conclusions made in the previous section
regarding which join method to use at different table
ratios hold true even for multithreaded join processing.
Learned indexes scale up with more threads similarly
compared to other join methods.

5.6 Error window size analysis In this section, we
study the effect of the size of the error window on the join
performance with an increasing number of threads. We also
study how the build time and index size varies as the error
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Figure 10: Performance of learned index-based join with various search window sizes (FB dataset)

window changes.

Setup. We use the sampled PGM index with error window
sizes of 256, 1024 and 4096. The results of this experiment
are plotted in Figure [I0] while Table 2| shows the index size of
the sampled PGM. We increase the page fetch size of a single
I/0 call to match the size of the error window. Note that this
does not change the total number of bytes fetched from disk,
only the number of I/O calls performed to fetch those bytes.

Result Summary. For the sampled PGM index, the
index size is reduced by a factor of 30 —130x when the
error window size is increased from 256 to 2048 and 4096
respectively. The index build time is independent of the
index error window size and depends only on the sampling
rate (which is fixed at 128 in this case).

Figure [10] shows that the performance of the PGM index
remains consistent with increasing the size of the search
window. We perform I/Os of larger block sizes to ensure that
we perform no more than a single I/O call per query. For
lower table size ratios, performance remains consistent with
increasing the search window size from 256 to 4096. At these
table size ratios, the join disk access pattern is sequential.
Thus, requesting larger 1/0 block sizes across a varying num-
ber of threads does not have a significant effect on overall
performance. As the table size ratios increase, the join access
pattern is no longer sequential. When run with a low number
of threads, a larger search window and I/O block fetch sizes
lead to higher disk bandwidth utilization, resulting in disk
saturation and consequently better performance. With a high

number of threads, the disk utilization is already high and per-
forming larger I/O block fetches has no effect on performance.

6 Conclusion

This study presents an extensive evaluation of learned indexes
for external-memory joins, analyzing their impact across
varoius database configurations. Unlike the main-memory
setting, where learned indexes provide clear advantages, our
findings indicate that their benefits in external-memory joins
are less pronounced due to I/O dominance.

While learned indexes offer smaller index sizes and faster
lookups, they do not reduce the total I/O costs, resulting
in similar performance to B-trees-based joins in most cases.
However, by tuning parameters such as search window size
and error bounds, learned indexes can achieve comparable or
slightly better performance in specific workloads, particularly
on SSDs. The significant index construction overhead (up to
1000x slower than B-trees) further limits their practicality
for dynamic workloads, but remains acceptable in offline
analytics scenarios.

Our results suggest that practitioners must carefully
assess I/O constraints when integrating learned indexes into
database engines.
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