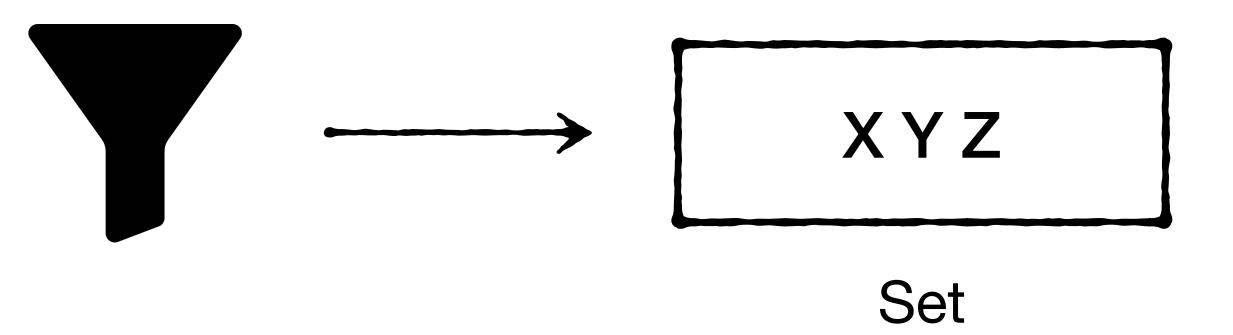
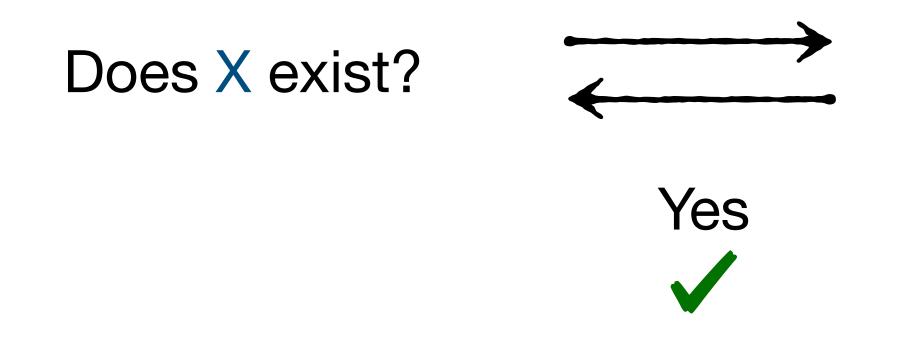
## **Adaptive Filters** How to learn from your mistakes

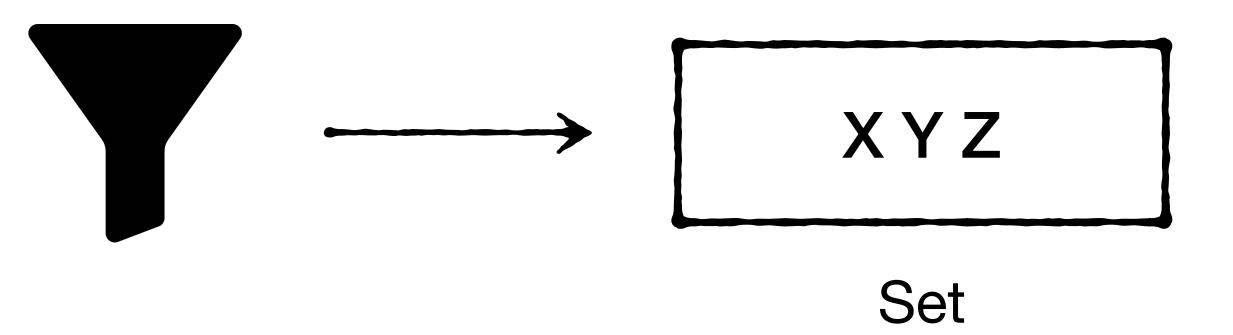
**Prashant Pandey, University of Utah** https://prashantpandey.github.io/

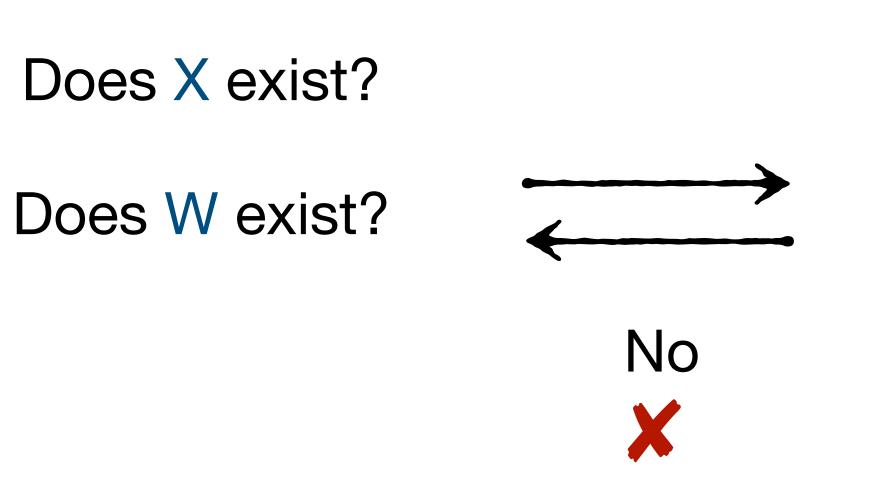


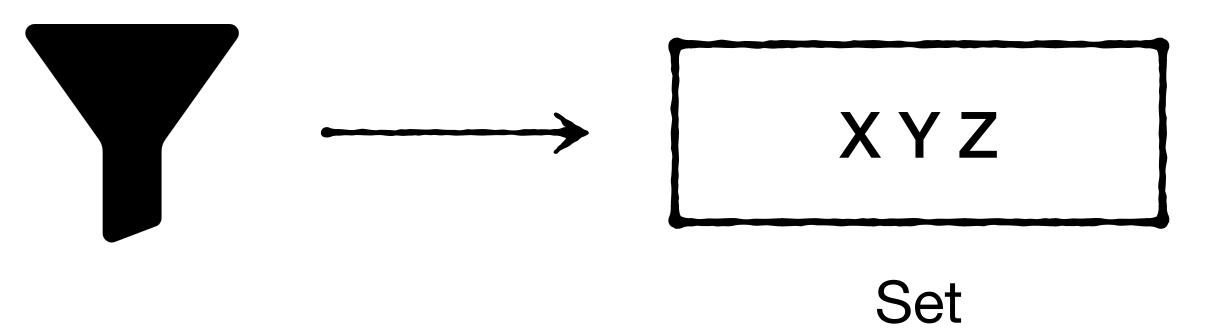
### Does X exist?







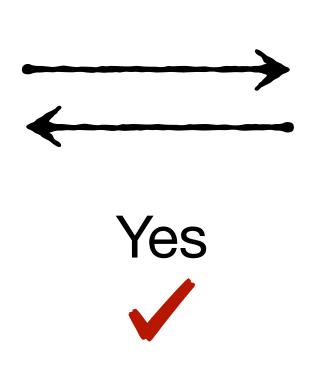


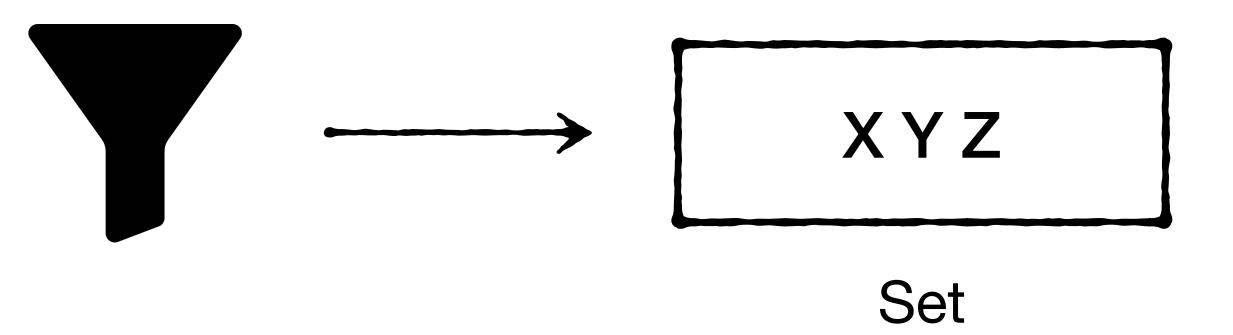


Does X exist?

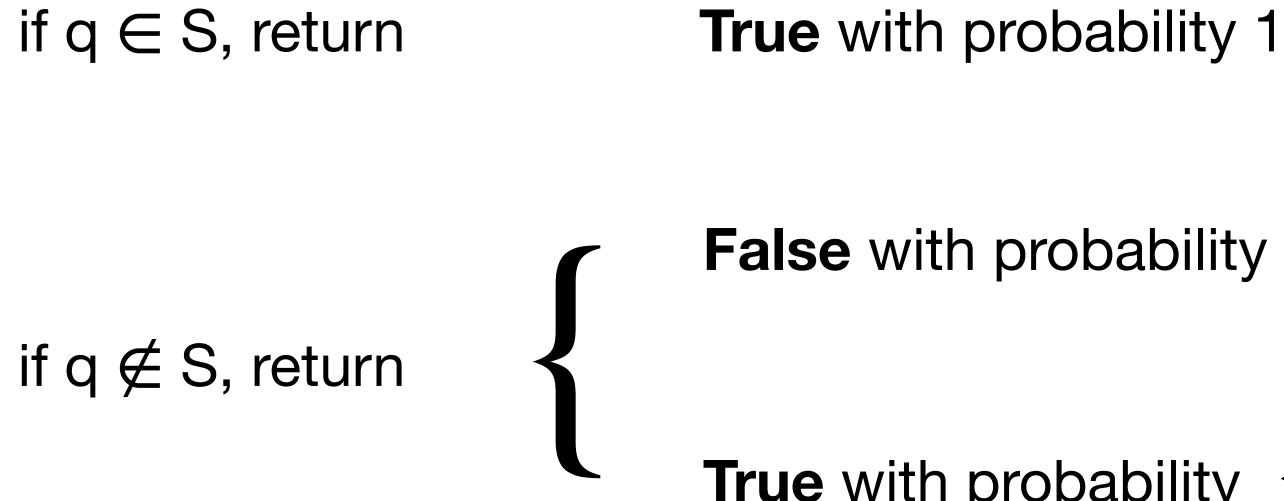
Does W exist?

Does A exist?



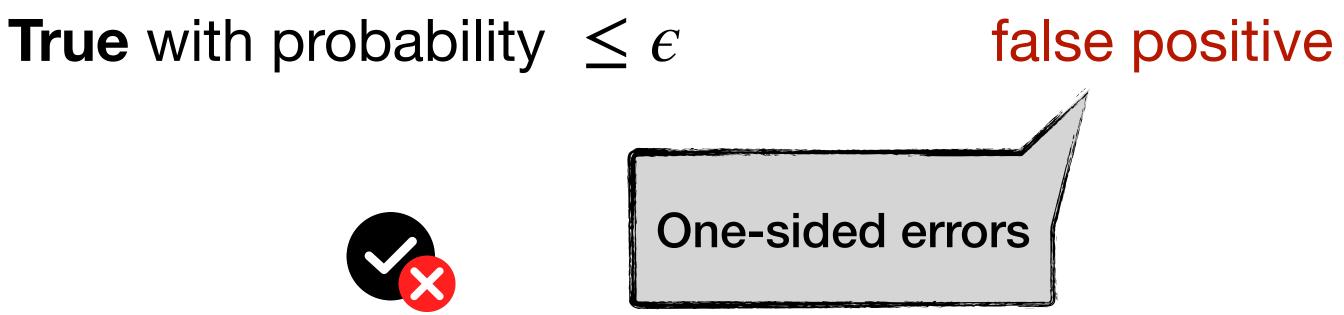


## A filter guarantees a false-positive rate $\epsilon$



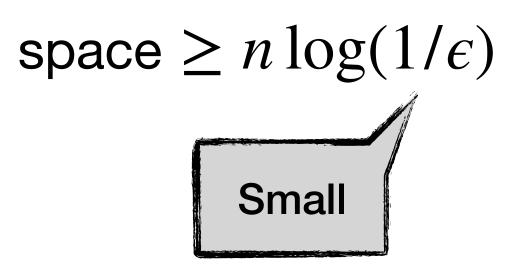
False positives with tunable probability

- q = query item S = set of items
  - true positive
- **False** with probability  $> 1 \epsilon$ true negative



### False-positives enable filters to be compact

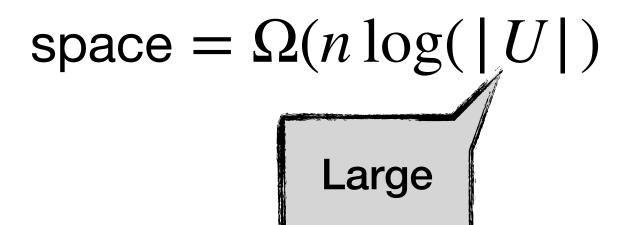
n = number of items U = universe of items





#### Filter

For  $\epsilon = 2\%$ , filters require ~1 Byte/item. Hash table/Tree can take >8-16 Byte/item.

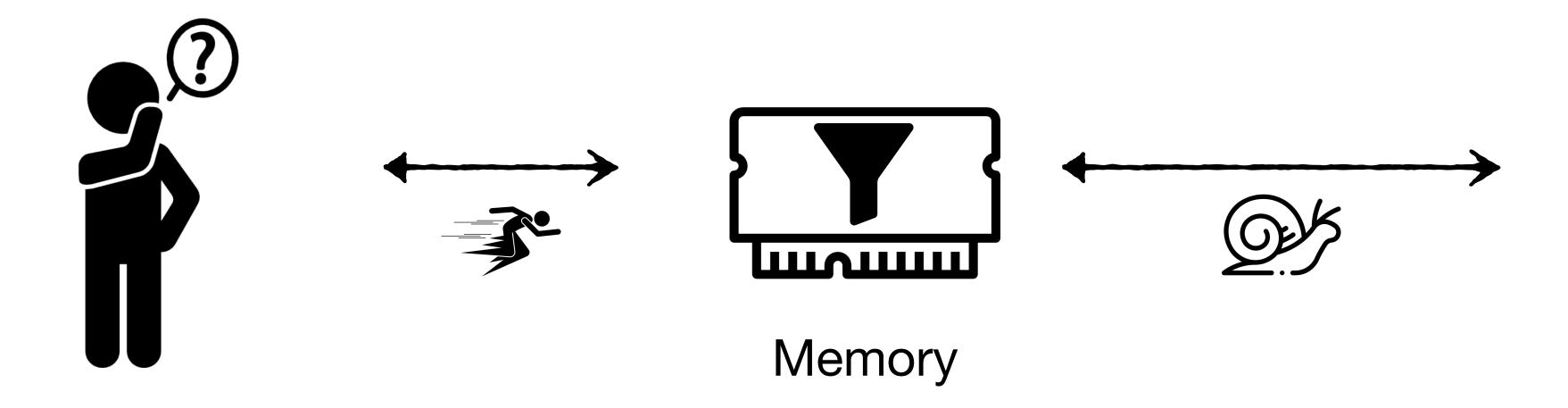


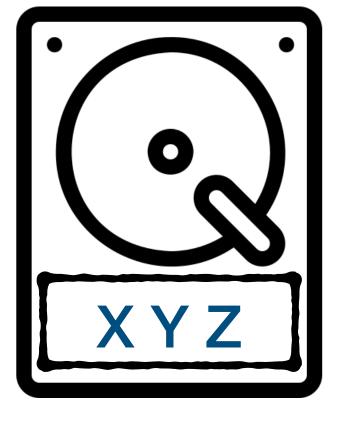


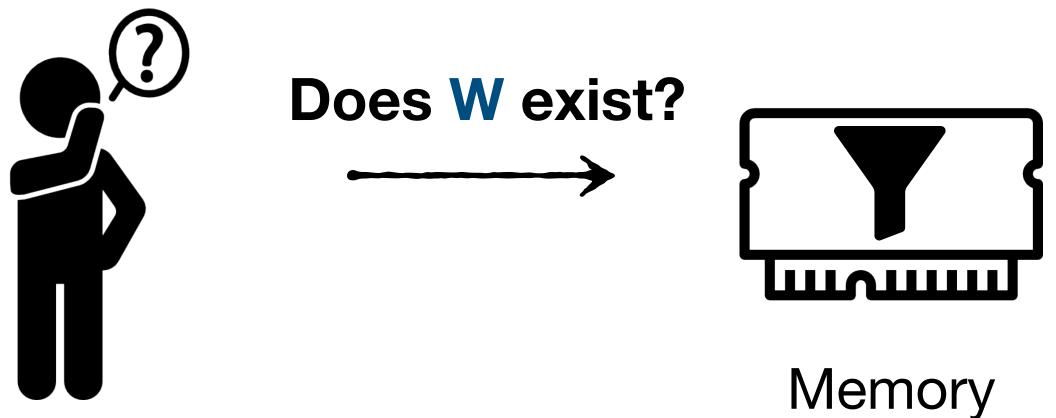
#### Hash table/Tree

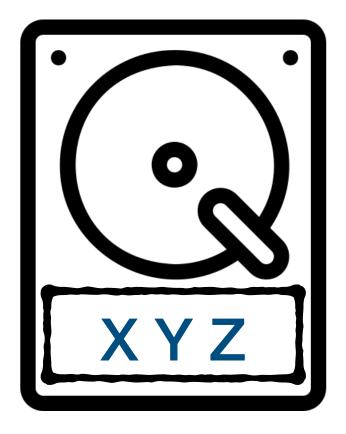
### Filters offer weak guarantees

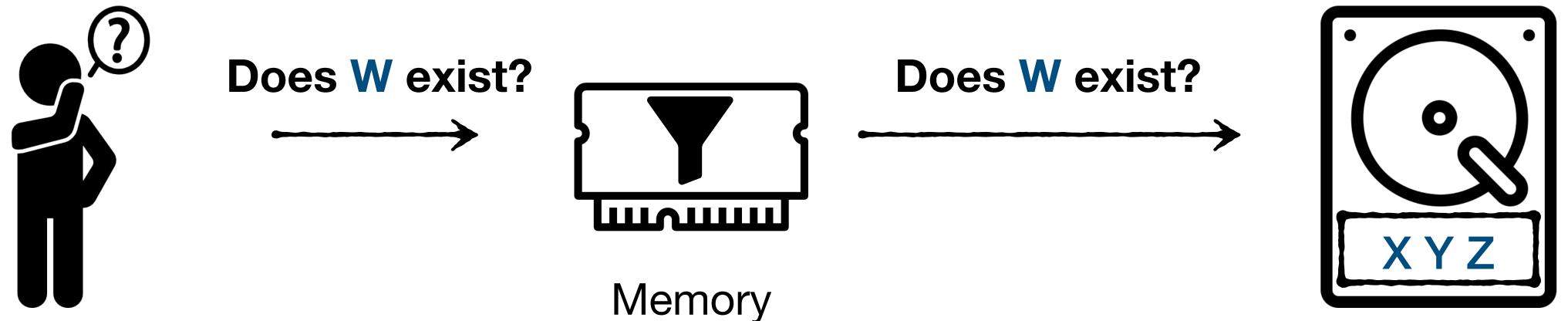
# The maximum false positive rate is only guaranteed for a single query and not an arbitrary sequence of queries



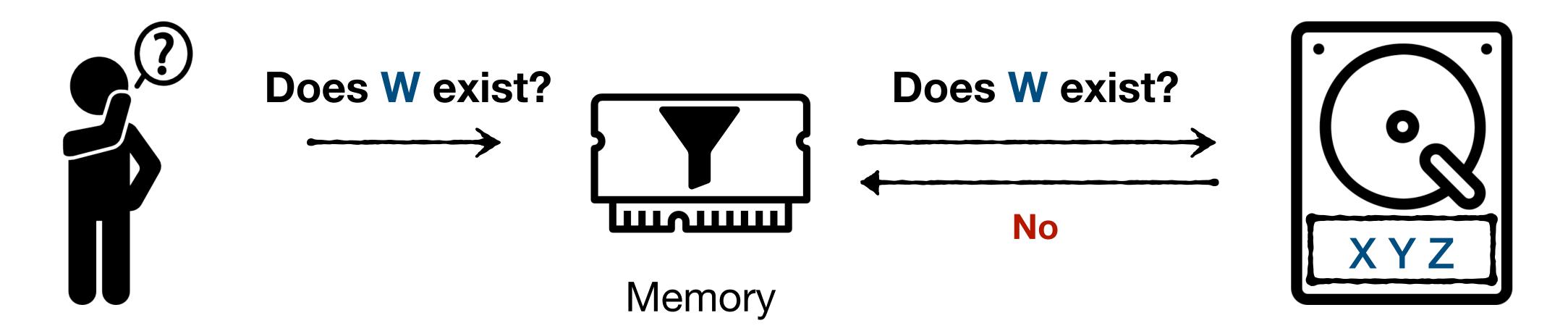






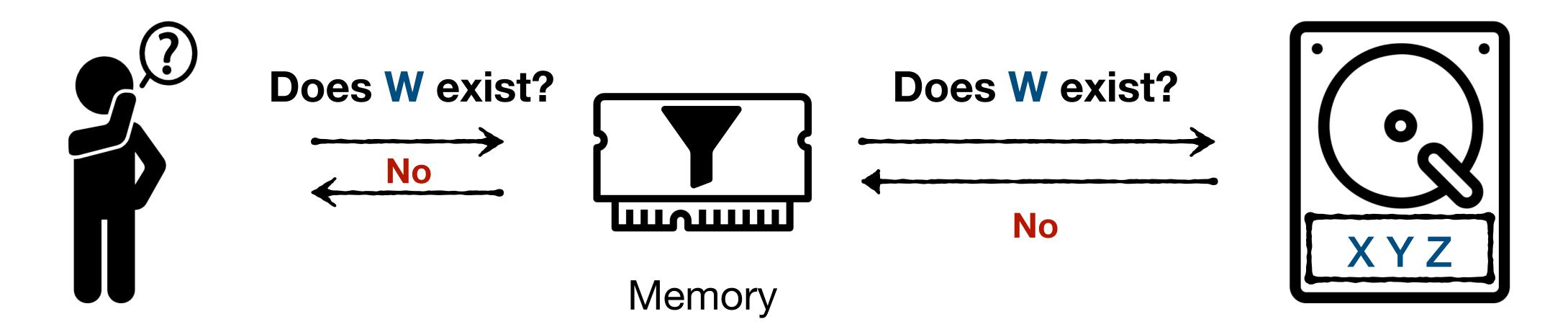






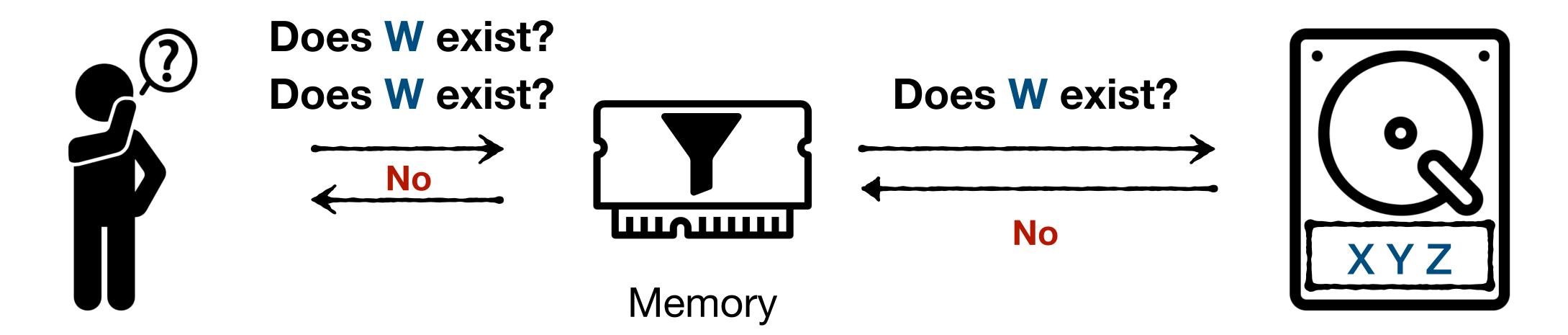


#### False positive



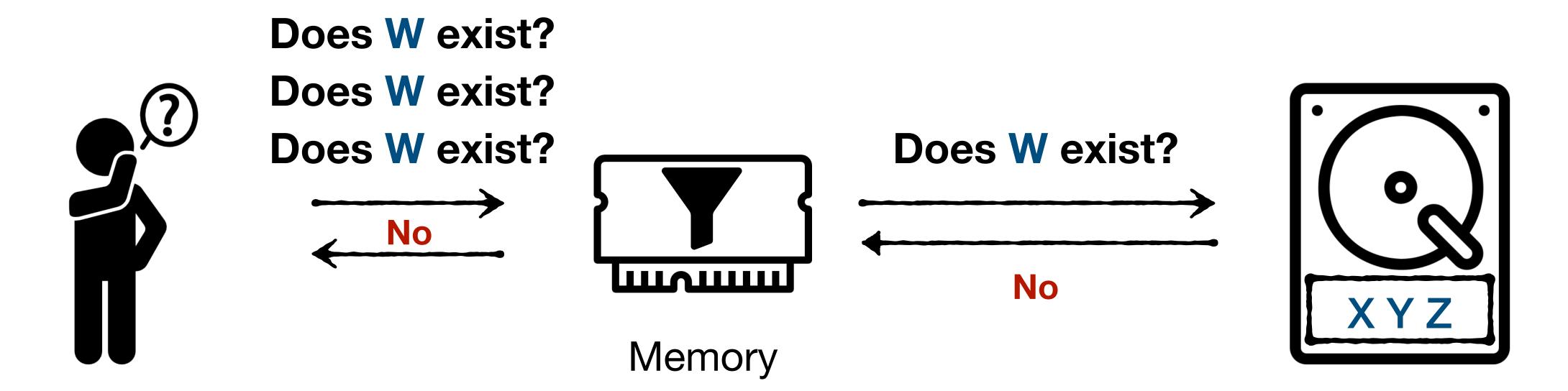


#### False positive



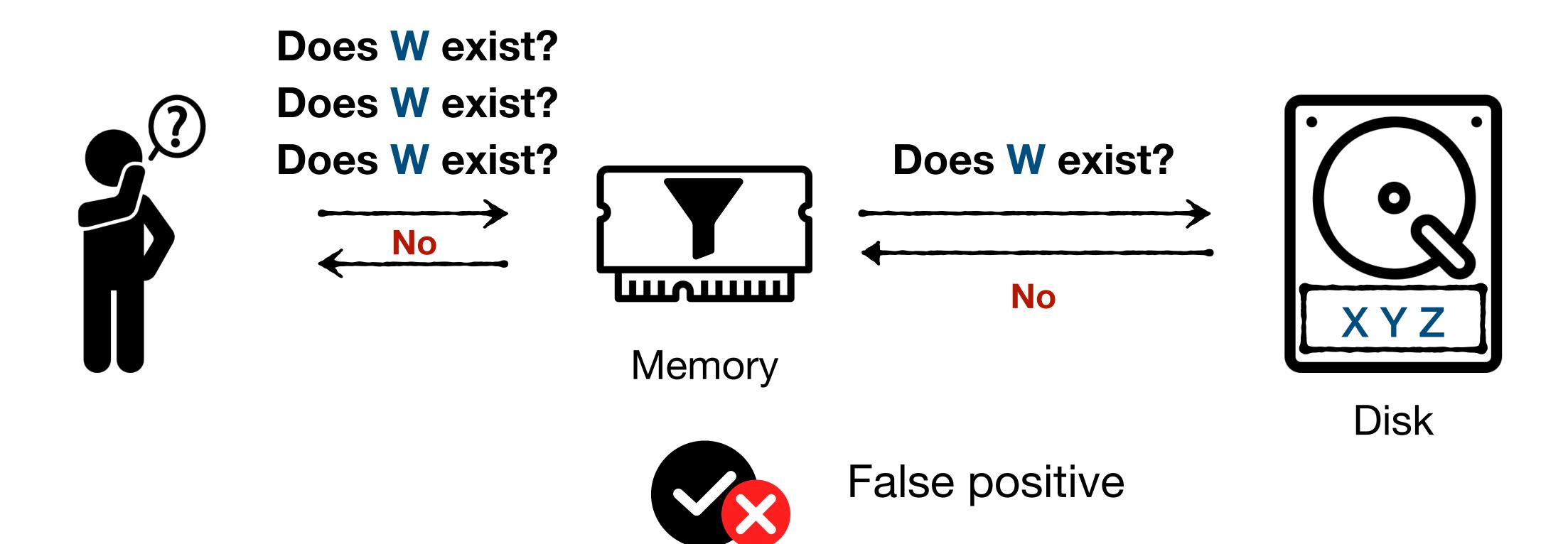


#### False positive



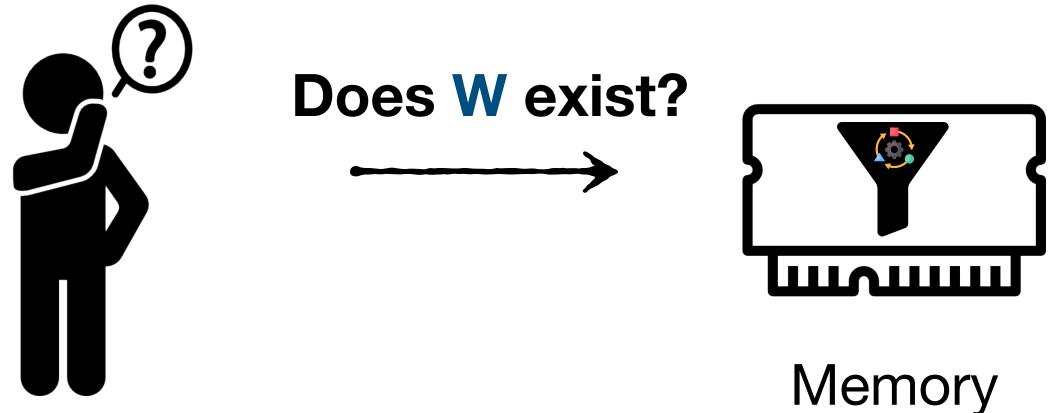


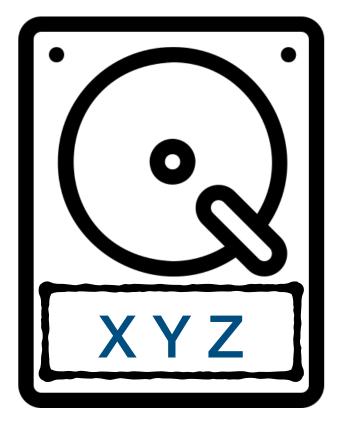
#### False positive



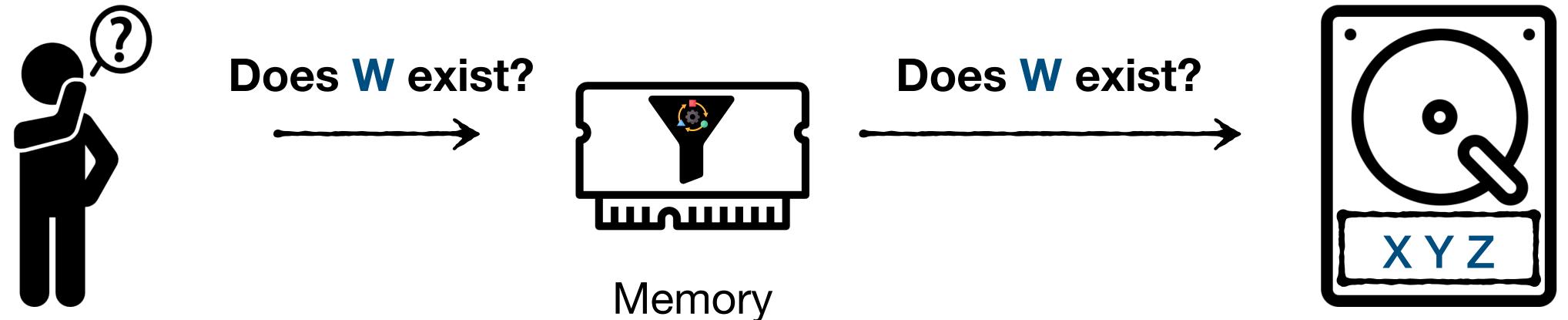
### False-positive rate $\leq \epsilon$ , only for a single query

Can we learn from the feedback?



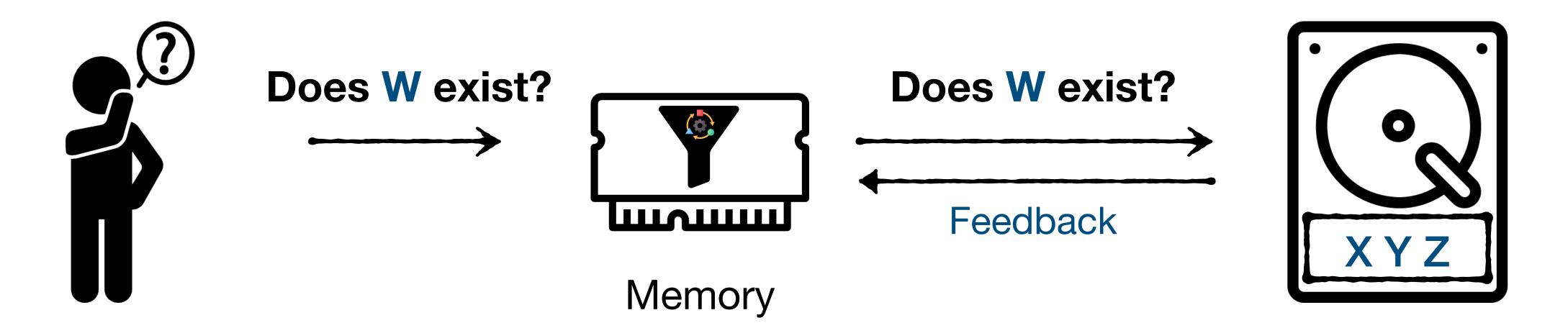








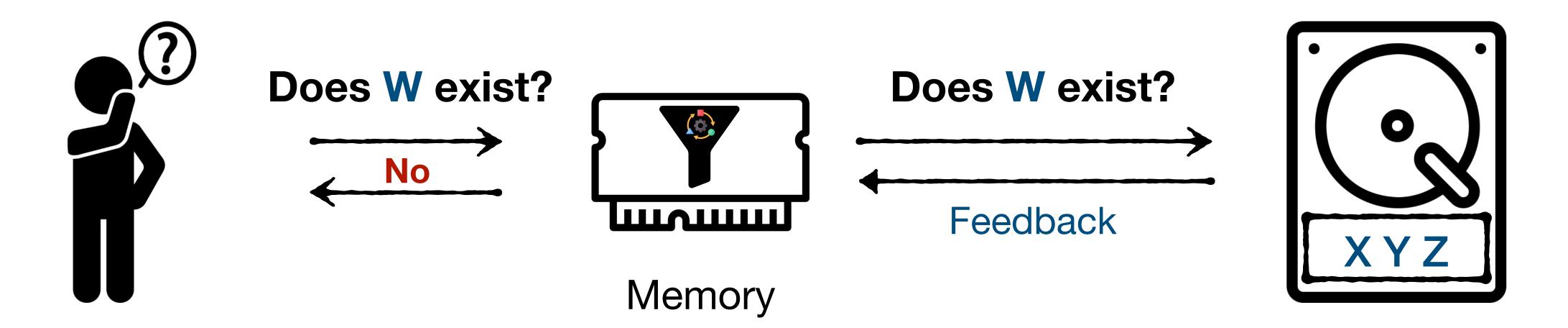






#### False positive

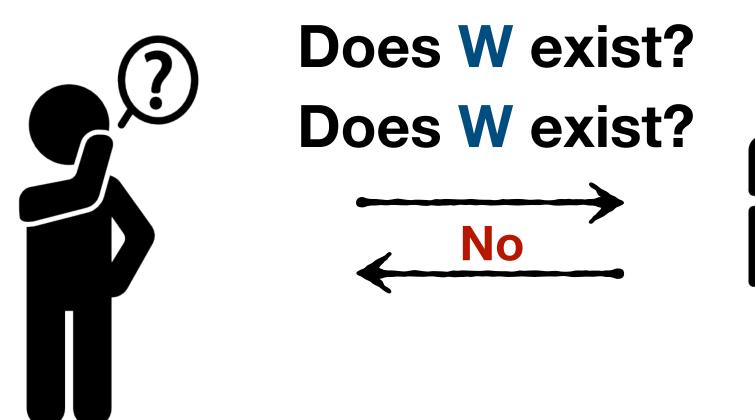


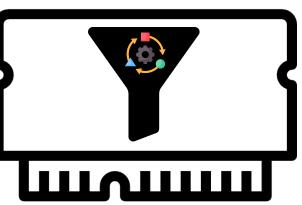




#### False positive





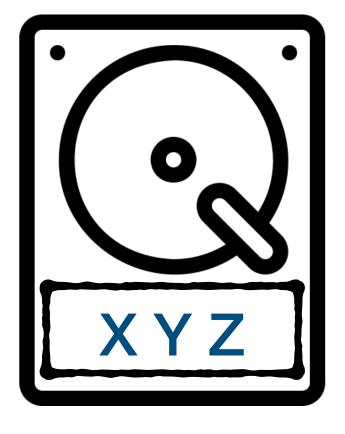


Memory

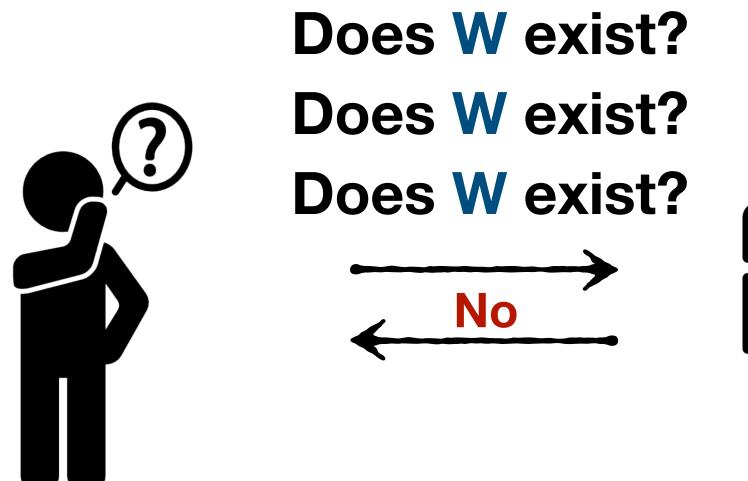


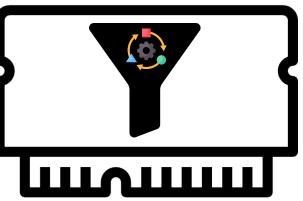










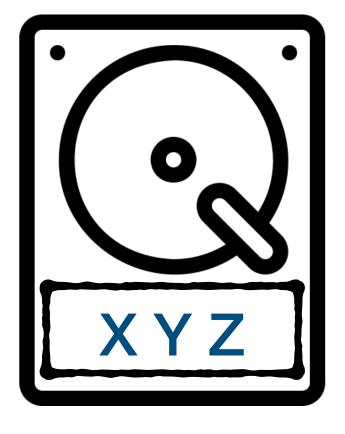


Memory









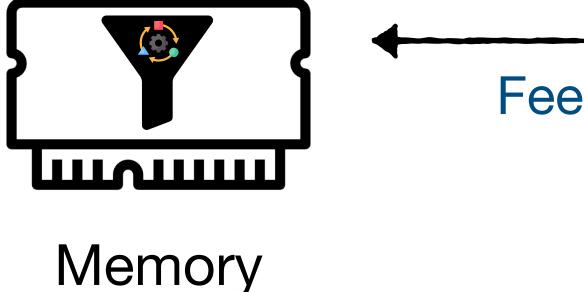


### Adaptive filters [BFG+ 2018]

### An adaptive filter modifies its state upon feedback and produces close to $O(\epsilon n)$ false positives for any sequence of n queries

### False-positive rate $\leq \epsilon$ , independent of the query distribution

### Adaptive filter design has two parts [BFG+ 2018]



## Small in-memory filter accessed on every query

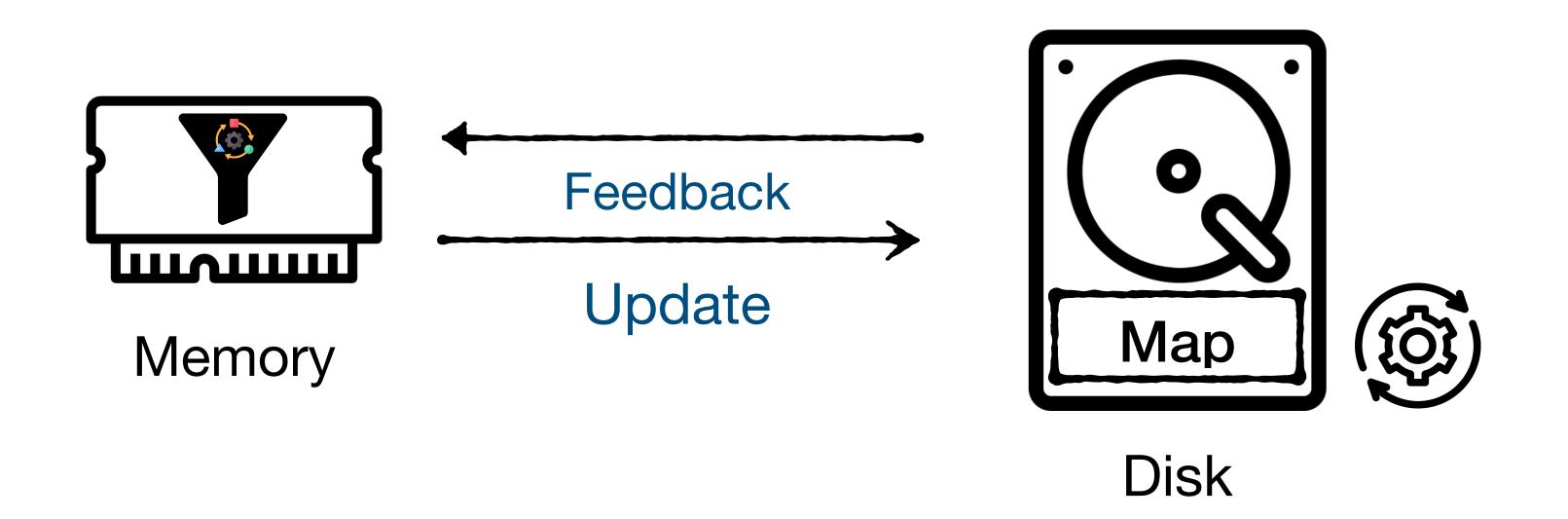


#### Feedback

Disk

## Large disk-resident map accessed during adaptations

### Adaptive filter design has two parts [BFG+ 2018]

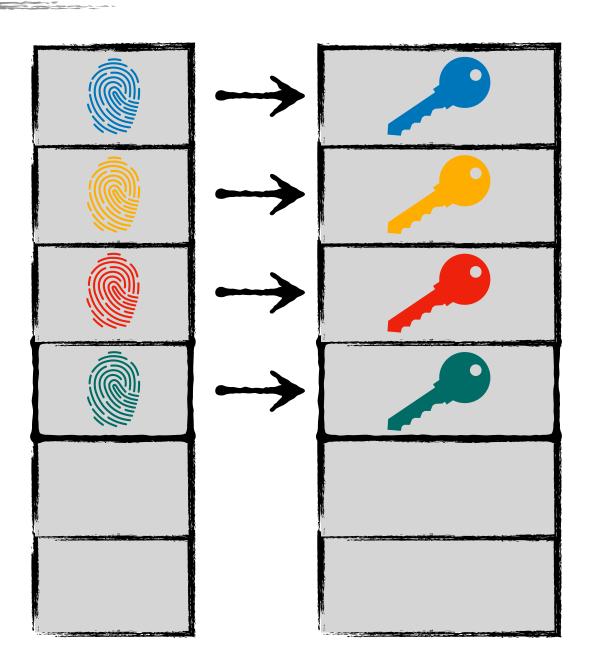


### On-disk map enables adaptations and is updated to fix fingerprint collisions

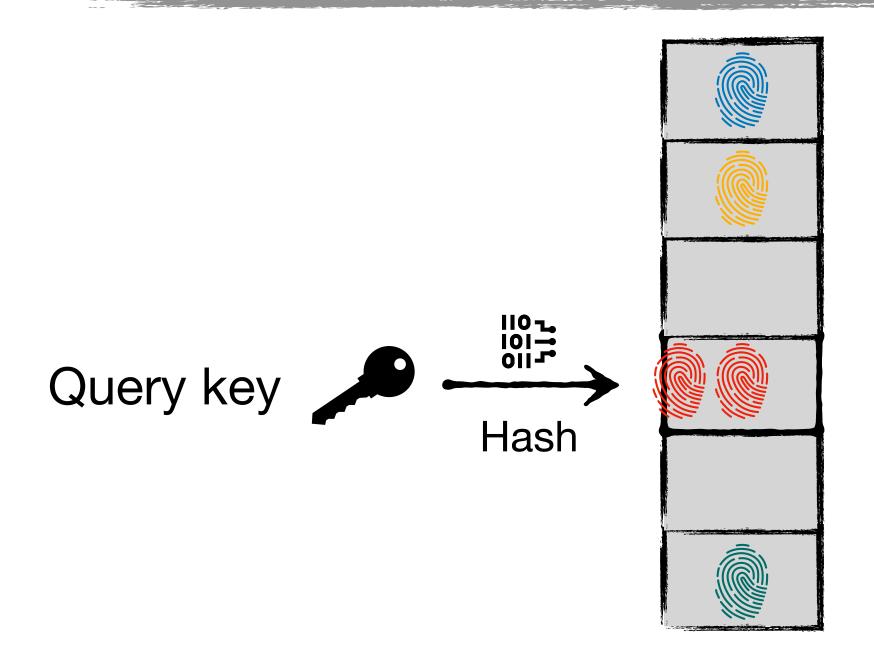




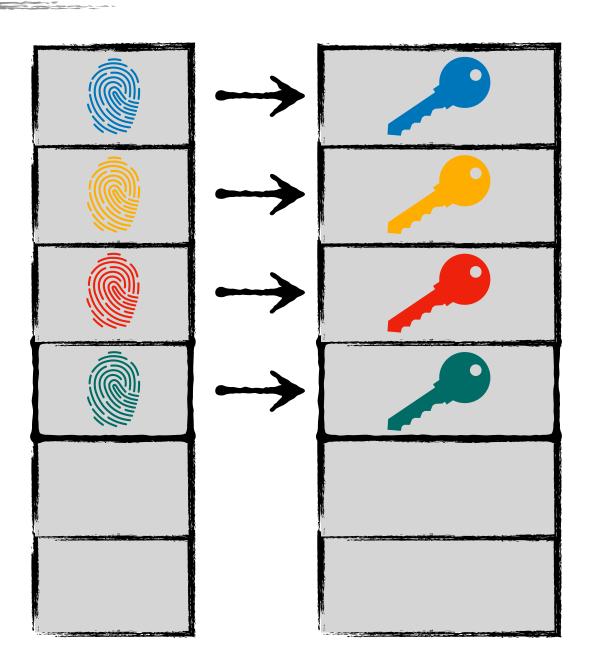
Adaptive filter Memory







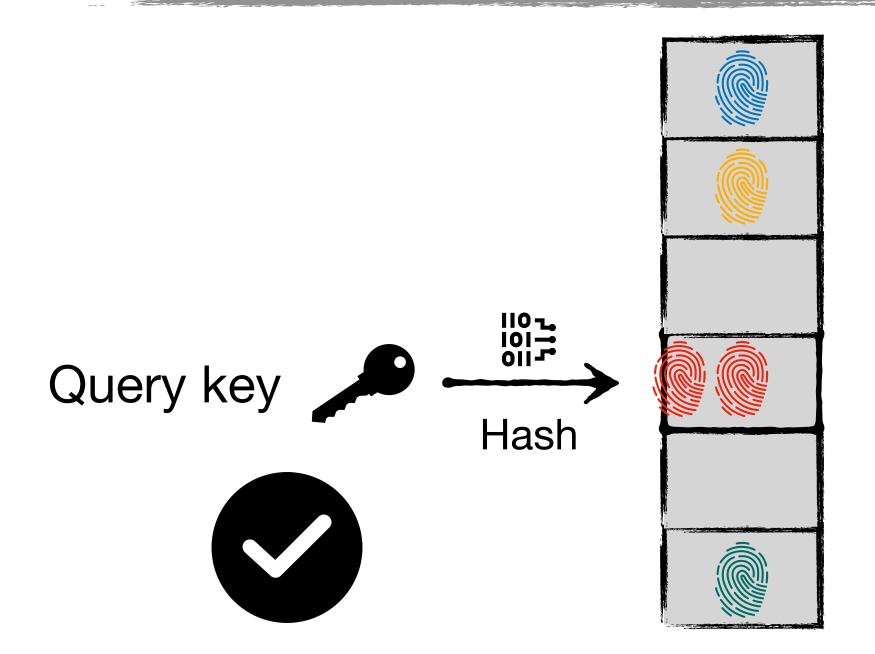
Adaptive filter Memory



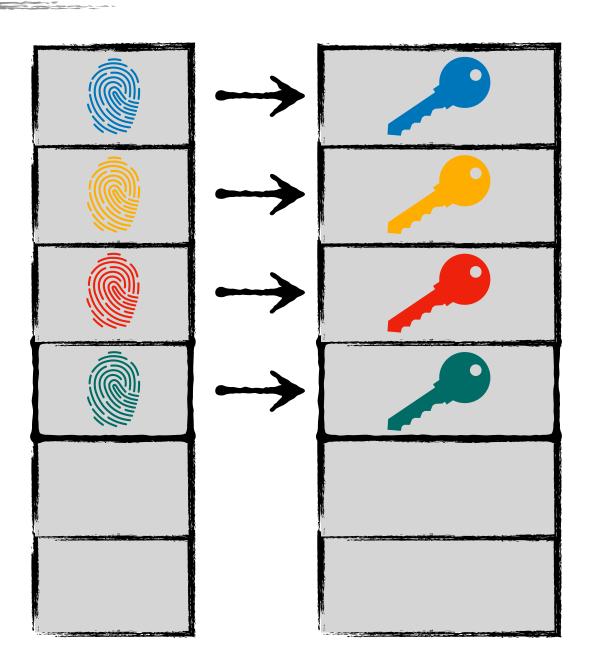
Fingerprint to Key map Disk

Fingerprint collisions can cause false positives





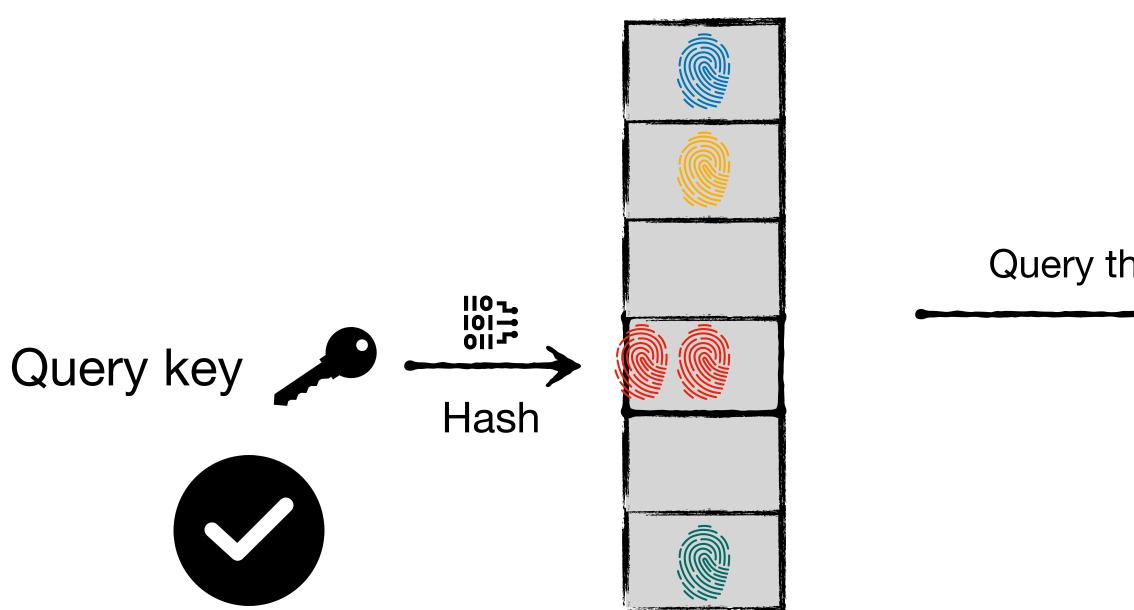
Adaptive filter Memory



Fingerprint to Key map Disk

Fingerprint collisions can cause false positives

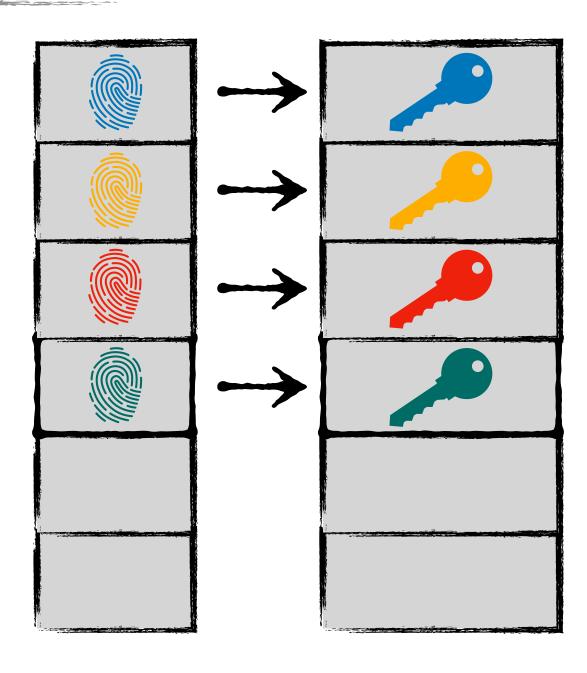




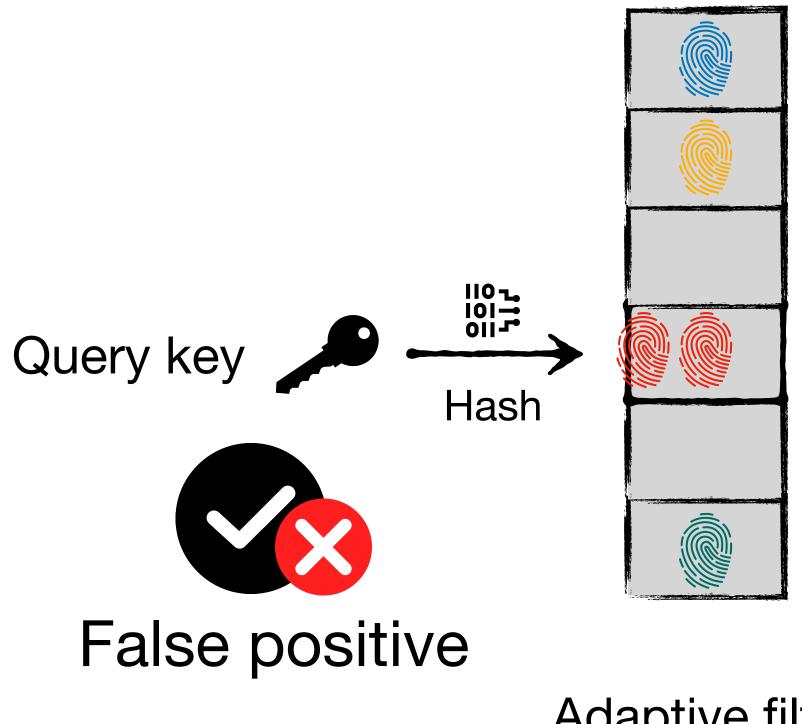
Adaptive filter Memory

### Fingerprint collisions can cause false positives

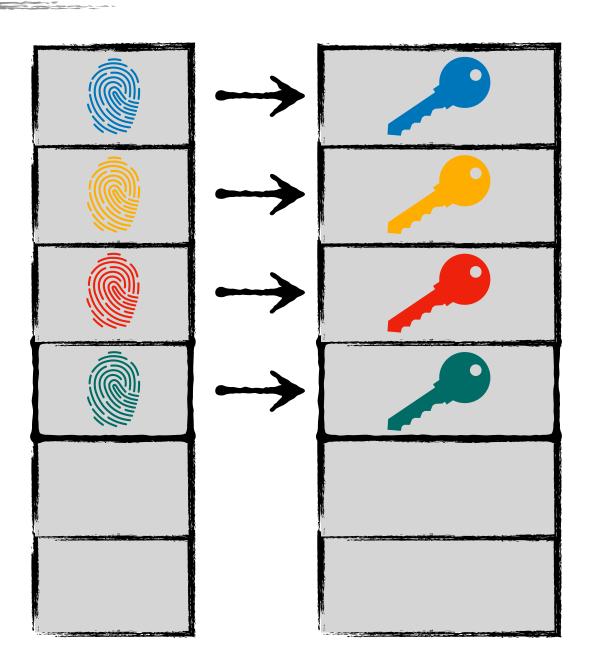
Query the database







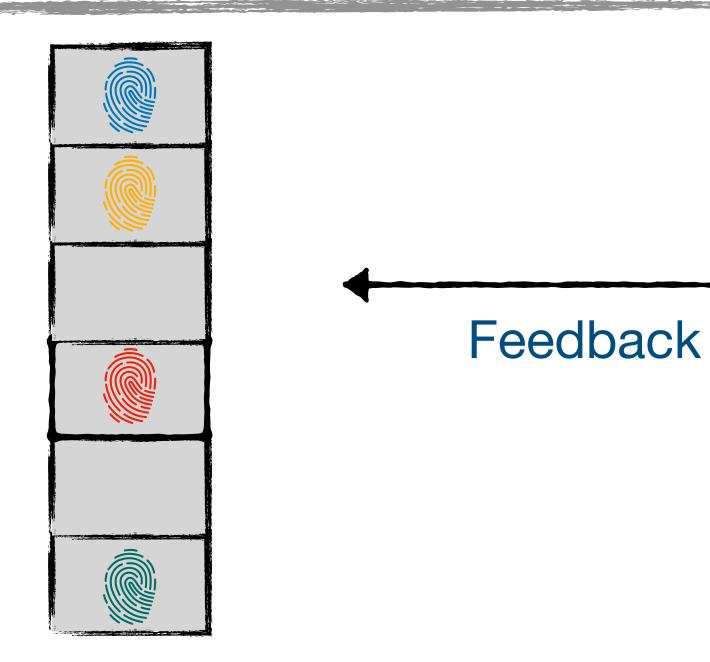
Adaptive filter Memory



Fingerprint to Key map Disk

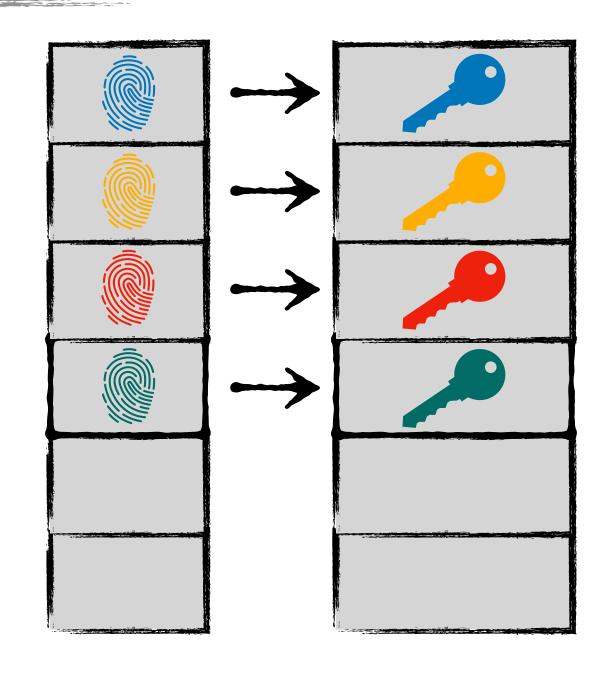
Fingerprint collisions can cause false positives



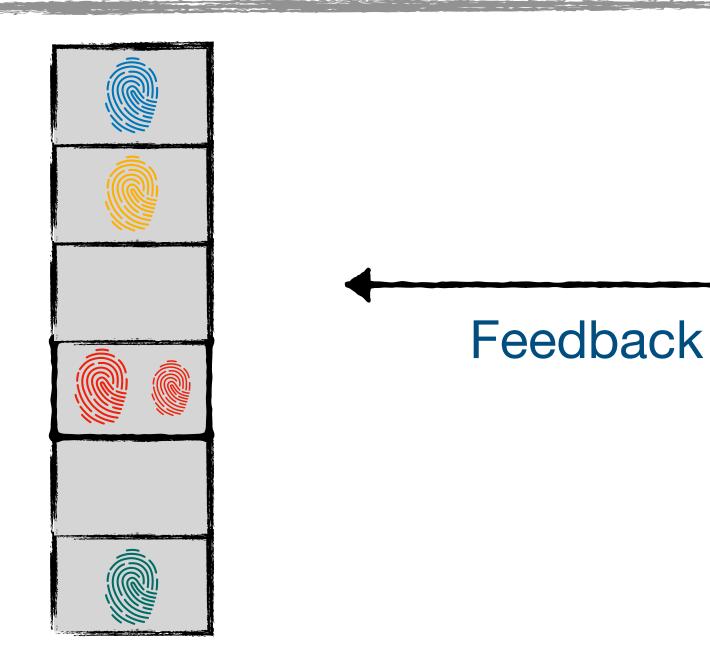


Adaptive filter Memory

### Feedback from the map can help fix the false positive

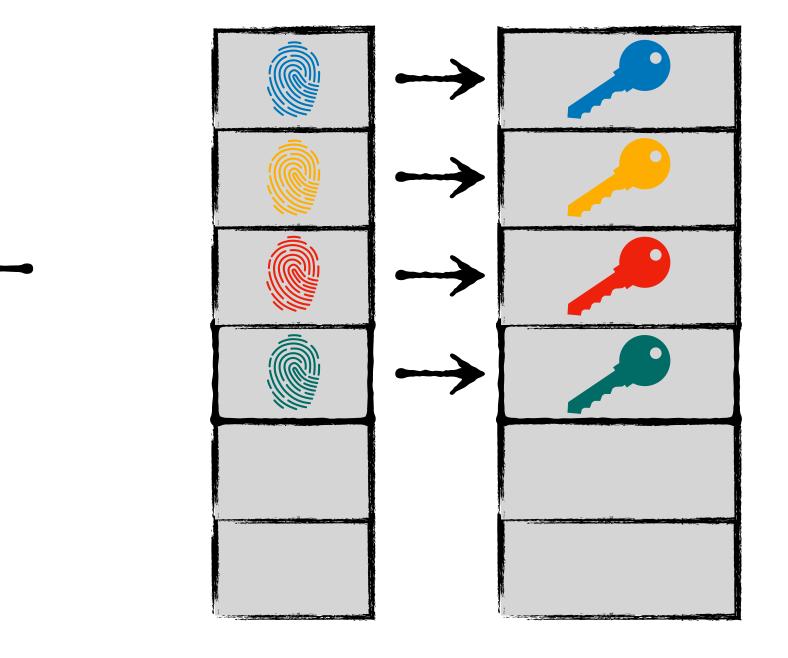




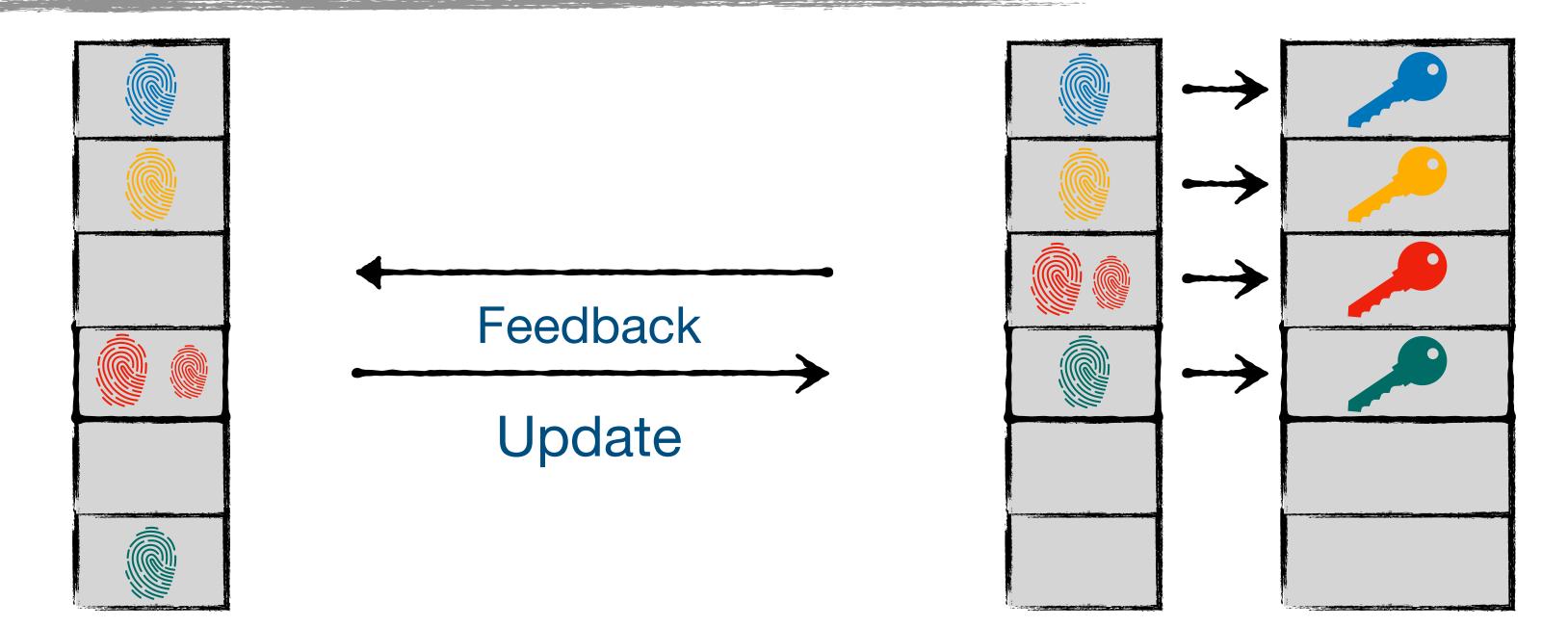


Adaptive filter Memory

Extending the fingerprint of the existing key can avoid future false positives



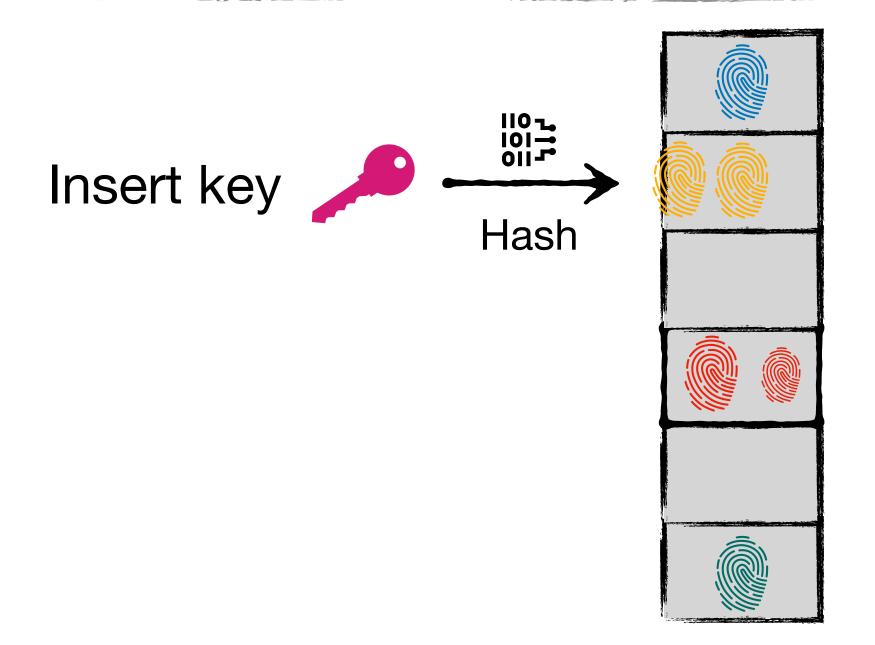




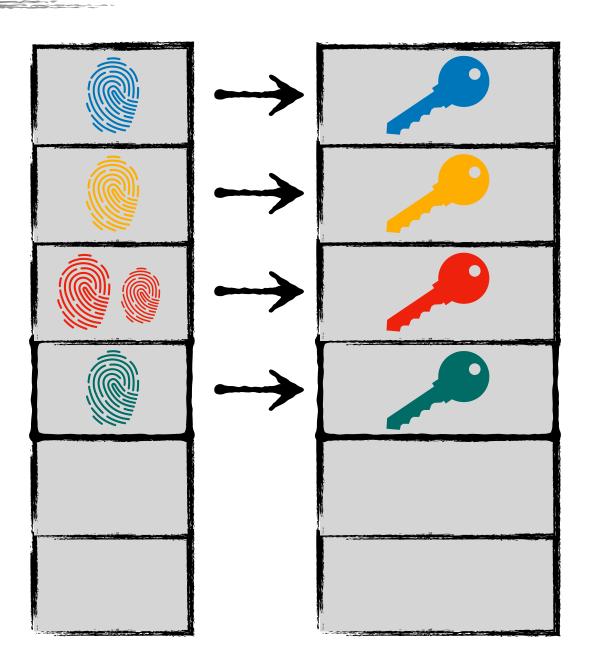
Adaptive filter Memory

### Fingerprint map is updated accordingly

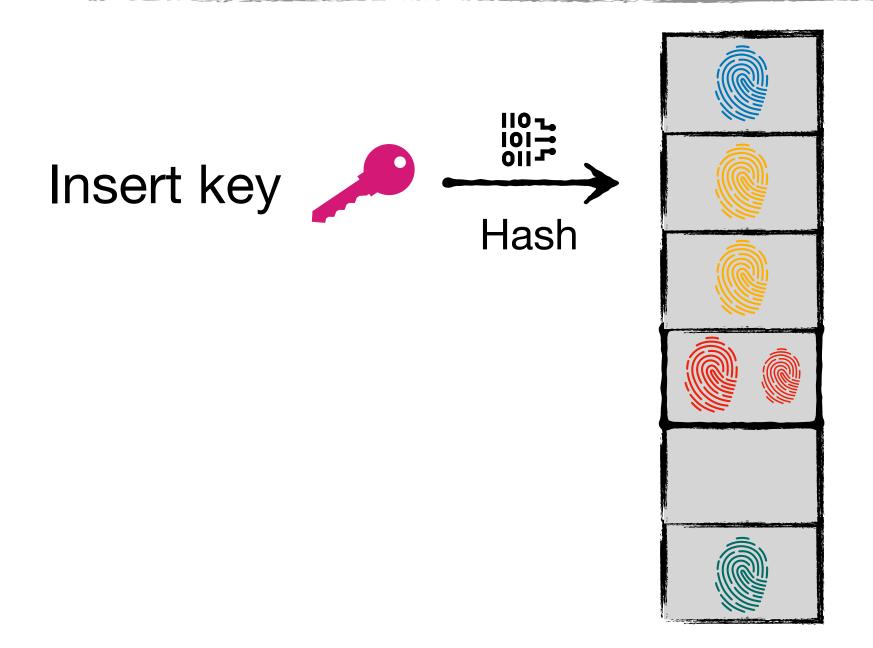




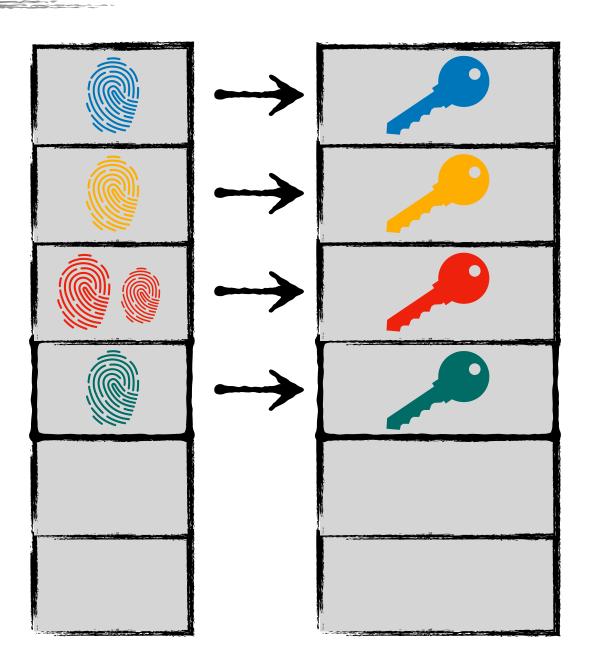
#### Adaptive filter Memory





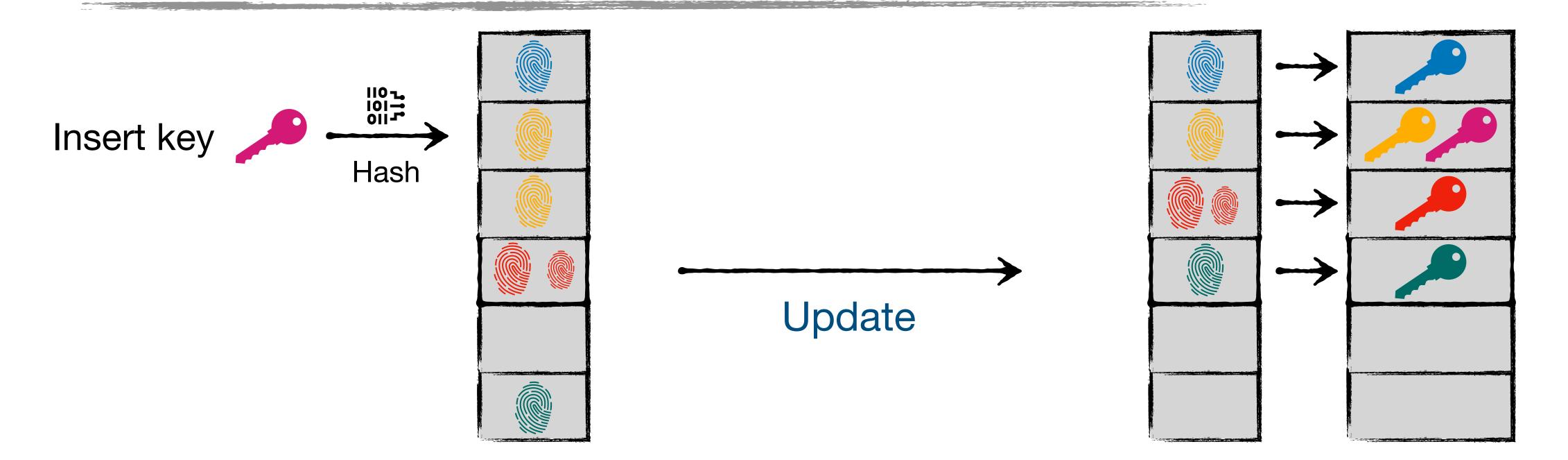


Adaptive filter Memory





## Adaptive filters employ variable-length fingerprints



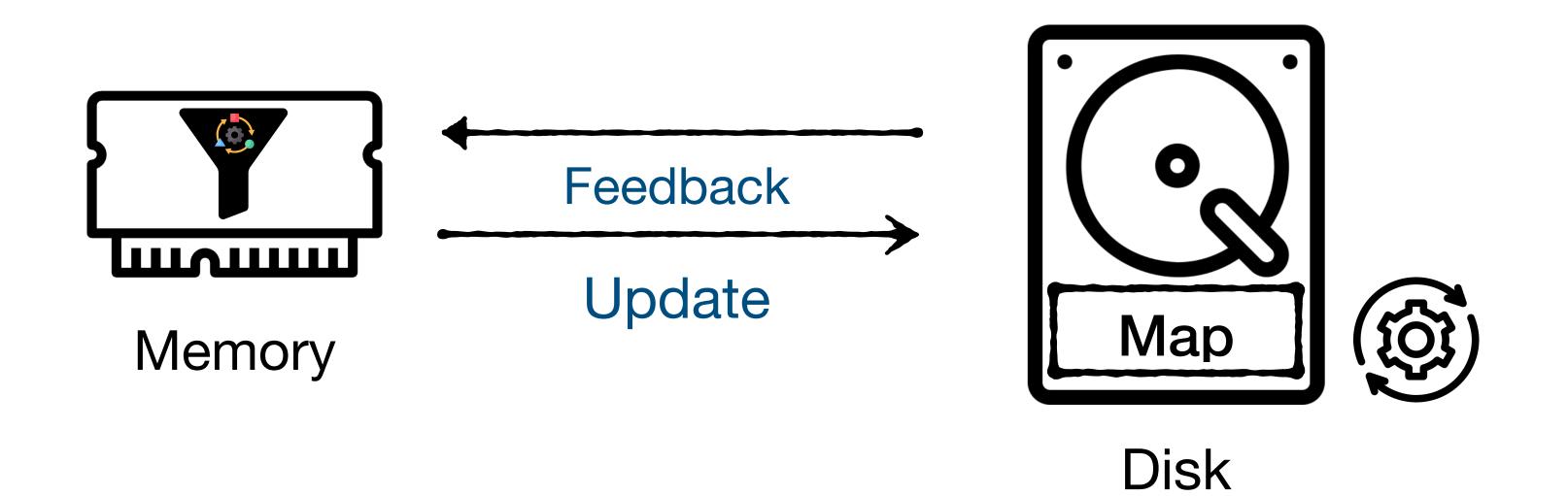
#### Adaptive filter Memory

#### Fingerprint map is updated accordingly

Fingerprint to Key map **Disk** 

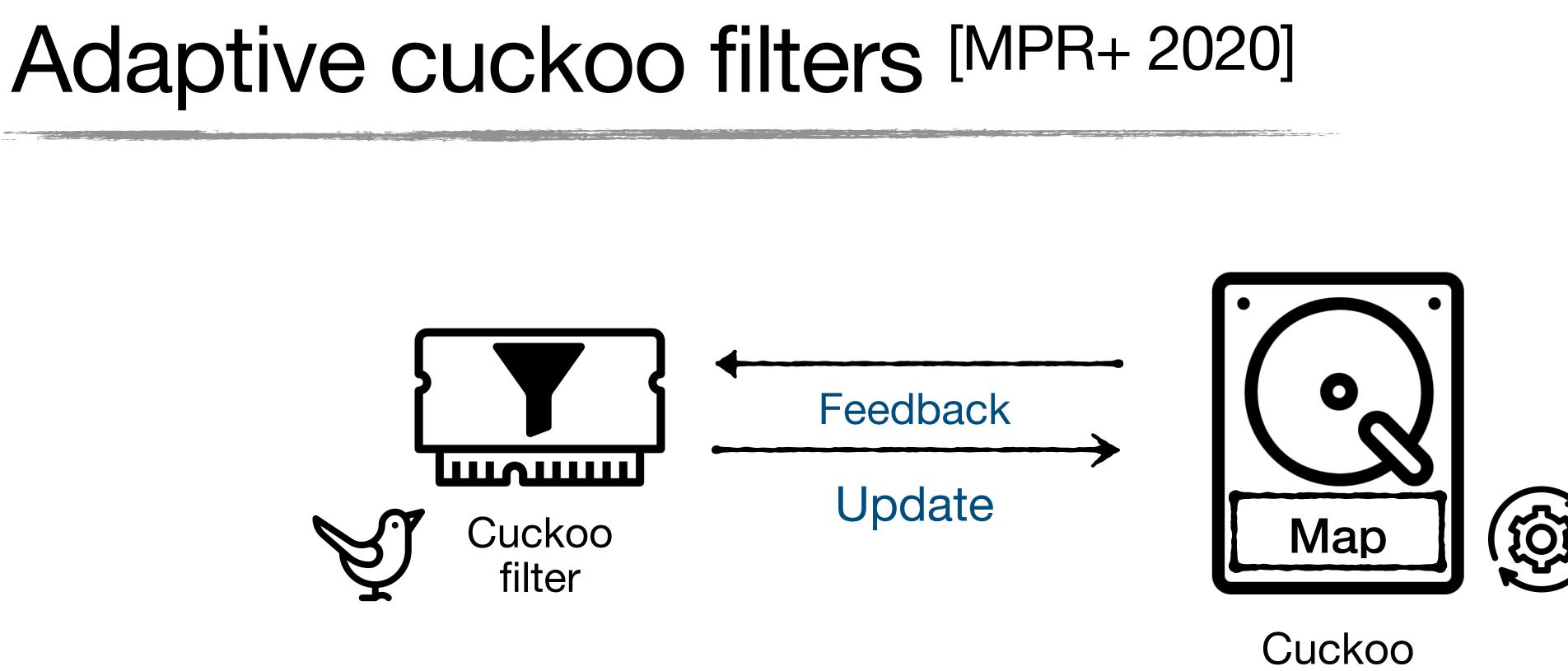


#### Fingerprint map updates dominate the performance



#### Minimizing the work in the map is crucial for the performance

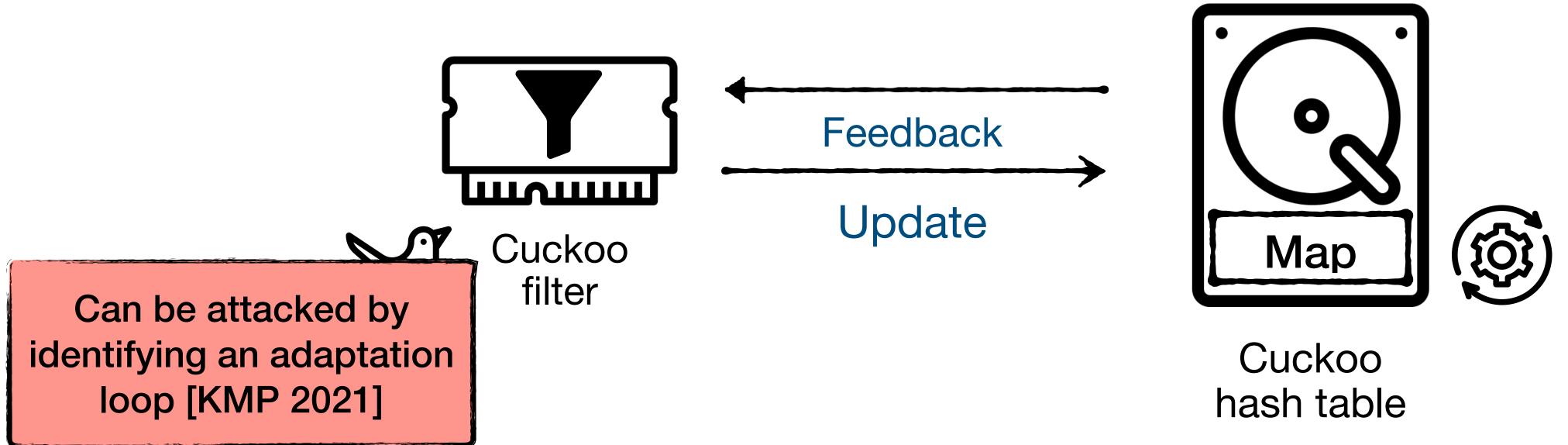




#### Adaptivity by moving fingerprints around

hash table

## Adaptive cuckoo filters offer weak adaptivity

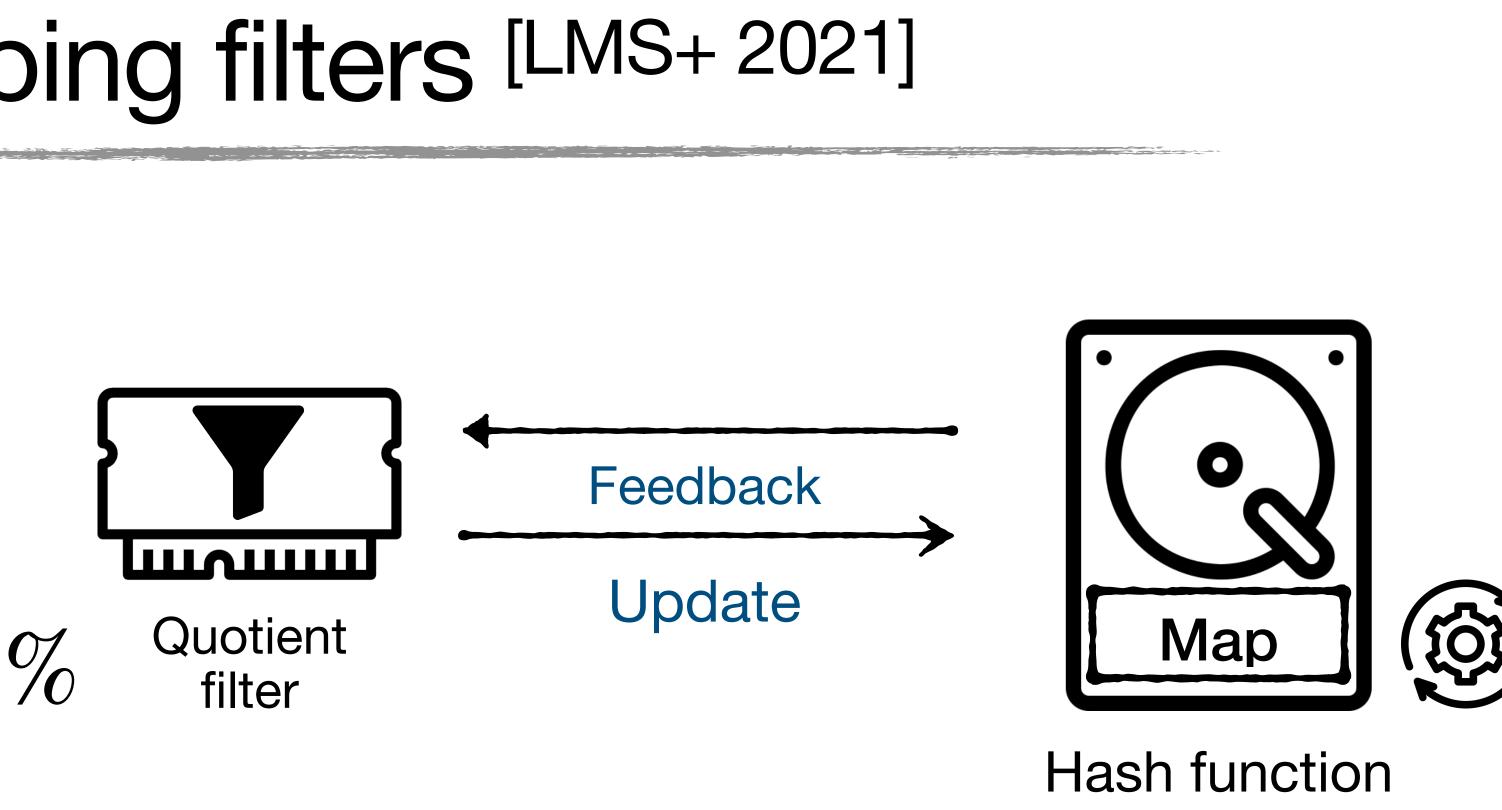




Can forget previous false positives while adapting for new ones

Adaptivity by moving fingerprints around during insertions/queries

# Telescoping filters [LMS+ 2021]



#### Adaptivity by changing hash function during insertions/queries

map

# Telescoping filters offer strong adaptivity





Hash map grows during adaptations (variable-length fingerprints) Does not forget previously learned fingerprints

#### Adaptivity by changing hash function during insertions/queries

map

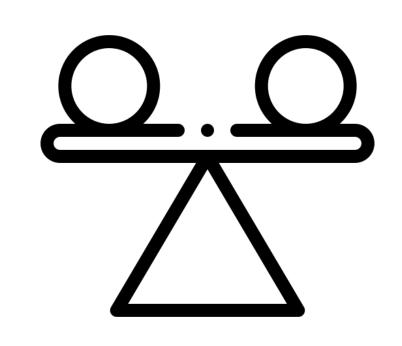
# Adaptive quotient filter [WMT+ SIGMOD 2025]

- Adaptivity by using variable-length fingerprints to avoid collisions
- Based on the counting quotient filter (CQF) [PBJ+ 2017]
- Matches the space lower-bound to lower-order terms
- 10X—30X faster than other adaptive filters (ACF, TF) for disk-based database benchmarks
- Up to 6X faster performance than traditional filters (QF, CF) for disk-based database benchmarks



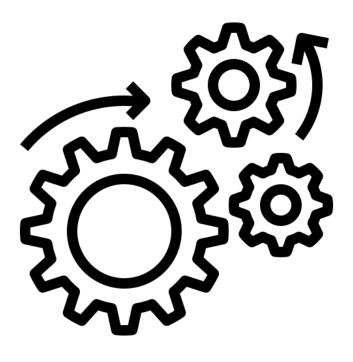
# Adaptive quotient filter design





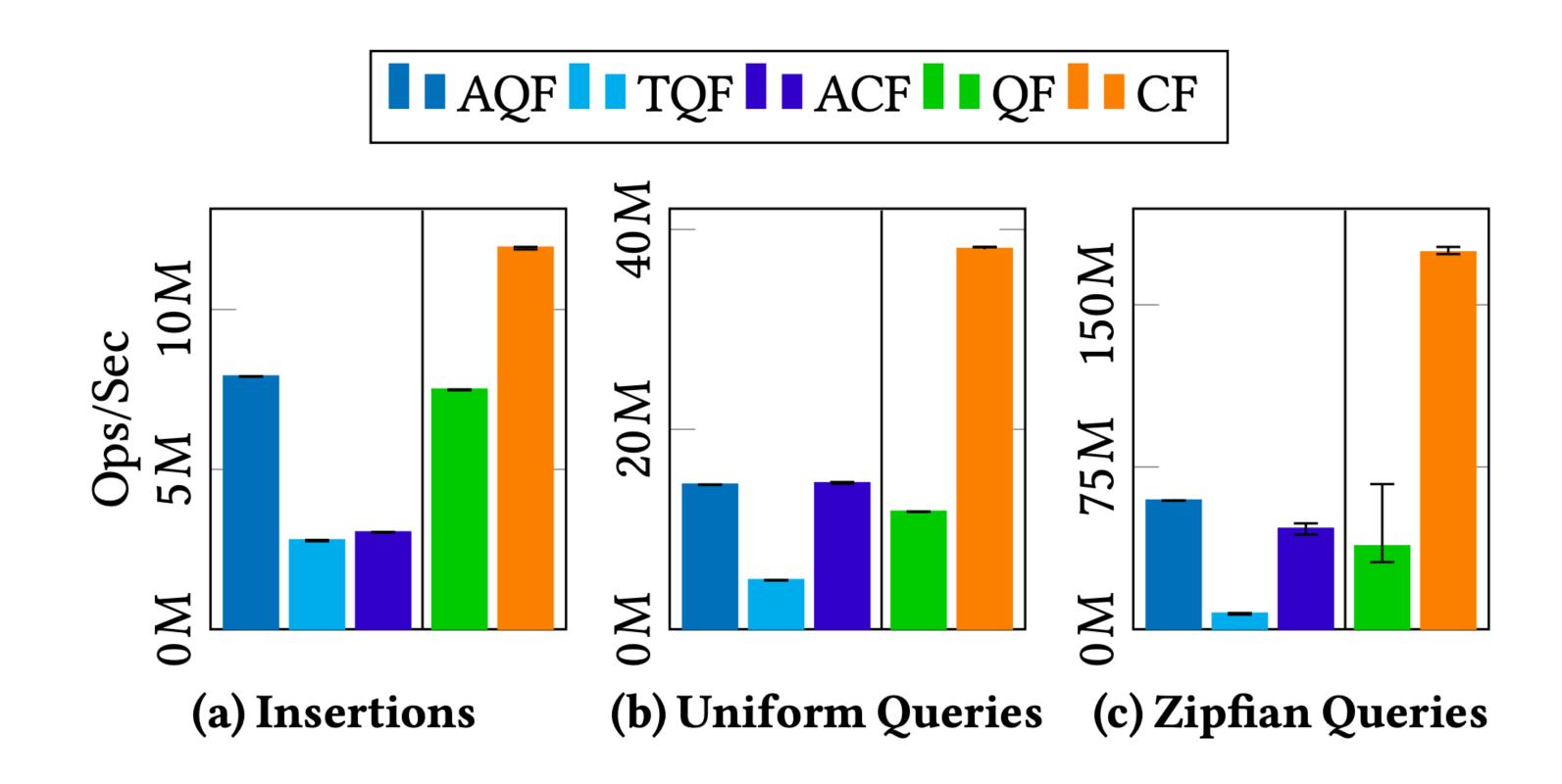
#### Preserves CQF performance and features

Stable reverse map during insertions



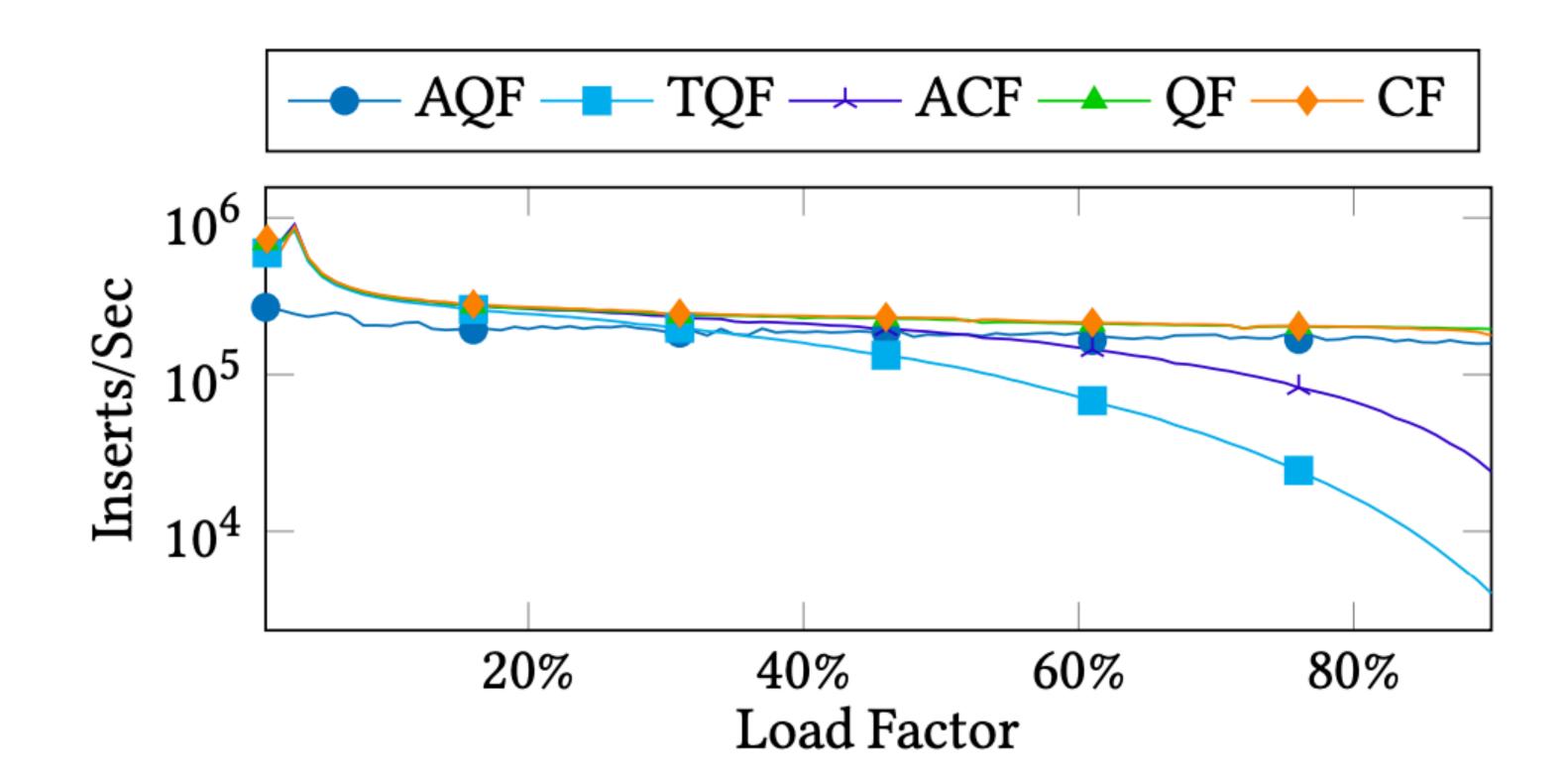
Supports dynamic operations

# Micro-benchmark performance



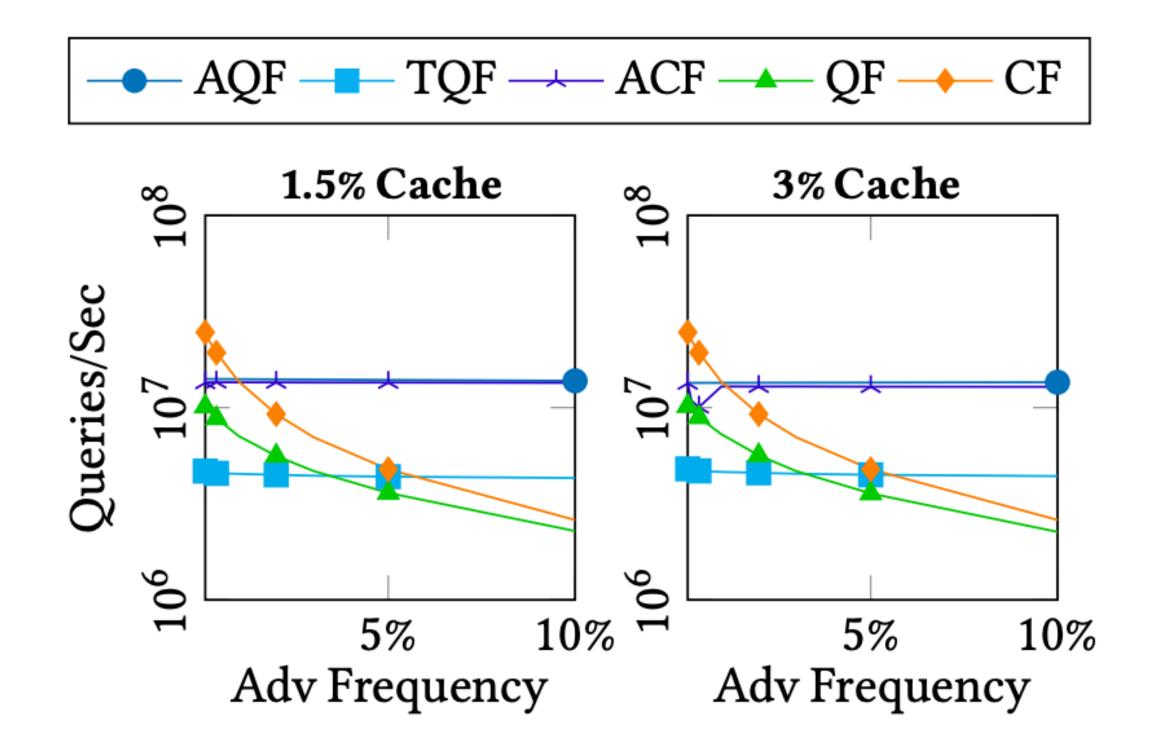
#### AQF has no overhead compared to the traditional CQF

### Database insertion performance



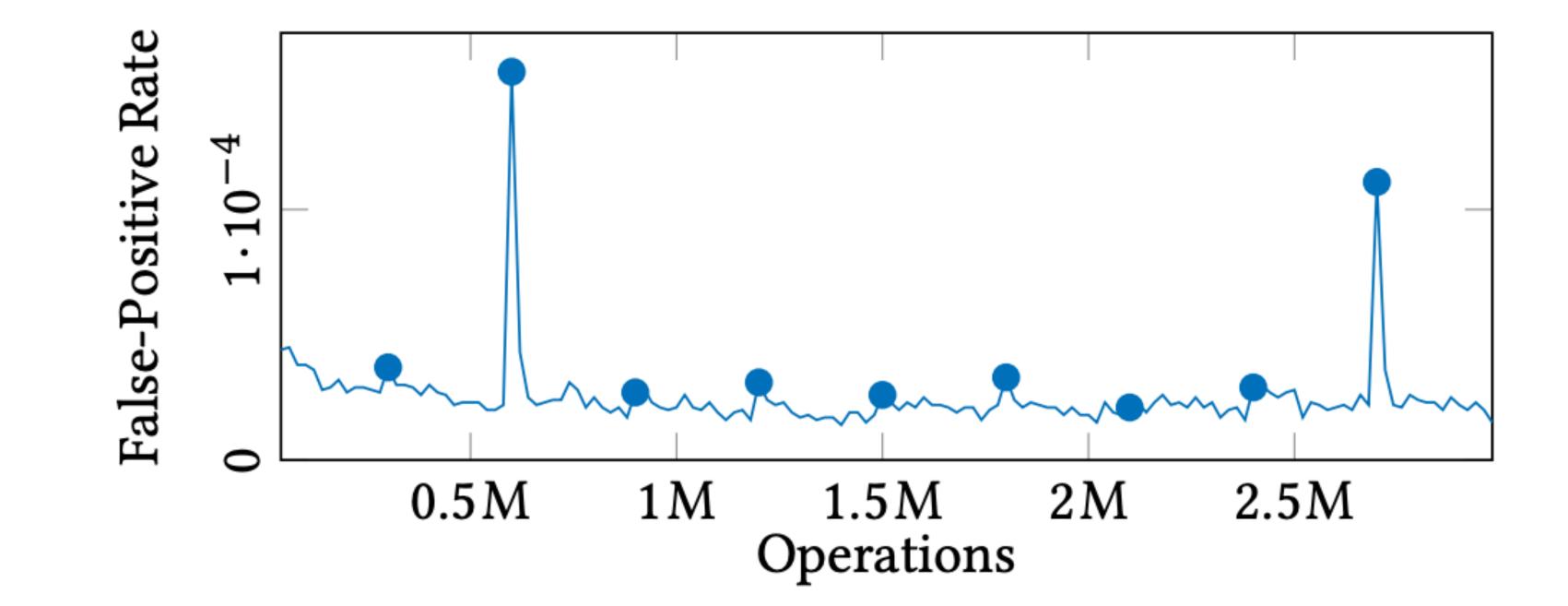
AQF performs similarly to QF/CF for database insertions 10X – 30X faster than other adaptive filters

### Database query performance



#### AQF up to 6X faster compared to QF/CF for database queries

### Adaptivity rate on a churn workload



AQF adapts to new false positives almost immediately for churn workloads

AQF offers even stronger guarantees compared to the broom filter [BFG+ 2018]

## False positives can be really expensive

Malicious URLs



A false positive can block critical URLs such as a voter registration webpage or emergency weather info Legitimate URLs





Filter containing malicious URLS





False positive

# YES/NO list problem

#### if $q \in YES$ , return

if  $q \in NO$ , return

**True** with probability 1

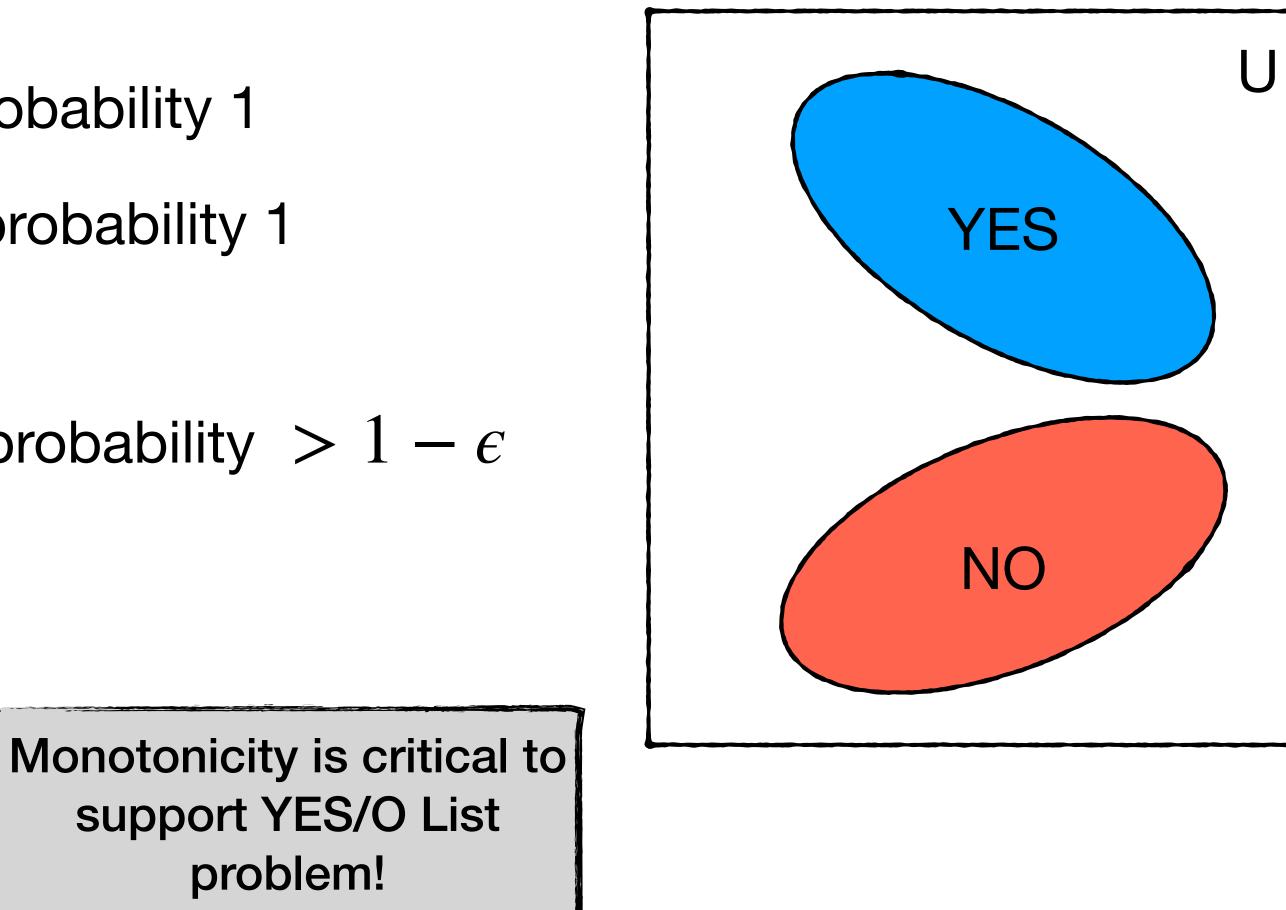
**False** with probability 1

Otherwise

**False** with probability  $> 1 - \epsilon$ 

#### Applications:

- Detecting malicious URL
- Certificate revocation lists
- De Bruijn graph traversal



# Prior work considered each problem separately

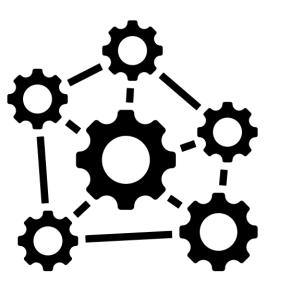
**Purpose-built solutions** 

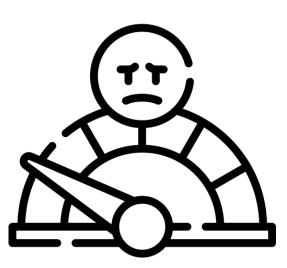
Bloomier filter [CKR+ 2004]

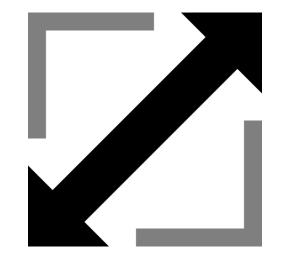
Cascading Bloom filter [TC 2009]

Static XOR filter [RSW+ 2021]

Seesaw counting filter [LCD+ 2022]







Complex design

#### Low performance

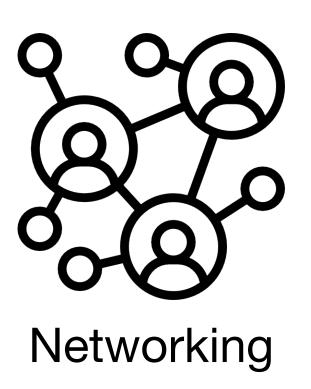
High space

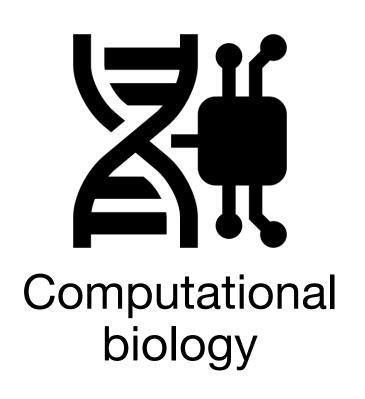


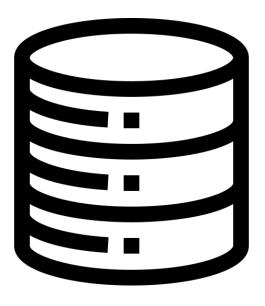
### Monotonically adaptive filters solve many problems

- Security; avoiding DOS attacks
  - Static YES/NO list
  - Dynamic YES/NO list

- Robust performance guarantees
  - Skewed query distributions
  - Adversarial queries







Databases



# Takeaways

- Adaptability is a critical to achieve robust performance in the context of skewed/adversarial workloads
- Monotonically adaptive filters can help address challenges across applications
- We need to redesign traditional applications in the context of newer guarantees and API offered by adaptive filters

Acknowledgment: All icons in the talk are taken from https://www.flaticon.com/

