Adaptive Filters

How to learn from your mistakes

Prashant Pandey, University of Utah
https://prashantpandey.github.io/

What is a filter data structure?

Does X exist? —_—> ' —_—>
Set

A filter compactly represents a set by trading off accuracy for space efficiency

2

What is a filter data structure?

Yes

A filter compactly represents a set by trading off accuracy for space efficiency

3

What is a filter data structure?

Does X exist?

Does W exist? ¢ E ' —_—>
No
Set
X

A filter compactly represents a set by trading off accuracy for space efficiency

4

What is a filter data structure?

Does X exist?

Does W exist?

Yes

A filter compactly represents a set by trading off accuracy for space efficiency

5

A filter guarantees a false-positive rate €

g = query item S = set of items

if g €S, return True with probability 1 true positive

False with probability > 1 — ¢ true negative

if g & S, return

True with probability < € false positive

False positives with tunable probability

6

False-positives enable filters to be compact

n = number of items U = universe of items

space > n log(lﬂ/ €) space = Q(nlog(U)

Filter Hash table/Tree

For e = 2 %, filters require ~1 Byte/item. Hash table/Tree can take >8-16 Byte/item.

Filters offer weak guarantees

The maximum false positive rate is only guaranteed for
a single query and not an arbitrary sequence of queries

Skewed workloads can make filters obsolete

0
g

Disk

Skewed workloads can make filters obsolete

@ Does W exist?

i

Disk

Skewed workloads can make filters obsolete

Does W exist? Does W exist?

®
i b

Disk

Skewed workloads can make filters obsolete

'@ Does W exist? Does W exist?
» LY
[TTY,YTITIT] No
Memory

Disk

& False positive

Skewed workloads can make filters obsolete

'@ Does W exist? Does W exist?
» - (Y
€—
[TTY,YTITIT] No
Memory

Disk

& False positive

Skewed workloads can make filters obsolete

@ Does W exist?

' Does W exist? Does W exist?
®» = (Y
€—
ITTY,YTITIT] No
Memory

Disk

& False positive

Skewed workloads can make filters obsolete

Does W exist?
@ Does W exist?

' Does W exist? Does W exist?
®» = (Y
€—
ITTY,YTITIT] No
Memory

Disk

& False positive

Skewed workloads can make filters obsolete

Does W exist?
@ Does W exist?

' Does W exist? Does W exist?
®» = (Y
€—
ITTY,YTITIT] No
Memory

Disk

& False positive

False-positive rate < ¢, only for a single query

Can we learn from the feedback?

Adaptive filters change their state upon feedback

@ Does W exist?

i

Disk

Adaptive filters change their state upon feedback

'@ Does W exist? Does W exist?

P

Memory

Disk

Adaptive filters change their state upon feedback

'@ Does W exist? Does W exist?
D Y
LLLNLLLLLL Feedback
Memory

Disk

& False positive

Adaptive filters change their state upon feedback

'@ Does W exist? Does W exist?
D o (Y
LLLNLLLLLL Feedback
Memory

Disk

& False positive

Adaptive filters change their state upon feedback
Does W exist?

'® Does W exist?

w o [Y

Memory

8 True negative

Disk

Adaptive filters change their state upon feedback

Does W exist?
@ Does W exist?
Does W exist?

P

Memory

8 True negative

Disk

Adaptive filters [BFG+2018]

An adaptive filter modifies its state upon feedback and produces
close to O(en) false positives for any sequence of n queries

False-positive rate < ¢, independent of the query distribution

Adaptive filter design has two parts [BFG+2018

ﬁ Feedback

TP YTITITI
Memory
Disk
Small in-memory filter Large disk-resident map

accessed on every query accessed during adaptations

Adaptive filter design has two parts [BFG+2018

E Feedback

MTTYYTITIT]
Update

Memory

On-disk map enables adaptations and is updated to fix fingerprint collisions

Adaptive filters employ variable-length fingerprints

e _ M— ————m — — AR

I

Adaptive filter Fingerprint to Key map
Memory Disk

Adaptive filters employ variable-length fingerprints

e _ — e — E—— AR

110,

OIIJ-': | ‘*~._w B
Query key) LGy Y
Hash $———v

R

Adaptive filter Fingerprint to Key map
Memory Disk

Fingerprint collisions can cause false positives

Adaptive filters employ variable-length fingerprints

e _ — e — E—— AR

110, j |
0||-|-': | ‘*“'-n» _
Hash $+———i

L1l

Adaptive filter Fingerprint to Key map
Memory Disk

Fingerprint collisions can cause false positives

Adaptive filters employ variable-length fingerprints

e _ — e — E—— AR

Query the database

L1l

Query key) '—I-_I——;) 1§
as 1
Adaptive filter Fingerprint to Key map
Memory Disk

Fingerprint collisions can cause false positives

Adaptive filters employ variable-length fingerprints

e _ — e — E—— AR

110, j |
OIIJ-': | ‘*“'-n» _
Hash $+———i

R

&5

False positive
Adaptive filter Fingerprint to Key map
Memory Disk

Fingerprint collisions can cause false positives

Adaptive filters employ variable-length fingerprints

e e _— _ - P
. . Ee— — — e

Feedback

R

Adaptive filter Fingerprint to Key map
Memory Disk

Feedback from the map can help fix the false positive

Adaptive filters employ variable-length fingerprints

e _ — e — —— AR

Feedback

R

Adaptive filter Fingerprint to Key map
Memory Disk

Extending the fingerprint of the existing key can avoid future false positives

Adaptive filters employ variable-length fingerprints

e e _— _ - P —
ey . E——— — I - -~

D ——
Feedback
._..__________.____)
Update
Adaptive filter Fingerprint to Key map
Memory Disk

Fingerprint map Is updated accordingly

Adaptive filters employ variable-length fingerprints

e~ _ — e _ I =

110,
10]=—

on-r —
nsert key M —> |
Hash

Lid

Adaptive filter Fingerprint to Key map
Memory Disk

Adaptive filters employ variable-length fingerprints

e~ _ — e _ I =

110

o1 —
Insert key ,ﬂ — |
Hash [

Lid

Adaptive filter Fingerprint to Key map
Memory Disk

Adaptive filters employ variable-length fingerprints

T e _ S e — T T — =

1101,
10—

ol s
Insert key ,D —> |
Hash [

Adaptive filter Fingerprint to Key map
Memory Disk

Fingerprint map Is updated accordingly

Fingerprint map updates dominate the performance

E Feedback

MTTYYTITIT]
Update

Memory

Minimizing the work in the map is crucial for the performance

Adaptive cuckoo filters [MPR+2020]

I Feedback

MTTYYTITIT]
Update

Cuckoo
filter

Cuckoo
hash table

Adaptivity by moving fingerprints around

Adaptive cuckoo filters offer weak adaptivity

Feedback

Update

e ST Cuckoo
| Can be attacked by filter

| identifying an adaptation
‘ loop [KMP 2021] |

Cuckoo
hash table

o Adaptivity by moving fingerprints around during insertions/queries

O cCan forget previous false positives while adapting for new ones

Telescoping filters [FMS+2021)

I Feedback

MTTYYTITITI
Update

7 Quotient
0 filter

Hash function
map

Adaptivity by changing hash function during insertions/queries

Telescoping filters offer strong adaptivity

I Feedback

MTTYYTITIT]
Update

7 Quotient
O filter

Hash function
map
) Adaptivity by changing hash function during insertions/queries

Hash map grows during adaptations (variable-length fingerprints)
Does not forget previously learned fingerprints

Adaptive quotient filter WMT+SIGMOD 2025

* Adaptivity by using variable-length fingerprints to avoid collisions
e Based on the counting quotient filter (CQF) [PBJ+ 2017]
 Matches the space lower-bound to lower-order terms

« 10X—30X faster than other adaptive filters (ACF, TF) for disk-based database
benchmarks

 Up to 6X faster performance than traditional filters (QF, CF) for disk-based

database benchmarks
Oe
@ Pl

Adaptive quotient filter design

B % o

Preserves CQF Stable reverse map Supports dynamic
performance and features during insertions operations

Micro-benchmark performance

InAQFERTQFIRACFERQFINCF

>

.3 2|
QL i
L
A, - = |
” l.l lLQ

y | N |

= =

(a) Insertions (b) Uniform Queries (c) Zipfian Queries

AQF has no overhead compared to the traditional CQF

e AQF ®= TQF—~—ACF 4 QF + CF

(-
-
@)}

-
-
o

Inserts/Sec

ek
-
N

20% 40% 60% 80%
LLoad Factor

AQF performs similarly to QF/CF for database insertions
10X—30X faster than other adaptive filters

—0— AQF —m— TQF —— ACF ——QF —+ - CF

00 1.5% Cache 00 3% Cache
o - |
i i |
Q
0)
L :
- \Y\
OI .
O O |
o O
"‘ 3% 10% — 5% 10%
Adv Frequency Adv Frequency

AQF up to 6X faster compared to QF/CF for database queries

Adaptivity rate on a churn workload

!

0.5M 1M 1.5M 2M 2.5M
Operations

1-10°4

False-Positive Rate

0

AQF adapts to new false positives almost immediately for churn workloads

AQF offers even stronger guarantees
compared to the broom filter [BFG+ 2018

False positives can be really expensive

Malicious URLs Legitimate URLs

g € Legitimate
_—>
g (©
€«

Filter containing Expensive

malicious URLS

critical URLs such as a voter False positive
registration webpage or |

YES/NO list problem

—_— e — . — _—— = == e

fq € YES, retun True with probability 1 |
if g € NO, return False with probability 1 |
|
|
Otherwise False with probability > 1 — ¢ !
|
|
|
Applications: — |

(Monotonicity is critical to
| support YES/O List |
problem!

* Detecting malicious URL
 Certificate revocation lists
* De Bruijn graph traversal

Prior work considered each problem separately

Purpose-built solutions

Bloomier filter [CKR+ 2004]

Cascading Bloom filter [TC 2009]

Static XOR filter [RSW+ 2021] Complex design Low performance High space

Seesaw counting filter [LCD+ 2022]

Monotonically adaptive filters solve many problems

o Security; avoiding DOS attacks \
o Static YES/NO list

 Dynamic YES/NO list Computational
biology

Networking

 Robust performance guarantees
o Skewed query distributions

 Adversarial queries
Databases

lakeaways

 Adaptabillity Is a critical to achieve robust performance in the
context of skewed/adversarial workloads

 Monotonically adaptive filters can help address challenges
across applications

 We need to redesign traditional applications in the context of
newer guarantees and API offered by adaptive filters

Acknowledgment: All icons in the talk are taken from https.://www.flaticon.com/

