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A filter guarantees a false-positive rate €

g = query item S = set of items

if g €S, return True with probability 1 true positive

False with probability > 1 — ¢ true negative

if g & S, return

True with probability < € false positive

False positives with tunable probability

6



False-positives enable filters to be compact

n = number of items U = universe of items

space > n log(lﬂ/ €) space = Q(nlog( U )

Filter Hash table/Tree

For e = 2 %, filters require ~1 Byte/item. Hash table/Tree can take >8-16 Byte/item.



Filters offer weak guarantees

The maximum false positive rate is only guaranteed for
a single query and not an arbitrary sequence of queries



Skewed workloads can make filters obsolete
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Can we learn from the feedback?
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Adaptive filters [BFG+2018]

An adaptive filter modifies its state upon feedback and produces
close to O(en) false positives for any sequence of n queries

False-positive rate < ¢, independent of the query distribution



Adaptive filter design has two parts [BFG+2018

ﬁ Feedback

TP YTITITI
Memory
Disk
Small in-memory filter Large disk-resident map

accessed on every query accessed during adaptations



Adaptive filter design has two parts [BFG+2018

E Feedback
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Update

Memory

On-disk map enables adaptations and is updated to fix fingerprint collisions



Adaptive filters employ variable-length fingerprints
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Adaptive filters employ variable-length fingerprints
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Adaptive filters employ variable-length fingerprints
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Adaptive filters employ variable-length fingerprints
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Extending the fingerprint of the existing key can avoid future false positives



Adaptive filters employ variable-length fingerprints
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Adaptive filters employ variable-length fingerprints
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Fingerprint map updates dominate the performance

E Feedback
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Update

Memory

Minimizing the work in the map is crucial for the performance



Adaptive cuckoo filters [MPR+2020]
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Adaptivity by moving fingerprints around



Adaptive cuckoo filters offer weak adaptivity

Feedback

Update

e ST Cuckoo
| Can be attacked by filter

| identifying an adaptation
‘ loop [KMP 2021] |

Cuckoo
hash table

o Adaptivity by moving fingerprints around during insertions/queries

O cCan forget previous false positives while adapting for new ones



Telescoping filters [FMS+2021)
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Telescoping filters offer strong adaptivity

I Feedback

MTTYYTITIT]
Update

7 Quotient
O filter

Hash function
map
) Adaptivity by changing hash function during insertions/queries

Hash map grows during adaptations (variable-length fingerprints)
Does not forget previously learned fingerprints



Adaptive quotient filter WMT+SIGMOD 2025

* Adaptivity by using variable-length fingerprints to avoid collisions
e Based on the counting quotient filter (CQF) [PBJ+ 2017]
 Matches the space lower-bound to lower-order terms

« 10X—30X faster than other adaptive filters (ACF, TF) for disk-based database
benchmarks

 Up to 6X faster performance than traditional filters (QF, CF) for disk-based

database benchmarks
Oe
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Adaptive quotient filter design

B % o

Preserves CQF Stable reverse map Supports dynamic
performance and features during insertions operations



Micro-benchmark performance
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AQF has no overhead compared to the traditional CQF



e AQF ®= TQF—~—ACF 4 QF + CF
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AQF performs similarly to QF/CF for database insertions
10X—30X faster than other adaptive filters
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Adaptivity rate on a churn workload

!

0.5M 1M 1.5M 2M 2.5M
Operations

1-10°4

False-Positive Rate

0

AQF adapts to new false positives almost immediately for churn workloads



AQF offers even stronger guarantees
compared to the broom filter [BFG+ 2018



False positives can be really expensive

Malicious URLs Legitimate URLs
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Filter containing Expensive

malicious URLS

critical URLs such as a voter False positive
registration webpage or |




YES/NO list problem

—_— e — . — _—— = == e

fq € YES, retun  True with probability 1 |
if g € NO, return False with probability 1 |
|
|
Otherwise False with probability > 1 — ¢ !
|
|
|
Applications: — |

(Monotonicity is critical to
| support YES/O List |
problem!

* Detecting malicious URL
 Certificate revocation lists
* De Bruijn graph traversal



Prior work considered each problem separately

Purpose-built solutions

Bloomier filter [CKR+ 2004]

Cascading Bloom filter [TC 2009]

Static XOR filter [RSW+ 2021] Complex design Low performance High space

Seesaw counting filter [LCD+ 2022]



Monotonically adaptive filters solve many problems

o Security; avoiding DOS attacks \
o Static YES/NO list

 Dynamic YES/NO list Computational
biology

Networking

 Robust performance guarantees
o Skewed query distributions

 Adversarial queries
Databases



lakeaways

 Adaptabillity Is a critical to achieve robust performance in the
context of skewed/adversarial workloads

 Monotonically adaptive filters can help address challenges
across applications

 We need to redesign traditional applications in the context of
newer guarantees and API offered by adaptive filters

Acknowledgment: All icons in the talk are taken from https.://www.flaticon.com/









