
Prashant Pandey, University of Utah

BP-tree
Overcoming the Point-Range Operation Tradeoff for
In-Memory B-trees

Joint work with: Helen Xu (Georgia Tech), Amanda Li (MIT), Brian Wheatman (JHU), Manoj Marneni (Utah)

VLDB 2023

• Queries

• Membership

• Predecessor/Successor

• Range queries

• Updates

• Insertions

• Deletions

Dictionary data structures

• How computations work [AV88]:

• Data is transferred in blocks between levels

• The number of block transfers dominate the running time

• Goal: minimize number of block transfers

• Performance bounds are parameterized by block size B, memory size M, and data size N

Cache

Memory

M B

B

External memory model for dictionaries

• B/B+-trees [BM72] are ubiquitous:

• In memory indexing [ZCO+15]

• Databases [K98]

• Filesystems [RBM13]

B Pivots

… ~ B children …

B Pivots

… ~ B children …

B Pivots

… ~ B children …

~ N/B leaves

O(logBN)

B-tree: a classic dictionary data structure

• B/B+-trees [BM72] are ubiquitous:

• In memory indexing [ZCO+15]

• Databases [K98]

• Filesystems [RBM13]

B Pivots

… ~ B children …

B Pivots

… ~ B children …

B Pivots

… ~ B children …

~ N/B leaves

O(logBN)

B-tree: a classic dictionary data structure

What does B stands for in B-trees?
Boeing, balanced, between, broad, bushy, Beyer?

Cache

Memory

O(logBM)

O(logBN/M)

Search/Update path

O(B)

Insert

Search } O(logBN/M) I/Os

Cost of operations in B-trees

B-trees are asymptotically optimal for point operations [BF03]

Insert

Search } O(logBN/M) I/Os

B-trees: tradeoff between search and inserts

Optimal tradeoff
curve

O(logBN/M)

O(logBN/M)

Search

Insert

B-trees are asymptotically optimal for point operations [BF03]

Insert

Search } O(logBN/M) I/Os

B-trees: tradeoff between search and inserts

Optimal tradeoff
curve

O(logBN/M)

O(logBN/M)

Search

Insert

Write-optimized:
LSM-trees, Be-

Tree

In this talk: tradeoff between point and range
operations in in-memory B-trees

Range scan in a B-tree

Range scan of size K

Cache

Memory

O(logBM)

O(logBN/M)
O(B)

Range scan O(logBN/M + K/B) I/Os

Range scan in a B-tree

Range scan of size K

Cache

Memory

O(logBM)

O(logBN/M)
O(B)

Range scan O(logBN/M + K/B) I/Os

Dominates for
short ranges

Range scan in a B-tree

Range scan of size K

Cache

Memory

O(logBM)

O(logBN/M)
O(B)

Range scan O(logBN/M + K/B) I/Os

Dominates for
short ranges

Dominates for
long ranges

B-trees show a tradeoff in point-range operations

Large nodes speed up range scans at the cost of point inserts

B-trees show a tradeoff in point-range operations

Large nodes speed up range scans at the cost of point inserts

Default node size:
1024 Bytes

B-trees show a tradeoff in point-range operations

Large nodes speed up range scans at the cost of point inserts

Default node size:
1024 Bytes

}
>2X slower
range scans

Real-time analytics
[PTPH12]

Long range scans are critical in applications

Graph processing
[DBGS22, PWXB21]

Supporting fast range scans without
sacrificing point update/query performance is

a long-standing open problem in B-tree design

Our results: BP-tree

Concurrent C++
implementation

Masstree [MKM12]

OpenBW Tree [WPL+18]

TLX B-tree [Bingman18] 0.95X — 1.2X faster

0.94X — 7.4X faster

1.2X — 1.6X faster

1.3X faster

30X faster

2.5X faster

Point operations

Empirical evaluation using YCSB [CST+10] workloads

Extended YCSB to include long range scans

Range operations

Larger nodes improve range scan performance

Small nodes Large nodes

Random
access on new

node

Larger nodes
reduce random

access

Larger nodes cause overhead to maintain order

Shift

Insert

Small nodes Large nodes

Shift

Insert

Larger nodes
increase shift

size

BP-tree design principles

Affine model for
performance

BP-tree design principles

Large leaf
nodes

Affine model for
performance

BP-tree design principles

Lazy ordering
in leaf nodes

Large leaf
nodes

Affine model for
performance

BP-tree design

BP-tree design

Buffered Partitioned Array:
a special data structure for leaves

Buffered Partitioned Array

25 8 7 15 19 89 13 8 17 32 50 93 95

Log Header Blocks

Buffered Partitioned Array

25 8 7 15 19 89 13 8 17 32 50 93 95

Log Header Blocks

Insert (22)

Buffered Partitioned Array
Log Header Blocks

Insert (22)

25 8 22 7 15 19 89 13 8 17 32 50 93 95

Buffered Partitioned Array
Log Header Blocks

25 8 22 7 15 19 89 13 8 17 32 50 93 95

Insert (27)

Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Sort log and count
number of items in

each block

Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Sort log and count
number of items in

each block

2+0=2 1+0=1 2+3=5 2+0=2

Buffered Partitioned Array
Log Header Blocks

Insert (27)
25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Sort log and count
number of items in

each block

2+0=2 1+0=1 2+3=5 2+0=2

Sort and
redistribute all

items

Buffered Partitioned Array
Log Header Blocks

7 17 25 50 8 13 19 22 27 32 89 93 95

Performance YCSB workloads

BP tree matches on point operations while being 2X faster for range scans

Takeaways

• I/O models (External memory and Affine) apply
to in-memory indexes

• Relaxing ordering constraint in leaf nodes can
help overcome traditional tradeoffs

• BP-tree supports fast range scans (OLAP) an
optimal point updates/queries (OLTP)

Code: https://github.com/wheatman/concurrent-btrees

https://github.com/wheatman/concurrent-btrees

