
BP-tree: 
Overcoming the Point-Range Operation 

Tradeoff for In-Memory B-trees
VLDB 2023

Prashant Pandey, University of Utah
Joint work with: Helen Xu (Berkeley Lab), Amanda Li (MIT), Brian Wheatman (Johns Hopkins), 

Manoj Marneni (Utah)



2

Dictionary

Queries
● membership
● predecessor/successor
● range queries

Updates
● insertions
● deletions



3

Dictionary --- comparison based [Brodal and Fagerberg 2003]

Balanced search trees
● Insert O(logN)
● Queries O(logN)



4

External memory model [Aggarwal and Vitter 1988]



5

B Pivots

B B

B

….. …..

O (logB N)

... ≈ N / B leaves ...

... ≈ B children ...

B-tree: a classic indexing data structure

B/B+ Trees [BM72] are used 
everywhere

● In memory indexing [ZCO+15]
● Databases [K98]
● Filesystems [RBM13]

B-Trees are asymptotically optimal for point operations



6

B-tree: in external memory model [Brodal and Fagerberg 2003]

B/B+ Trees [BM72] are used 
everywhere

● In memory indexing [ZCO+15]
● Databases [K98]
● Filesystems [RBM13]



7

B-tree: in external memory model [Brodal and Fagerberg 2003]

B/B+ Trees [BM72] are used 
everywhere

● In memory indexing [ZCO+15]
● Databases [K98]
● Filesystems [RBM13]

Buffered 
B-trees



8

In this talk: point-range tradeoff in 
in-memory B-trees



Motivation: B-tree point-range tradeoff

They exhibit a tradeoff between point 
operations (updates/queries) (OLTP) 
and long range scans (OLAP) as a 
function of node size

Long range scans are critical for

● Real time analytics [PTPH12]
● Graph processing [DBGS22, 

PGK21, PWXB21]

Find

Insert

Range Query

9

Large nodes speed up range scans at the cost of point inserts



10

We introduce BP-tree to overcome the 
traditional tradeoff between point operations 

and range scans in in-memory B-trees.



Evaluation on YCSB benchmarks
Performance of B-tree, Masstree [MKM2012], OpenBwTree [WPL+2018] and BP-tree on YCSB [CST+10]

Original (OLTP) Added (OLAP)

11
We match the performance of point operations and improve range queries by 2x



B-tree insert/range scan trade-off

Large node sizes improve 
range scan throughput, 
but slow down inserts

Best case for 
point inserts

(used in YCSB)

Compared to

2.4x faster for range queries 
16x slower for inserts

12



Large NodesSmall Nodes

Larger nodes improve range query performance 

Increasing the size of nodes decreases the number of nodes accessed during long range queries 
and thus the number of random memory accesses 

Random access 
on new node

Larger nodes reduce 
random accesses

13



Large NodesSmall Nodes

But larger nodes require more shifting on every insert
However, simply increasing the node size does not solve the problem because 
larger nodes require more work to maintain during inserts

Traditionally, B-trees (and B+-trees) use a sorted array to maintain elements in the 
nodes

Shift

Insert

Shift

Insert

Larger nodes 
increase shift size 14



B-tree insert/range query trade-off

15



The BP-tree can improve both insert and range queries

B+-Tree

BP-Tree

1.05x faster insert
1.5x faster range query

(used in YCSB)
The BP-tree can improve 
long range operations 
without sacrificing point 
operations

16



Stores sub-ranges unsorted 
to reduce shifting

Buffered Partitioned Array (BPA) design

The BP-tree overcomes the point-range tradeoff by using large nodes with an insert-
optimized data structure in the leaves called the Buffered Partitioned Array (BPA)

One way to think about the BPA is like collapsing the last two levels of a B-tree into 
one insert-optimized array-like data structure 

25 8 7 15 19 89 13 8 17

Log Header Blocks

32 50 93 95

Buffers 
insertions

Bypasses full 
searches of the 

BPA 17



Sort log and count 
how many 

elements are 
destined for each 

block

Example insertions in a BPA

7 17 25 50 8 13 19 22 27 32 89 93 95

Insert(22)

Insert(27)

Log Header Blocks

25 8 7 15 19 89 13 8 17 32 50 93 95

25 8 22 7 15 19 89 13 8 17 32 50 93 95

25 8 22 27 7 15 19 89 13 8 17 32 50 93 95

Sort and 
redistribute all 

elements evenly 
because a block 

overflowed

2+0=2 1+0=1 2+3=5 2+0=2

18



Example range query: iterate_range(start = 7, length = 2, f)

Sort log and first relevant block

Log Header Blocks

25 8 7 15 19 89 13 8 17 32 50 93 95

Log ptr Blocks ptr

8 25 7 15 19 89 8 13 17 32 50 93 95

Log ptr Blocks ptr

8 25 7 15 19 89 8 13 17 32 50 93 95

Log ptr Blocks ptr

8 25 7 15 19 89 8 13 17 32 50 93 95

19



B-tree vs BP-tree point operations

B+-tree Insert

B+-tree Find

BP-tree Insert

BP-tree Find

20



B-tree vs BP-tree range queries
B+-tree long scan

BP-tree long scan

B+-tree short scan

BP-tree short scan

21



To what extent do big nodes help range queries?

Traditionally node sizes are small (up to 256 bytes) [CGM01, HP03, B18]

Range queries continue to improve with very large nodes

Find

Insert

Range Query

64KB

22



Costs of memory access in the Disk-Access Model

DAM [AV88] is a classical model that measures disk page accesses (or cache-line 
accesses, in RAM)

Each memory block fetch has unit cost.

Small 
memory

Big memory

Block

Total cost = 5
23



Random vs sequential access cost in the affine model

The affine model [ABZ96,BCF+19] accounts for sequential block accesses 
being faster than random

Originally designed for disks and accounted for disk seek vs read

Sequential accesses 
are cheaper than 
random accesses Total cost = 3+2⍺

Small 
memory

Big memory

Block

24



Empirically verifying the affine model in memory
We find the affine model also holds true for RAM

Continues to hold even when the block size goes past 1 page (4Kb)

Affine Model

Empirical

DAM Model

25

4Kb



System Setup

● 48-core 2-way hyperthreaded Intel® Xeon® Platinum 8275CL CPU @ 
3.00GHz

● Cache 
○ 1.5MiB of L1 cache, 
○ 48 MiB of L2 cache, 
○ 71.5 MiB of L3 cache across all of the cores

● 189 GB of memory
● all experiments on a single socket with 24 physical cores and 48 

hyperthreads
● All times are the median of 5 trials after one warm-up trial

26



Evaluation on YCSB benchmarks

Relative performance of reference B-tree, Masstree [MKM2012], OpenBwTree [WPL+2018]
compared to the BP-tree on uniform random workloads generated from YCSB [CST+10]
We added workloads to test long scans (both iteration and map).

Original (OLTP) Added (OLAP) 27



28



Conclusion

BP-tree overcomes the decades-old point range tradeoff in B-Trees: it can 
increase the performance for workloads that include both point operations and 
long scans. 

I/O models (External memory and Affine) apply to in-memory data structures

Relaxing ordering constraint in B-tree nodes can help achieve overcome tradeoffs

29Code available at: https://github.com/wheatman/concurrent-btrees

https://github.com/wheatman/concurrent-btrees


30



31



32



33



Why does it work

Figure 4 from paper

Continuous reads

Even bigger than a page

34


