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Sequence Read Archive (SRA) growth
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SRA contains a lot of diversity information

Q: What if I find e.g., a new disease-related gene, and want to see if 
it appeared in other experiments?
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Scalability is the bottleneck for data science
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Total bases

Open access
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Current index size 
(< 100 TBs)

This renders what is otherwise an immensely valuable public 
resource largely inert

SRA contains a lot of diversity information



Scalability is a ubiquitous challenge 
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https://leftronic.com/big-data-statistics/

https://learn.g2.com/big-data-statistics

Cyber monitoring
Internet of Things (IoT)
Financial tech
Social networks
AstroPhysics
Chemistry
Environmental science
.
.
.
.
.



Three approaches to handle massive data
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Goal: make data 
smaller to fit in 
RAM

Techniques:
● Compact & 

succinct data 
structures

● Filters, e.g., 
Bloom, 
quotient, etc. 

Three approaches to handle massive data

Shrink it
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Goal: organize 
data in a 
disk-friendly way

Techniques:
● B-tree
● Bε-tree
● LSM-tree
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Goal: partition and 
distribute data on 
multiple nodes

Techniques:
● Distributed 

hash table
● Distributed 

key-value store

Goal: organize 
data in a 
disk-friendly way

Techniques:
● B-tree
● Bε-tree
● LSM-tree

Goal: make data 
smaller to fit in 
RAM

Techniques:
● Compact & 

succinct data 
structures

● Filters, e.g., 
Bloom, 
quotient, etc. 

Three approaches to handle massive data

Shrink it Organize it Distribute it
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Filters



14

Filters
Time to change your filter



Dictionary data structure

a
c

b

d

A dictionary maintains a set S from universe U.

A dictionary supports membership queries on S.

membership(a): 

membership(b):

membership(c):

membership(d):

S
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Filter data structure

a
c

b

d

A filter is an approximate dictionary.

A filter supports approximate membership queries on S.

membership(a): 

membership(b):

membership(c):

membership(d): false 
positive

S
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A filter guarantees a false-positive rate ε

if q ∈ S, return            with probability 1  

                                     with probability ﹥ 1 - ε 
if q ∉ S, return 
                                     with probability  ≤ ε false positive

true negative

true positive

one-sided 
errors

17



False-positive rate enables filters to be compact

DictionaryFilter
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False-positive rate enables filters to be compact

DictionaryFilter

Small

Large

For most practical purposes: 
ε = 2%, a filter requires ≈ 8 bits/item
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Filter design objectives

Optimal

Space (bits)

CPU cost

Data locality
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Classic filter: The Bloom filter [Bloom ‘70]

0 1 0 1 0 1 0
m

a
c b

d

S

h1(a) = 1
h2(a) = 3

h1(c) = 5
h2(c) = 3

21

true 
negative

Bloom filter: a bit array + k hash functions (here k=2)



Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(b) = 2
h2(b) = 5 true 

negative
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Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(d) = 1
h2(d) = 3 False 

positive
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Bloom filters are ubiquitous (> 4300 citations)

Storage systems

NetworkingStreaming applications

Computational biology

Databases
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Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits)

CPU cost

Data locality
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Limitations Workarounds

No deletes Rebuild

No resizes Guess N, and rebuild if wrong

No filter merging or enumeration ???

No values associated with keys Combine with another data structure

Applications often work around Bloom filter 
limitations

Bloom filter limitations increase system complexity, waste 
space, and slow down application performance
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● Store fingerprints compactly in a hash table.
○ Take a fingerprint h(x) for each element x.

● Only source of false positives:
○ Two distinct elements x and y, where h(x) = h(y)
○ If x is stored and y isn’t, query(y) gives a false positives

       h(x)x

Quotienting is an alternative to Bloom filters 
[Knuth. Searching and Sorting Vol. 3, ‘97]

p
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• b(x) = location in the hash table
• t(x) = tag stored in the hash table

q r
b(x)

b(x) t(x)

t(x)
 

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index

Storing fingerprints compactly

p
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• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?

b(x)

t(x)
 

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p

29



• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing
● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p
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• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing
● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p

t(y) belongs to 
slots 4 or 5?
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Implementation:
2 meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract representation

h(m)h(a)

h(d)

h(e)

0 1 2 3 4 5 6 7

1 1
1 1

t(a) t(d) t(e) t(m) t(p)

h(p)

Resolving collisions in the QF [Pandey et al. SIGMOD 

‘17]
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● Good cache locality
● Efficient scaling out-of-RAM
● Deletions
● Enumerability/Mergeability
● Resizing
● Maintains count estimates or associate values
● Uses variable-sized encoding for counts [Counting quotient filter]

○ Asymptotically optimal space: O(∑ |C(x)|)

Quotienting enables many features in the QF

34



Quotient filters use less space than Bloom filters 
for all practical configurations

Quotient filter Bloom filter Optimal

Space (bits)

CPU cost

Data locality

The quotient filter has theoretical advantages over the 
Bloom filter

35



Bloom filter: ~1.44 log(1/ε) bits/element.
Quotient filter: ~2.125 + log(1/ε) bits/element.

Quotient filters use less space than Bloom filters 
for all practical configurations

False-positive rate 
< 1/64 (or 0.15).

36
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● Insert performance is similar to the state-of-the-art non-counting filters
● Query performance is significantly fast at low load-factors and slightly slower 

at higher load-factors

Inserts Lookups

Quotient filters perform better (or similar) to 
other non-counting filters

37



Summary of filters
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● Bloom filters [Bloom ‘70]

● Quotient filters 

● Cuckoo/Morton filters [Fan et al. ‘14, Breslow & Jayasena ‘18]

● Others

○ Mostly based on perfect hashing and/or linear algebra

○ Mostly static

○ e.g., Xor filters [Graf & Lemire ‘20]

[Pagh et al. ‘05, Dillinger et al. ‘09, Bender et al. 
‘12, Einziger et al. ‘15, Pandey et al. ‘17] State of the art in 

practical dynamic 
filters.



Performance suffers due to high-overhead of collision resolution 
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Current filter performance

Question: do you see a problem here??



16X 
drop4X 

drop

Performance suffers due to high-overhead of collision resolution 
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Current filters have a problem..

Applications must choose between space and speed.



Performance suffers due to high-overhead of collision resolution 
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Current filters have a problem..

Update intensive applications maintain filters close to full.

Performance 
only matters at 

high load factors



Why quotient filters slow down
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Quotient filters use Robin-Hood 
hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of 
runs.

To insert item x:
1. Find its run.
2. Shift other items down by 1 slot.
3. Store f(x).

f1 f2 f3 f4 f5 f6

x
h(x) log(1/ε) bits/slot

fx f1 f2 f3 f4 f5 f6

n slots

shift

As the QF fills, inserts 
have to do more shifting.



Why cuckoo filters slow down
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s = O(1) slots/block (e.g., s=4 )

n/sx
h0(x)

h1(x)

log(2s/ε) bits/slot

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Why cuckoo filters slow down
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f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Why cuckoo filters slow down
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f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Kick f8 



Why cuckoo filters slow down
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f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Kick f8 

Kick f12 

Note: h0(x) and h1(x) need to be 
dependent to support kicking.



Why cuckoo filters slow down
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f13 f14 f15 f12

f1 f2 f3 f4

f5 f6 f7 fx

f9 f10 f11 f8

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

As the CF fills, inserts 
have to do more kicking.

Note: h0(x) and h1(x) need to be 
dependent to support kicking.



Cuckoo filter performance [Fan et al. ‘14]
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Optimal Cuckoo filter

Space (bits)

CPU cost

Data locality



Vector quotient filter design[Pandey et al. SIGMOD ‘21]
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data



Vector quotient filter design[Pandey et al. SIGMOD ‘21]
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.



Vector quotient filter design[Pandey et al. SIGMOD ‘21]
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Vector quotient filter design[Pandey et al. SIGMOD ‘21]
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Vector quotient filter design[Pandey et al. SIGMOD ‘21]
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 



Vector quotient filter design[Pandey et al. SIGMOD ‘21]
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 

But we still 
need it to 

support deletes.



Vector quotient filter design[Pandey et al. SIGMOD ‘21]
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 

But we still 
need it to 

support deletes.

By Vöcking, variance 
in block occupancy is 
a lower order term.



Vector quotient filter design[Pandey et al. SIGMOD ‘21]
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 

But we still 
need it to 

support deletes.

By Vöcking, variance 
in block occupancy is 
a lower order term.

No kicking ⇒ 
easier concurrency



A vectorizable mini quotient filter

57

Each block has b logical buckets.

Fingerprints of each bucket are 
stored together.

We keep a bit vector of bucket 
boundaries. 001010011 f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is 
maximized when b=s/ln2.

Implemented 
using PDEP

Implemented 
using PSHUFB or

VCMPB



A vectorizable mini quotient filter
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Each block has b logical buckets.

Fingerprints of each bucket are 
stored together.

We keep a bit vector of bucket 
boundaries. 001010011 f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is 
maximized when b=s/ln2.

Implemented 
using PDEP

Operations take constant time in a vector model of 
computation for vectors of size ⍵(log log n) [Bellloch ‘90]. 

Example, using AVX-512 instructions. 

Implemented 
using PSHUFB or

VCMPB



Vector quotient filter (VQF) performance
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Optimal VQF

Space (bits)

CPU cost

Data locality



Evaluation: insertion
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The vector quotient filter offers high performance at all load factors.



Evaluation: lookups
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Evaluation: concurrency

62



Quotient filter’s impact in computer science

63

Computational biology
1. Squeakr
2. deBGR
3. Mantis
4. VariantStore
5. MetaHipMer

Theoretically well-founded data structures can have a big impact on 
multiple subfields across academia and industry

QFDatabases

Sequence
Search
Index

Stream
Analysis

Key-value
Stores

QF on 
GPUs

Deduplica-t
ion

Graph 
represen-

tation
Assembler
(SPAdes)

Databases/Systems
1. Anomaly detection
2. BetrFS file system
3. Graph 

representation



Quotient filter’s impact in computer science
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Computational biology
1. Squeakr
2. deBGR
3. Mantis
4. VariantStore
5. MetaHipmer
6. SPAdes assembler
7. Khmer software
8. MQF

Databases/Systems
1. Anomaly detection
2. BetrFS file system
3. Graph 

representation
4. Counting on GPUs
5. Concurrent filters

Industry
1. VMware
2. Nutanix
3. Apocrypha
4. Hyrise
5. A data security  

startup

Theoretically well-founded data structures can have a big impact on 
multiple subfields across academia and industry

QFDatabases

Sequence
Search
Index

Stream
Analysis

Key-value
Stores

QF on 
GPUs

Deduplica-t
ion

Graph 
represen-

tation
Assembler
(SPAdes)




