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Scalability challenge 1n a tweet
el

Bioinformatics over the years:

1990s: doing a BLAST search
2000s: analysing 30 microarrays
2010s: nalysing 6Tb of NGS

2020s: creating a cloud the size of
Netflix to reanalyse the whole of SRA
for one figure

’ Michael Schatz @n

' This is basically my life right now




Sequence Read Archive (SRA) growth

SRA contains a lot of diversity information
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Q: What if I find e.g., a new disease-related gene, and want to see 1f
it appeared 1n other experiments?



Scalability 1s the bottleneck for data science

SRA contains a lot of diversity information
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This renders what is otherwise an immensely valuable public
resource largely inert



Scalability 1s a ubiquitous challenge

Cyber monitoring
Internet of Things (IoT)

Financial tech
Social networks
AstroPhysics
Chemuistry

2016)

* People generate

2.5 quintillion bytes of data each day{(IBM, 2016)

* More than 150 zettabytes (150 trillion gigabytes) of data will need analysis by 2025.
(Forbes, 2019)

* 90 percent of the world's data was created between 2015 and 2016 alone. (IBM,

https://learn.g2.com/big-data-statistics

Environmental science

241 88% of data is ignored by companies.

(Forrester Research)

https://leftronic.com/big-data-statistics/

A widely-quoted figure from a 2012 paper from Forrester Research says that, on average, companies analyze

only 12% of the available data

Reasons for this include a lack of analytics tools,

repressive data silos, and the

difficulty in knowing which information is valuable and which is worth leaving.




Three approaches to handle massive data



Three approaches to handle massive data
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Bloom,
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Three approaches to handle massive data

Goal: make data
smaller to fit in

RAM

Techniques:

e (Compact &
succinct data
structures

e Filters, e.g.,
Bloom,
quotient, etc.

/-\/

[ Organize it ]

Goal: organize
datain a
disk-friendly way

Techniques:
e B-tree

e B°®-tree

e [ SM-tree

/

o

\/—\

Goal: partition and
distribute data on
multiple nodes

Techniques:

e Distributed
hash table

e Distributed
key-value store

o S
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Dictionary data structure

A dictionary maintains a set S from universe U.

membership(a):
membership(b):
membership(c): ¢
membership(d): X

A dictionary supports membership queries on S.



Filter data structure

A filter 1s an approximate dictionary.

membership(a):
membership(b):
membership(c): ¢

false

membership(d): " 4 positive

A filter supports approximate membership queries on S.



A filter guarantees a false-positive rate €

ifg € S,return o/ with probability 1 true positive

(x with probability [11 - &  true negative
if g & S, return <

L / with probability <& false positive

one-sided
errors

17



False-positive rate enables filters to be compact

space > nlog(1/e) space = (}(nlog|U|)

q

'

Filter Dictionary

18



False-positive rate enables filters to be compact

space > nlog(1/e) space = (}(nlog|U|)

q

I

Filter Dictionary

For most practical purposes:
€ = 2%, a filter requires = 8 bits/item

19



Filter design objectives

Optimal

Space (bits) ~n log(l/e) + Q(n)
CPU cost O(1)
Data locality|  O(1) probes

20



Classic filter: The Bloom filter [Bloom “7]

Bloom filter: a bit array + k& hash functions (here £i=2)

- true
=3 negative ) &

h(c)=>5

h,(c)=3 II

21



Classic filter: The Bloom filter [Bloom “70]

Bloom filter: a bit array + k£ hash functions (here A/=2)

m
0 1j0j1/o/1 0
h(b) =2
BORE ' netgl.z:lt(i%ve X
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Classic filter: The Bloom filter [Bloom “70]

Bloom filter: a bit array + k£ hash functions (here A/=2)

o o ‘ False
D=3 positive v
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Bloom filters are ubiquitous (> 4300 citations)

Streaming applications Networking

Mysal , . ORACLE , + SOl server

& SN SN Y
Computational biolo Storage systems
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Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits) |~ 1.44 nlog(1/e)|~ n log(1/e) + Q(n)
CPU cost (1/€) O(1)
Data locality | €X(1/¢) probes O(1) probes

25



Applications often work around Bloom filter

limitations

Limitations Workarounds
No deletes Rebuild
No resizes Guess N, and rebuild 1f wrong
No filter merging or enumeration 777
No values associated with keys Combine with another data structure

Bloom filter limitations increase system complexity, waste
space, and slow down application performance

26



Quotienting 1s an alternative to Bloom filters

[Knuth. Searching and Sorting Vol. 3, ‘97]

e Store fingerprints compactly in a hash table.
o Take a fingerprint /(x) for each element x.

GEED — ¢

< >

>
log |U| p

e Only source of false positives:
o Two distinct elements x and y, where /(x) = A(y)
o If x 1s stored and y 1sn’t, query(y) gives a false positives

Pr[x and vy collide] = 2%

27



Storing fingerprints compactly

b(x)

A i A W N =D

—
: .

A
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Bucket index

V
JEINTES) «~—Tag

q r

® h(x) = location 1n the hash table
® f{(x) = tag stored 1n the hash table

28



Storing fingerprints compactly
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Storing fingerprints compactly

Bucket index

V
JEINTES) «~—Tag

—
: .

q r
b A
b
» 1 e b(x) = location in the hash table
9) ® {(x) = tag stored 1n the hash table
q
3 2% Collisions in the hash table?
e Linear probing
_— 4 e Robin Hood hashing
v
6




Storing fingerprints compactly

Bucket index

V
JEINTES) «~—Tag

—
: .

q r
b A
b 1 e b(x) = location in the hash table
9) ® f{(x) = tag stored 1n the hash table
3 2 Collisions in the hash table?
e Linear probing
_— 4 e Robin Hood hashing
v
%ﬁ t(y) belongs to }
6 slots 4 or 5?

v 31
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Implementation: Abstract representation
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1S1011S 11

Implementation: Abstract re[zlresentation
2 meta-bits per slot. ) 2 "
v \
h(x) --> h(x) || h,(x) W@ hem)
\/
e hip)
runends h(e)
occupieds h(b)

"

>




Quotienting enables many features in the QF

Good cache locality

Efficient scaling out-of-RAM

Deletions

Enumerability/Mergeability

Resizing

Maintains count estimates or associate values

Uses variable-sized encoding for counts [Counting quotient filter]
o Asymptotically optimal space: O |C(x)|)




Quotient filters use less space than Bloom filters

for all practical configurations

Quotient filter Bloom filter Optimal

Space (bits) | & n log(1/e) +2.125n | ~ 1.44 nlog(1/€) |~ n log(1/€) + Q(n)

CPU cost O(1) expected Q(1/€) O(1)

Data locality 1 probe + scan Q(1/€) probes O(1) probes

The quotient filter has theoretical advantages over the
Bloom filter

35



Quotient filters use less space than Bloom filters

for all practical configurations
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Bloom filter: ~1.44 log(1/¢) bits/element.
Quotient filter: ~2.125 + log(1/¢) bits/element.
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Quotient filters perform better (or similar) to

other non-counting filters

Inserts Lookup
55 T T T I 99 | |
50 |- —e— QF [
45| SWmCE 4
—e— BF

Million Insertions per Second

Million False Lookups per Second

0 20 40 60 80 100
Load Factor Load Factor

e [nsert performance 1s similar to the state-of-the-art non-counting filters
e (Query performance is significantly fast at low load-factors and slightly slower
at higher load-factors

37



Summary of filters

e Bloom filters Bloom 70]

. [Pagh et al. <05, Dillinger et al. ‘09, Bender et al.
o QUOtlent ﬁlters ‘12, Einziger et al. *15, Pandey et al. *17]
® CuCkOO / Morton ﬁlters [Fan et al. ‘14, Breslow & Jayasena ‘1

e Others

o Mostly based on perfect hashing and/or linear algebra
o Mostly static

o e.g., Xor filters [Graf & Lemire ‘20]

38



Current filter performance

Performance suffers due to high-overhead of collision resolution
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Current filters have a problem..

Performance suffers due to high-overhead of collision resolution
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Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

@ —=X—— Quotient filter
% - ——a—— Cuckoo filter
oF; 7] ! —»—— Morton filter
Q e
4 W
2] @
c @
o) .
= 20 -
= |7 .
e
S @
_8- > S o
[@)] @
3 10
(@] 3
| .
= \X\‘N
= " I
|
2
0 T T T T T T T T T T T T T T T T

T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Load factor

41



Why quotient filters slow down

Quotient filters use Robin-Hood
hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of
runs.

To insert item Xx:
1. Find its run.

2. Shift other items down by 1 slot.

3. Store f(x).

h(x)

log(1/¢) bits/slot

_fszz

- n slots

\
\

\

\

\
\
\

\

‘_
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Why cuckoo filters slow down

s = 0O(1) slots/block (e.g., s=4 )

>

log(2s/¢) bits/slot /\: A

X n/s

To insert item Xx: \
h (x)
]

1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.

43



Why cuckoo filters slow down

To insert item Xx:

X
1. Compute /,(x) and £ (x). h (x) AR,
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.

44



Why cuckoo filters slow down

To insert item Xx:

X
1. Compute 4 (x) and / (x). h (x) £ £ £ £

Kick
2. Insert f(x) into emptier block. 8 ick fg
3. Kick an item 1f needed.
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Why cuckoo filters slow down

Jis | fa | s
w’ S S| g
. . x
To insert item x:
1. Compute h ,(x) and h (). h (x) Ay
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.
Jo | S | Ju

Note: 7 (x) and / ,(x) need to be
dependent to support kicking.
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Why cuckoo filters slow down

h (%) Lo | |

/

X

To insert item Xx:
1. Compute /,(x) and £ (x). h (x) Ll s s
2. Insert f{x) into emptier block. *
3. Kick an item if needed.

Jo | S | Ju | Sy

Note: 7 (x) and / ,(x) need to be
dependent to support kicking.
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Cuckoo filter performance

[Fan et al. ‘14]

Optimal

Cuckoo filter

Space (bits)

~ n log(1/€) + Q(n)

~n log(1l/e) + 3n

CPU cost

0(1)

up to 500

Data locality

O(1) probes

random probes
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Pandey et al. SIGMOD 21]

Vector quotient filter design!

s = 0(log log n) slots/block (e.g., s=64 )

< >

A
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[Pandey et al. SIGMOD “21]

Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
n/s

50



Vector quotient filter design!Pandey etal- SIGMOD“21]

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
n/s
To 1nsert item x:
1. Compute £ (x) and £ (x). v

2. Insert f(x) into emptier block.

51



n[Pandey et al. SIGMOD 21]

Vector quotient filter desig

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
X \ n/ S
h,(x)

To 1nsert item x:
1. Compute £ (x) and £ (x). v

2. Insert f(x) into emptier block.
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n[Pandey et al. SIGMOD 21]

Vector quotient filter desig

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
X \ n/ S
h,(x)

To 1nsert item x:
1. Compute £ (x) and £ (x). v

2. Insert f(x) into emptier block.
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n[Pandey et al. SIGMOD 21]

Vector quotient filter desig

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
)~
X n/s

o

To 1nsert item x:
1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.
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Pandey et al. SIGMOD 21]

Vector quotient filter design!

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
)~
X n/s

o

To 1nsert item x:
1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.
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Vector quotient filter design!

Pandey et al. SIGMOD 21]

Each block is a small
quotient filter with
false-positive rate €/2 and
capacity s.

—)

To insert 1tem Xx:
1. Compute £ (x) and £ (x).

2. Insert f(x) into emptier block.

I—ktekarttemHreeded:

h(x)
. <
h (x)

s = 0(log log n) slots/block (e.g., s=64 )

<

>

A
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A vectorizable min1 quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are
stored together.

We keep a bit vector of bucket

boundaries.
001010011 f4 ﬁs

n slots >

Insert x, where S(x)=0. ‘

oo R 1

Implemented
using PSHUFB or
VCMPB

Implemented
using PDEP

57




A vectorizable mini quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are

s}arpd tonoether

3 Operations take constant time in a vector model of
l computation for vectors of size o(log log n) [Bellloch 90
Example, using AVX-512 instructions.

~

Insert x, where S(x)=0.

\
N

oo R, 1,

Implemented

Space efficiency is
o Implemented
maximized when b=s/In2. using PDEP

VCMPB

using PSHUFB or

58



Vector quotient filter (VQF) performance

Optimal VQF

Space (bits) |~ n log(1/e) + Q(n) | ~n log(1/e) +2.91n
CPU cost O(1) O(1)
Data locality |  O(1) probes 2 probes

59



Evaluation: insertion
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Evaluation: lookups
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Evaluation: concurrency

N w H (6]
o o o o
| | | |

Throughput (Million/sec)

o

=

Num Threads
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Quotient filter’s impact in computer science

4 N

Computational biology
1. Squeakr
2. deBGR
3. Mantis
4. VariantStore
5. MetaHipMer
4 )

Databases/Systems
1. Anomaly detection
2. BetrFS file system
3. Graph

representation

\_ /

Stream
Analysis

Deduplica-t
ion

Theoretically well-founded data structures can have a big impact on

multiple subfields across academia and industry
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Quotient filter’s impact in computer science

Mantis
VariantStore
MetaHipmer
SPAdes assembler

Khmer software

MQF /

/ Databases/Systems \
1.

3.

4.

\5.

Anomaly detection
BetrFS file system
Graph
representation
Counting on GPUs

Concurrent filters /

-

/S'IPS“!\’T‘

Industry
VMware
Nutanix
Apocrypha
Hyrise

A data security

startup

~

J

Deduplica-t
ion

Stream
Analysis

Theoretically well-founded data structures can have a big impact on
multiple subfields across academia and industry
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