
Data Systems at Scale:
Scaling Up by Scaling Down and Out

Prashant Pandey
VMware Research

1

Scalability challenge in a tweet

2

Professor Bioinformatics and
Computational Biology
The University of Edinburgh

Associate Professor
Computational Biology
Johns Hopkins University

Sequence Read Archive (SRA) growth

3

L
og

-s
ca

le
SRA contains a lot of diversity information

Q: What if I find e.g., a new disease-related gene, and want to see if
it appeared in other experiments?

Total bases

Open access

L
og

-s
ca

le

Scalability is the bottleneck for data science

4

Total bases

Open access

L
og

-s
ca

le

Current index size
(< 100 TBs)

This renders what is otherwise an immensely valuable public
resource largely inert

SRA contains a lot of diversity information

Scalability is a ubiquitous challenge

5

https://leftronic.com/big-data-statistics/

https://learn.g2.com/big-data-statistics

Cyber monitoring
Internet of Things (IoT)
Financial tech
Social networks
AstroPhysics
Chemistry
Environmental science
.
.
.
.
.

Three approaches to handle massive data

6

Goal: make data
smaller to fit in
RAM

Techniques:
● Compact &

succinct data
structures

● Filters, e.g.,
Bloom,
quotient, etc.

Three approaches to handle massive data

Shrink it

7

Goal: organize
data in a
disk-friendly way

Techniques:
● B-tree
● Bε-tree
● LSM-tree

Goal: make data
smaller to fit in
RAM

Techniques:
● Compact &

succinct data
structures

● Filters, e.g.,
Bloom,
quotient, etc.

Three approaches to handle massive data

Shrink it Organize it

8

Goal: partition and
distribute data on
multiple nodes

Techniques:
● Distributed

hash table
● Distributed

key-value store

Goal: organize
data in a
disk-friendly way

Techniques:
● B-tree
● Bε-tree
● LSM-tree

Goal: make data
smaller to fit in
RAM

Techniques:
● Compact &

succinct data
structures

● Filters, e.g.,
Bloom,
quotient, etc.

Three approaches to handle massive data

Shrink it Organize it Distribute it

9

Research output

10

Data structures
& Algorithms

Quotient Filter
SIGMOD ‘17,
SIGMOD ‘21

Order Min
Hash

ISMB ‘19

BεtrFS file system
FAST ‘15, TOS 15,
FAST ‘16, TOS 16,

SPAA ‘19, TOPC ‘21
Systems

Applications
Squeakr, deBGR, Mantis,
Rainbowfish, MST-Mantis

ISMB ‘17, WABI ‘17,
BIOINFORMATICS ‘17,

RECOMB ‘18, Cell Systems
‘18, RECOMB ‘19,

JCB ‘20

Computational
biology

Distributed k-mer
counting

IPDPS ‘21

Shrink Organize Distribute

LSM-Mantis
Bioinformatics ‘22

 VariantStore
Genome Biology ‘21

LERTs
SIGMOD ‘20

Terrace
SIGMOD ‘21

Buffered CMS
ESA ‘18,

Scalable MG
TODS ‘21

In this talk:

11

Data structures
& Algorithms

Quotient Filter
SIGMOD ‘17,
SIGMOD ‘21

Order Min
Hash

ISMB ‘19

BεtrFS file system
FAST ‘15, TOS 15,
FAST ‘16, TOS 16,

SPAA ‘19, TOPC ‘21
Systems

Applications
Squeakr, deBGR, Mantis,
Rainbowfish, MST-Mantis

ISMB ‘17, WABI ‘17,
BIOINFORMATICS ‘17,

RECOMB ‘18, Cell Systems
‘18, RECOMB ‘19,

JCB ‘20

Computational
biology

Distributed k-mer
counting

IPDPS ‘21

Shrink Organize Distribute

LERTs
SIGMOD ‘20

Terrace
SIGMOD ‘21

Buffered CMS
ESA ‘18,

Scalable MG
TODS ‘21

LSM-Mantis
Bioinformatics ‘22

 VariantStore
Genome Biology ‘21

Graphs

Streaming
data

In this talk:

12

Data structures
& Algorithms

Quotient Filter
SIGMOD ‘17,
SIGMOD ‘21

Order Min
Hash

ISMB ‘19

BεtrFS file system
FAST ‘15, TOS 15,
FAST ‘16, TOS 16,

SPAA ‘19, TOPC ‘21
Systems

Applications
Squeakr, deBGR, Mantis,
Rainbowfish, MST-Mantis

ISMB ‘17, WABI ‘17,
BIOINFORMATICS ‘17,

RECOMB ‘18, Cell Systems
‘18, RECOMB ‘19,

JCB ‘20

Computational
biology

Distributed k-mer
counting

IPDPS ‘21

Shrink Organize Distribute

Shrink it
LERTs

SIGMOD ‘20

Terrace
SIGMOD ‘21

Buffered CMS
ESA ‘18,

Scalable MG
TODS ‘21

LSM-Mantis
Bioinformatics ‘22

 VariantStore
Genome Biology ‘21

13

Filters

14

Filters
Time to change your filter

Dictionary data structure

a
c

b

d

A dictionary maintains a set S from universe U.

A dictionary supports membership queries on S.

membership(a):

membership(b):

membership(c):

membership(d):

S

15

Filter data structure

a
c

b

d

A filter is an approximate dictionary.

A filter supports approximate membership queries on S.

membership(a):

membership(b):

membership(c):

membership(d): false
positive

S

16

A filter guarantees a false-positive rate ε

if q ∈ S, return with probability 1

 with probability ﹥ 1 - ε
if q ∉ S, return
 with probability ≤ ε false positive

true negative

true positive

one-sided
errors

17

False-positive rate enables filters to be compact

DictionaryFilter

18

False-positive rate enables filters to be compact

DictionaryFilter

Small

Large

For most practical purposes:
ε = 2%, a filter requires ≈ 8 bits/item

19

Filter design objectives

Optimal

Space (bits)

CPU cost

Data locality

20

Classic filter: The Bloom filter [Bloom ‘70]

0 1 0 1 0 1 0
m

a
c b

d

S

h1(a) = 1
h2(a) = 3

h1(c) = 5
h2(c) = 3

21

true
negative

Bloom filter: a bit array + k hash functions (here k=2)

Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(b) = 2
h2(b) = 5 true

negative

22

Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(d) = 1
h2(d) = 3 False

positive

23

Bloom filters are ubiquitous (> 4300 citations)

Storage systems

NetworkingStreaming applications

Computational biology

Databases

24

Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits)

CPU cost

Data locality

25

Limitations Workarounds

No deletes Rebuild

No resizes Guess N, and rebuild if wrong

No filter merging or enumeration ???

No values associated with keys Combine with another data structure

Applications often work around Bloom filter
limitations

Bloom filter limitations increase system complexity, waste
space, and slow down application performance

26

● Store fingerprints compactly in a hash table.
○ Take a fingerprint h(x) for each element x.

● Only source of false positives:
○ Two distinct elements x and y, where h(x) = h(y)
○ If x is stored and y isn’t, query(y) gives a false positives

 h(x)x

Quotienting is an alternative to Bloom filters
[Knuth. Searching and Sorting Vol. 3, ‘97]

p

27

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

q r
b(x)

b(x) t(x)

t(x)

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index

Storing fingerprints compactly

p

28

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?

b(x)

t(x)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p

29

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing
● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p

30

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing
● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p

t(y) belongs to
slots 4 or 5?

31

Implementation:
2 meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract representation

h(m)h(a)

h(d)

h(e)

0 1 2 3 4 5 6 7

1 1
1 1

t(a) t(d) t(e) t(m) t(p)

h(p)

Resolving collisions in the QF [Pandey et al. SIGMOD

‘17]

Implementation:
2 meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract representation

h(m)h(a)

h(d)

h(e)

0 1 2 3 4 5 6 7

1 1
1 1

t(a) t(b) t(d) t(e) t(m) t(p)

h(p)

Resolving collisions in the QF [Pandey et al. SIGMOD

‘17]

h(b)

● Good cache locality
● Efficient scaling out-of-RAM
● Deletions
● Enumerability/Mergeability
● Resizing
● Maintains count estimates or associate values
● Uses variable-sized encoding for counts [Counting quotient filter]

○ Asymptotically optimal space: O(∑ |C(x)|)

Quotienting enables many features in the QF

34

Quotient filters use less space than Bloom filters
for all practical configurations

Quotient filter Bloom filter Optimal

Space (bits)

CPU cost

Data locality

The quotient filter has theoretical advantages over the
Bloom filter

35

Bloom filter: ~1.44 log(1/ε) bits/element.
Quotient filter: ~2.125 + log(1/ε) bits/element.

Quotient filters use less space than Bloom filters
for all practical configurations

False-positive rate
< 1/64 (or 0.15).

36

Accuracy

● Insert performance is similar to the state-of-the-art non-counting filters
● Query performance is significantly fast at low load-factors and slightly slower

at higher load-factors

Inserts Lookups

Quotient filters perform better (or similar) to
other non-counting filters

37

Summary of filters

38

● Bloom filters [Bloom ‘70]

● Quotient filters

● Cuckoo/Morton filters [Fan et al. ‘14, Breslow & Jayasena ‘18]

● Others

○ Mostly based on perfect hashing and/or linear algebra

○ Mostly static

○ e.g., Xor filters [Graf & Lemire ‘20]

[Pagh et al. ‘05, Dillinger et al. ‘09, Bender et al.
‘12, Einziger et al. ‘15, Pandey et al. ‘17] State of the art in

practical dynamic
filters.

Performance suffers due to high-overhead of collision resolution

39

Current filter performance

Question: do you see a problem here??

16X
drop4X

drop

Performance suffers due to high-overhead of collision resolution

40

Current filters have a problem..

Applications must choose between space and speed.

Performance suffers due to high-overhead of collision resolution

41

Current filters have a problem..

Update intensive applications maintain filters close to full.

Performance
only matters at

high load factors

Why quotient filters slow down

42

Quotient filters use Robin-Hood
hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of
runs.

To insert item x:
1. Find its run.
2. Shift other items down by 1 slot.
3. Store f(x).

f1 f2 f3 f4 f5 f6

x
h(x) log(1/ε) bits/slot

fx f1 f2 f3 f4 f5 f6

n slots

shift

As the QF fills, inserts
have to do more shifting.

Why cuckoo filters slow down

43

s = O(1) slots/block (e.g., s=4)

n/sx
h0(x)

h1(x)

log(2s/ε) bits/slot

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Why cuckoo filters slow down

44

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Why cuckoo filters slow down

45

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Kick f8

Why cuckoo filters slow down

46

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Kick f8

Kick f12

Note: h0(x) and h1(x) need to be
dependent to support kicking.

Why cuckoo filters slow down

47

f13 f14 f15 f12

f1 f2 f3 f4

f5 f6 f7 fx

f9 f10 f11 f8

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

As the CF fills, inserts
have to do more kicking.

Note: h0(x) and h1(x) need to be
dependent to support kicking.

Cuckoo filter performance [Fan et al. ‘14]

48

Optimal Cuckoo filter

Space (bits)

CPU cost

Data locality

Vector quotient filter design[Pandey et al. SIGMOD ‘21]

49

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta
data

Vector quotient filter design[Pandey et al. SIGMOD ‘21]

50

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta
data

Each block is a small
quotient filter with

false-positive rate ε/2 and
capacity s.

Vector quotient filter design[Pandey et al. SIGMOD ‘21]

51

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta
data

Each block is a small
quotient filter with

false-positive rate ε/2 and
capacity s.

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Vector quotient filter design[Pandey et al. SIGMOD ‘21]

52

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta
data

Each block is a small
quotient filter with

false-positive rate ε/2 and
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Vector quotient filter design[Pandey et al. SIGMOD ‘21]

53

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta
data

Each block is a small
quotient filter with

false-positive rate ε/2 and
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and

h1(x) can be independent for
insert-only workload.

Vector quotient filter design[Pandey et al. SIGMOD ‘21]

54

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta
data

Each block is a small
quotient filter with

false-positive rate ε/2 and
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and

h1(x) can be independent for
insert-only workload.

But we still
need it to

support deletes.

Vector quotient filter design[Pandey et al. SIGMOD ‘21]

55

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta
data

Each block is a small
quotient filter with

false-positive rate ε/2 and
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and

h1(x) can be independent for
insert-only workload.

But we still
need it to

support deletes.

By Vöcking, variance
in block occupancy is
a lower order term.

Vector quotient filter design[Pandey et al. SIGMOD ‘21]

56

s = ⍵(log log n) slots/block (e.g., s=64)

n/s

Meta
data

Each block is a small
quotient filter with

false-positive rate ε/2 and
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and

h1(x) can be independent for
insert-only workload.

But we still
need it to

support deletes.

By Vöcking, variance
in block occupancy is
a lower order term.

No kicking ⇒
easier concurrency

A vectorizable mini quotient filter

57

Each block has b logical buckets.

Fingerprints of each bucket are
stored together.

We keep a bit vector of bucket
boundaries. 001010011 f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is
maximized when b=s/ln2.

Implemented
using PDEP

Implemented
using PSHUFB or

VCMPB

A vectorizable mini quotient filter

58

Each block has b logical buckets.

Fingerprints of each bucket are
stored together.

We keep a bit vector of bucket
boundaries. 001010011 f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is
maximized when b=s/ln2.

Implemented
using PDEP

Operations take constant time in a vector model of
computation for vectors of size ⍵(log log n) [Bellloch ‘90].

Example, using AVX-512 instructions.

Implemented
using PSHUFB or

VCMPB

Vector quotient filter (VQF) performance

59

Optimal VQF

Space (bits)

CPU cost

Data locality

Evaluation: insertion

60

The vector quotient filter offers high performance at all load factors.

Evaluation: lookups

61

Evaluation: concurrency

62

Quotient filter’s impact in computer science

63

Computational biology
1. Squeakr
2. deBGR
3. Mantis
4. VariantStore
5. MetaHipMer

Theoretically well-founded data structures can have a big impact on
multiple subfields across academia and industry

QFDatabases

Sequence
Search
Index

Stream
Analysis

Key-value
Stores

QF on
GPUs

Deduplica-t
ion

Graph
represen-

tation
Assembler
(SPAdes)

Databases/Systems
1. Anomaly detection
2. BetrFS file system
3. Graph

representation

Quotient filter’s impact in computer science

64

Computational biology
1. Squeakr
2. deBGR
3. Mantis
4. VariantStore
5. MetaHipmer
6. SPAdes assembler
7. Khmer software
8. MQF

Databases/Systems
1. Anomaly detection
2. BetrFS file system
3. Graph

representation
4. Counting on GPUs
5. Concurrent filters

Industry
1. VMware
2. Nutanix
3. Apocrypha
4. Hyrise
5. A data security

startup

Theoretically well-founded data structures can have a big impact on
multiple subfields across academia and industry

QFDatabases

Sequence
Search
Index

Stream
Analysis

Key-value
Stores

QF on
GPUs

Deduplica-t
ion

Graph
represen-

tation
Assembler
(SPAdes)

