
Prashant Pandey
Northeastern University

https://prashantpandey.github.io/

Dynamic Graphs:
Containers, Frameworks, and

Benchmarks

Most slides taken from Prof. Helen Xu, Georgia Tech

http://www.apple.com

My goal as a researcher is to build scalable data
systems with strong theoretical guarantees

To scale and democratize
next-generation data analyses

Three approaches to build scalable data systems

Organize it

Goal: organize data in a I/O
friendly way

B-trees, LSM-trees, Be-trees

Distribute it

Goal: distribute data & reduce
inter-node communication

Distributed hash tables

Goal: make data smaller to fit
inside fast memory

Filters, sketches, succinct
data structures

Compress it

Vertically integrated research

Data
structures

Systems

Applications

Squeakr, deBGR, Mantis,
Rainbowfish

BIOINFORMATICS 17,18
ISMB 17, RECOMB 18, 19

Cell Systems 18

LSM-Mantis
BIOINFORMATICS 22

VariantStore
Genome Biology 21

MetaHipMer*
IPDPS 21, ACDA 23

RDM (GNN)
IPDPS 23

BetrFS File System
FAST 15, 16, SPAA 19
TOS 16, 17, TOPC 21

LERT
(Anomaly detection)

SIGMOD 20, TODS 21

Terrace
(Graph system)

SIGMOD 21, VLDB 24

IONIA
(Distributed KV)

FAST 24

Quotient filter
SIGMOD 17, 21, 24

Buffered CMS
ESA 18, APOCS 23

OMH
ISMB 19

IcebergHT
SIGMOD 23

BP-tree
VLDB 23

GPU filters & HT
PPoPP 23, 24

ZombieHT
SIGMOD 25

COMPRESS ORGANIZE DISTRIBUTE

AdaptiveQF
SIGMOD 25

Vertically integrated research

Data
structures

Systems

Applications

Squeakr, deBGR, Mantis,
Rainbowfish

BIOINFORMATICS 17,18
ISMB 17, RECOMB 18, 19

Cell Systems 18

LSM-Mantis
BIOINFORMATICS 22

VariantStore
Genome Biology 21

MetaHipMer*
IPDPS 21, ACDA 23

RDM (GNN)
IPDPS 23

BetrFS File System
FAST 15, 16, SPAA 19
TOS 16, 17, TOPC 21

LERT
(Anomaly detection)

SIGMOD 20, TODS 21

Terrace
(Graph system)

SIGMOD 21, VLDB 24

IONIA
(Distributed KV)

FAST 24

Quotient filter
SIGMOD 17, 21, 24

Buffered CMS
ESA 18, APOCS 23

OMH
ISMB 19

IcebergHT
SIGMOD 23

BP-tree
VLDB 23

GPU filters & HT
PPoPP 23, 24

ZombieHT
SIGMOD 25

COMPRESS ORGANIZE DISTRIBUTE

AdaptiveQF
SIGMOD 25

Terrace, BYO
(Graph systems)

SIGMOD 21, VLDB 24

Terrace: A hierarchical graph container
for skewed dynamic graphs

6

Pandey, Wheatman, Xu, Buluc

SIGMOD ’2021

Survey of Dynamic-graph Data Structures
There has been a long line of work (20+ papers) on developing dynamic-graph
data structures with fast algorithms and updates. Including (but definitely not
limited to):

•Stinger [Ediger, McColl, Riedy, Bader - HPEC ’12]

•Aspen [Dhulipala, Blelloch, Shun - PLDI ’19]

•DGAP [Islam and Dai - SC ’23]

Many of them implement updates as parallel batches which insert/delete many
elements at the same time [BaderMa07, FriasSi07, BarbuzziMiBiBo10, ErbKoSa14, SunFeBl18, TsengDhBl19,

DhulipalaBlSh19, DhulipalaBlGuSu22]:

7Batch updates

8

Vertices labeled
from 0 to n-1

From MIT 6.172

O(1) to update
O(n) to scan nghs

Introduction to Graph Representations

9

In practice, graphs are usually represented in Compressed Sparse Row
(CSR) [TinneyWa67] format.

•Two arrays: Offsets and Edges

•Offsets[i] stores the offset of where vertex i’s edges start in Edges

Introduction to Graph Representations

CSR is “ideal” for algorithm performance, but does not efficiently support
updates. O(m) to update

O(deg(v)) to scan nghs of vertex v

Spatial Locality Determines Graph Query Performance

10

 Input: graph G, source vertex src
 let Q be a queue
 label src as explored
 Q.enqueue(src)
 while Q is not empty:
 v = Q.dequeue()
 for all edges (v, w) in G.neighbors(v):
 if w not explored:
 label w as explored
 Q.enqueue(w)

Scan

Dynamic-graph data structures (containers) must support fast graph queries.

Vertex scans, or the processing of a vertex’s incident edges, are a crucial
step in many graph queries [ShunBl13].

Breadth-first search

 Input: graph G
 let triangle_count = 0
 let E = G.edges()
 for (u, v) in E:
 intersect neighbors of u and v:
 if u and v share a neighbor w:
 triangle_count++;

Scan

Triangle counting
Each neighbor list is scanned at
most once (no temporal locality),
so optimize for spatial locality

Tradeoff between Locality and Updatability

11

Problem: Can we choose data structures to support efficient scans and updates
for dynamic graphs? i.e., “dynamic CSR”?

Adjacency matrix

Graph Algorithm

Performance

Update Performance

Static arrays
(CSR) Goal

Existing Graph Data Structures Trade Off
Query and Update Performance

12

Aspen
(dynamic [DhulipalaBlSh19])

Ligra
(static [ShunBl13])

Query

Performance

Update Performance

The commonly-held belief about graph data structures says that query
performance trades off with update performance [EdigerMcRiBa12, KyrolaBlGu12,
ShunBl13, MackoMaMaSe15, DhulipalaBlSh19, BusatoGrBoBa18, GreenBa16] due to data
representation choices.

To achieve good
performance, all of the
systems are parallel.

Terrace: Overcoming the Query-Update Tradeoff
with Locality-Optimized Data Structure Design

Terrace achieves good query and update performance by using data
structures that enhance spatial locality.

13

Terrace
(dynamic [PandeyWhXuBu21])

Query

Performance

Update Performance

Aspen
(dynamic [DhulipalaBlSh19])

Ligra
(static [ShunBl13])

To achieve good
performance, all of the
systems are parallel.

Understanding Opportunities for Locality in
Separate Per-Vertex Data Structure Design

14

Existing dynamic graph systems optimize for parallelism first with separate
per-vertex data structures e.g., trees [DhulipalaBlSh19], adjacency lists
[EdigerMcRiBa12], and others [KyrolaBlGu12, BusatoGrBoBa18, GreenBa16].

Weakness: Separating the data structures disrupts locality.

Simplified parallelization
over separate neighbor lists0 1 2

neighbors of 0

…

neighbors of 1

neighbors of 2

…

Vertex IDs
Pointers to edges

Edges x

x

Scan

Enhancing Spatial Locality by
Collocating Neighbor Data Structures

15

Cache misses between
vertices while reading all edges

in any order (e.g. PageRank)

Idea: Collocate previously separate per-vertex data structures in the same data
structure, which avoids cache misses when traversing edges in order.

neighbors of 0, neighbors of 1, neighbors of 2 …

x

x

Scan

PPCSR [WheatmanXu21]:
collocating data with

efficient parallelization

Question: Do these misses actually affect performance, or are they a low-order term?
[WheatmanXu21] Wheatman and Xu. “A Parallel Packed Memory Array to Store Dynamic Graphs.” ALENEX ’21.

neighbors of 0

neighbors of 1

neighbors of 2

0 1 2 …

…

Vertex IDs
Pointers to edges

Edges

0 1 2 …

…

Scan

Collocating Neighbor Data Structures Exploits
Naturally-Occurring Skewness in Graphs

Collocating neighbor lists improves performance because real-world dynamic
graphs, e.g., social network graphs, often follow a skewed (e.g., power-law)
distribution with a few high-degree vertices and many low-degree vertices
[BarabasiAl99].
Example power law:

Graph % < 10 neighbors % < 1000 neighbors
Twitter [BeamerAsPa15] 64.6 99.5

Number of Twitter followers

Frequency

These graphs exhibit
high degree variance:

for example, the
maximum degree in
the Twitter graph is

about 3 million
[BeamerAsPa15]

16

Next step: refine the solution with a hierarchical design that takes
advantage of skewness while maintaining locality as much as possible.

17

Problem: High-degree
vertices slow down updates
for all vertices in the shared

data structure Store high-degree
vertices alone for

updatability

Collocate low-
degree vertices for

spatial locality

Insight: Further Optimizing for Locality with a
Hierarchical Skew-Aware Design

18

Shared Packed Memory Array
[ItaiKoRo81, BenderDeFa00]

Trades locality for
updatability

Terrace implements the skew-aware hierarchical design with cache-friendly
data structures that store vertex neighbors depending on vertex degree.

Vertex
degree

Implementing the Hierarchical Skew-Aware Design
with Cache-Optimized Data Structures

Contiguous for
spatial locality

Standalone B-tree
[BayerMc72]

In theory, B-trees [BayerMc72] asymptotically dominate Packed Memory Arrays
(PMA) [ItaiKoRo81, BenderDeFa00] in the classical external-memory model [AggarwalVi88].

Given a cache block size and input size , B-trees and PMAs take
block transfers to scan.

B-tree inserts take transfers, while PMA inserts take .

B N Θ(N/B)

O(logB(N)) O(log2(N))

Selecting Data Structures for Dynamic Graphs

19

Problem: Neither data
structure clearly wins for
dynamic graphs because

graphs require fast
updates and scans

Solution: use both,
depending on degree

The theory does not
capture sequential vs

random access

Query Speed in Dynamic-Graph Data Structures

20

Both systems support

parallelization.

Both systems run the

same algorithms

by implementing

the Ligra [ShunBl13]
abstraction.

Surprisingly, in some cases,
Terrace achieves speedup
on queries over Ligra
[ShunBl13], a system for static
graphs.

Breadth-first Search PageRank Betweenness
Centrality

Connected
Components

Terrace, a dynamic-graph data structure, uses a hierarchical design that takes
advantage of graph structure.

Normalized Speedup
of Terrace Over Aspen
[DhulipalaShBl19]

Updatability in Dynamic-Graph Data Structures

Terrace

Aspen
[DhulipalaShBl19]

21

Insertion Throughput
(in millions of edges
per second)

Batch Size

Edges were generated

using an rMAT

distribution [ChakrabatiZhFa04]

and added in batches

using the provided API.

Terrace achieves the best of both worlds in terms of query and update
performance by taking advantage of locality.

Exploiting Skewness Improves Cache-Friendliness

22

The locality-first design in Terrace reduces cache misses during graph
queries.

Query Ligra
[ShunBl13]

Aspen
[DhulipalaShBl19]

Terrace
[PandeyWhXuBu21]

Breadth-first
Search 3.5M 6.3M 1.1M

PageRank 174M 197M 128M

Static Dynamic

On the
LiveJournal

graph

Cache-friendliness translates into
graph query performance

Additional optimization: store
some edges in-place for

extra spatial locality

23

Fair and Comprehensive Benchmarking of
Dynamic-Graph Containers

from “BYO: A Unified Framework for Benchmarking Large-Scale Graph Containers,”

Wheatman, Dong, Shen, Dhulipala, Łącki, Pandey, and Xu.

VLDB ’24

Results Highlights

• The Terrace paper [PandeyWhXuBu21]
reports a 1.7-2.6x speedup over
Aspen [DhulipalaBlSh19]

• The Aspen paper [DhulipalaBlSh19]
reports 1.8-15x speedup over other
dynamic-graph data structures.

• The VCSR paper [IslamDaiCh22] reports
speedups of 1.2x-2x speedup over
PCSR [WheatmanXu18].

• …other papers report similar ratios
24

Graph Containers In Dynamic-Graph Systems
A fundamental design decision in the process of developing any dynamic-graph
algorithm is the choice of the graph container (i.e., the data structure that
represents the graph) [LeoBoncz21, DhulipalaBlGuSu22, DhulipalaBlSh19, EdigerMcRiBa12, …and many others].

25

Dynamic-graph
system

Dynamic containers
supporting graph updates

Algorithm
frameworks supporting

graph queries

Data-access API

Express and
perform analytics

Store graph topology and
accommodate changes

“Contract” between the
two parts

Existing Evaluations Compare Overall Systems
At present, it is almost impossible to answer the question: “which is the
right graph container for a given application?”

The main reason is because most (if not all) works introducing new dynamic-
graph containers perform end-to-end comparisons with overall systems as
the components are tightly coupled in the implementations.

26

Evaluations are
often of the form

“system 1 is
faster than

system 2, so
container 1 is

faster than
container 2”

Dynamic-graph
system 1

Container 1

Framework 1

Dynamic-graph
system 2

Container 2

Framework 2
>

Systems may
differ in other

ways, e.g.,
compiler,

parallelization
framework,

language, etc.

Existing Systems Usually Optimize One
Component Only

27

Paper with new
framework:

Container

Framework

Paper with new
container:

Container

Framework

Ideal system:

Container

Framework

Framework
developers often
implement an ad

hoc container with
limited functionality

or performance

Container developers
often implement a

minimal framework or
use direct

implementations with
limited functionality and

generality

The best overall systems
would combine

developments in both
frameworks and

containers

Changing the Container is Challenging in Current
Framework Implementations

28

Graph-algorithm frameworks/standards (e.g., Ligra [ShunBl13], GraphBLAS [Davis23,

etc], GBBS [DhulipalaShBl21], etc.) offer hope for standardizing comparisons
between containers with high-performance frameworks, but current
implementations are too complex to easily adapt.

Dynamic-graph
system

Compressed Sparse
Row (static)

Algorithm
frameworks supporting

graph queries

Data-access API

Most frameworks:

Dynamic-graph
system

Arbitrary dynamic
containers

Algorithm
frameworks supporting

graph queries

Data-access API

Target:

Limited by
programmability:

BYO: Simplifying the Intermediate API

29

Dynamic-graph
system

Dynamic containers
supporting graph updates

Algorithm
frameworks supporting

graph queries

Data-access API

Dynamic-graph
system

Dynamic containers
supporting graph updates

GBBS: a fast algorithm
framework supporting

graph queries
[DhulipalaShBl21]

BYO: A simple
translation layer

We introduce BYO, a simple, easy-to-use translation layer between the
Graph Based Benchmark Suite [DhulipalaShBl21] and arbitrary graph data structures.

Using BYO, we evaluated 27 different graph containers (both off-the-shelf
and specialized) on a suite of 10 algorithms x 10 graphs.

Results Highlights

• The Terrace paper [PandeyWhXuBu21]
reports a 1.7-2.6x speedup over
Aspen [DhulipalaBlSh19]

• The Aspen paper [DhulipalaBlSh19]
reports 1.8-15x speedup over other
dynamic-graph data structures.

• The VCSR paper [IslamDaiCh22] reports
speedups of 1.2x-2x speedup over
PCSR [WheatmanXu18].

• …other papers report similar ratios
30

Previously:

• All specialized containers (e.g.,
Aspen, DHB [GrintenPeWi22], Terrace
[PandeyWhXuBu21], etc.) are within 10%
of each other (on average).

• An off-the-shelf B+-tree (from
Abseil) is 1.22x slower than CSR
(on average). The fastest
specialized dynamic container
(CPAM [DhulipalaBlGuSu22]) we tested
was 1.11x slower than CSR (on
average).

With standardized evaluation under BYO:

• The Terrace paper [PandeyWhXuBu21]
reports a 1.7-2.6x speedup over
Aspen [DhulipalaBlSh19]

• The Aspen paper [DhulipalaBlSh19]
reports 1.8-15x speedup over other
dynamic-graph data structures.

• The VCSR paper [IslamDaiCh22] reports
speedups of 1.2x-2x speedup over
PCSR [WheatmanXu18].

• …other papers report similar ratios

Results Highlights

31

Previously:

• All specialized containers (e.g.,
Aspen, DHB [GrintenPeWi22], Terrace
[PandeyWhXuBu21], etc.) are within 10%
of each other (on average).

• An off-the-shelf B+-tree (from
Abseil) is 1.22x slower than CSR
(on average). The fastest
specialized dynamic container
(CPAM [DhulipalaBlGuSu22]) we tested
was 1.11x slower than CSR (on
average).

With standardized evaluation under BYO:

What does this mean for
dynamic-graph data

structure developers?

Beyond high-level algorithm performance

32

Specialized data structures can improve the worst-case performance on
hard problem instances.

10 graphs (from
57M to 4B edges)

x
10 algorithms =
100 experiments

per point

Another axis - update performance

33

Specialized data structures can also overcome the classical query-update
tradeoff with parallelization of the update algorithm.

!!!

Relationship of System Components and BYO

34

Specialized
container

e.g.
CSR

CPAM

BYO:
NeighborSet &

GraphContainer
API

GBBS
Vertex

neighborhood
operators

e.g.
map

reduce
count

GBBS
Graph

operators
e.g.,

num_edges
num_vertices

GBBS
Graph

VertexSubset
operators

e.g.
Edge map
Nghreduce

GBBS
Graph

Algorithms
e.g.
BFS
BC

K-core

map /

iterator

Set container
e.g.

Red-black tree
B-tree

map

neighbors

Apply some
function over

elements

Connecting BYO to Graph Containers using the
NeighborSet API

35

BYO exposes the NeighborSet abstraction to capture the two-level
sequence-of-sets graph format, which appears in many representations
including Stinger [EdigerMcRiBa12] (adjacency lists), Aspen [DhulipalaBlSh19], and CPAM
[DhulipalaBlGuSu22] (trees of trees).

Vertex IDs

Pointers to
edges

Neighbor
Sets nghs of 0

0 1 2 …

…

nghs
of 1 nghs of 2

Managed by BYO

Implemented by developer

Only needs to
implement size and

iterator

Enables easy
parallelization over

vertices

Advantages of the NeighborSet API
The NeighborSet API is designed to make it as easy as possible for the
developer to integrate their container with BYO. It supports free translation
from the standard C++ STL API.

It also incorporates the inline optimization from Terrace [PandeyWhXuBu21] to
enable overall faster systems.

36

nghs of 2

Managed by BYO

Implemented by developer

0 1 2
nghs of 0 …nghs of 1 nghs of 2

…

nghs of 0

NeighborSet API + inline edges

Vertex IDs

Pointers to
edges

Neighbor
Sets nghs of 0

0 1 2 …

…

nghs
of 1 nghs of 2

Managed by BYO

Implemented by developer

NeighborSet API

Connecting BYO to Graph Containers using the
GraphContainer API

Some graph containers do not represent neighbor sets as separate
independent data structures (e.g., Compressed Sparse Row [TinneyWa67], F-
Graph [WheatmanBuBuXu24], Terrace [PandeyWhXuBu21], SSTGraph [WheatmanBu21]).

The GraphContainer API supports these types of containers, which
collocate data for cross-set optimizations.

37

Neighbor
Sets nghs of 0, night of 1, nghs of 2…

Implemented by developer

Only needs to
implement

num_vertices and
map_neighbors

Container manages both the
vertex and neighbor sets

All You Need is Map
BYO simplifies the original GBBS neighborhood operators such as reduce,
count, degree, etc. by implementing several of them with map.

38

Functional primitive that
applies an arbitrary

function over a
collection of elements.

BYO also connects with data structures that implement more optimized
versions of map (i.e., parallel and early exit).

Empirical Frameworks Comparison

39

BYO

BYO achieves competitive performance with other frameworks (Ligra
[ShunBl13], GraphBLAS [Davis19, 23], and the GBBS (that it is based on).

BYO Expands the Scope of
Algorithms for Benchmarking

40

GAP
[BeamerAsPa15]

BYO

Connectivity

PageRank

Triangle
counting*

Breadth-first
search

Betweenness
Centrality

Single-source
shortest
paths*

O(k)-Spanner

Low-diameter
decomposition

Approximate
densest

subgraph

k-core

Graph coloring

Maximal
independent

set

41

Table of Winners

BYO enables users to ask the question “what container is well-suited to
which applications on which graphs” without confounding factors from
the framework/implementation details (e.g., parallelization framework,
compiler, language, etc).

BYO Conclusion
BYO enables apples-to-apples comparisons between dynamic-graph containers
by decoupling the graph container from the algorithm implementations.

The interface is simple, enabling comprehensive comparisons of new containers
on a diverse set of applications with minimal programming effort.

42

GBBS: a fast algorithm framework supporting graph queries

BYO: A simple translation layer

std::set Abseil::
btree Aspen CPAM F-GraphTerrace DHB

…and many others. Maybe your container is next? B(ring) Y(our) O(wn)

Code available at: https://github.com/wheatman/BYO

Conclusion

•Dynamic-graph frameworks and containers
are both active areas of study.

•Despite the huge effort devoted to developing
dynamic-graph systems (over 30+ papers in
the past 10 years), at present, it is hard to tell
which system (i.e., which framework and
container) is best for a given workload.

•Standardizing evaluations with frameworks
is an important step in answering this
question.

43

Dynamic-graph
system

Dynamic containers
supporting graph updates

Algorithm
frameworks supporting

graph queries

Data-access API

Part 2

Part 1

Where to go from here…

Associating large vector embeddings with nodes/edges in the graph
Common in graph-based vector databases, Graph neural networks, etc.

The data transfer bottleneck changes from graph structure to
associated data

Designing a framework for evaluating graph systems that
concurrently run graph algorithms and updates

Guaranteeing serializability is challenging in the presence of long
running graph algorithms and updates

Graph databases propose transaction-based solutions (MVCC)

Several papers on developing custom solutions for specific graph
algorithms

44

45

BACKUP

46

Graph sizes

47

48

49

50

