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My goal as a researcher is to build scalable data 
systems with strong theoretical guarantees

To scale and democratize 
next-generation data analyses



Three approaches to build scalable data systems

Organize it

Goal: organize data in a I/O 
friendly way


B-trees, LSM-trees, Be-trees

Distribute it

Goal: distribute data & reduce 
inter-node communication 


Distributed hash tables

Goal: make data smaller to fit 
inside fast memory


Filters, sketches, succinct 
data structures

Compress it
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Terrace: A hierarchical graph container  
for skewed dynamic graphs
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Pandey, Wheatman, Xu, Buluc

SIGMOD ’2021



Survey of Dynamic-graph Data Structures
There has been a long line of work (20+ papers) on developing dynamic-graph 
data structures with fast algorithms and updates. Including (but definitely not 
limited to):

•Stinger [Ediger, McColl, Riedy, Bader - HPEC ’12]

•Aspen [Dhulipala, Blelloch, Shun - PLDI ’19]

•DGAP [Islam and Dai - SC ’23]


Many of them implement updates as parallel batches which insert/delete many 
elements at the same time [BaderMa07, FriasSi07, BarbuzziMiBiBo10, ErbKoSa14, SunFeBl18, TsengDhBl19, 

DhulipalaBlSh19, DhulipalaBlGuSu22]:

7Batch updates
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Vertices labeled 
from 0 to n-1

From MIT 6.172

O(1) to update 
O(n) to scan nghs

Introduction to Graph Representations
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In practice, graphs are usually represented in Compressed Sparse Row 
(CSR) [TinneyWa67] format.

•Two arrays: Offsets and Edges

•Offsets[i] stores the offset of where vertex i’s edges start in Edges

Introduction to Graph Representations

CSR is “ideal” for algorithm performance, but does not efficiently support 
updates. O(m) to update 

O(deg(v)) to scan nghs of vertex v



Spatial Locality Determines Graph Query Performance
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 Input: graph G, source vertex src
 let Q be a queue
 label src as explored
 Q.enqueue(src)
 while Q is not empty:
   v = Q.dequeue()
   for all edges (v, w) in G.neighbors(v):
     if w not explored:
       label w as explored
       Q.enqueue(w)

Scan

Dynamic-graph data structures (containers) must support fast graph queries.


Vertex scans, or the processing of a vertex’s incident edges, are a crucial 
step in many graph queries [ShunBl13].

Breadth-first search

 Input: graph G
 let triangle_count = 0
 let E = G.edges()
 for (u, v) in E: 
   intersect neighbors of u and v:
     if u and v share a neighbor w:
       triangle_count++;

Scan

Triangle counting
Each neighbor list is scanned at 
most once (no temporal locality), 
so optimize for spatial locality



Tradeoff between Locality and Updatability
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Problem: Can we choose data structures to support efficient scans and updates 
for dynamic graphs? i.e., “dynamic CSR”?

Adjacency matrix

Graph Algorithm

Performance

Update Performance

Static arrays  
(CSR) Goal



Existing Graph Data Structures Trade Off  
Query and Update Performance
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Aspen  
(dynamic [DhulipalaBlSh19])

Ligra  
(static [ShunBl13])

Query

Performance

Update Performance

The commonly-held belief about graph data structures says that query 
performance trades off with update performance [EdigerMcRiBa12, KyrolaBlGu12, 
ShunBl13, MackoMaMaSe15, DhulipalaBlSh19, BusatoGrBoBa18, GreenBa16] due to data 
representation choices.

To achieve good 
performance, all of the 
systems are parallel.



Terrace: Overcoming the Query-Update Tradeoff 
with Locality-Optimized Data Structure Design

Terrace achieves good query and update performance by using data 
structures that enhance spatial locality.
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Terrace  
(dynamic [PandeyWhXuBu21] )

Query

Performance

Update Performance

Aspen  
(dynamic [DhulipalaBlSh19])

Ligra  
(static [ShunBl13])

To achieve good 
performance, all of the 
systems are parallel.



Understanding Opportunities for Locality in 
Separate Per-Vertex Data Structure Design
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Existing dynamic graph systems optimize for parallelism first with separate 
per-vertex data structures e.g., trees [DhulipalaBlSh19], adjacency lists 
[EdigerMcRiBa12], and others [KyrolaBlGu12, BusatoGrBoBa18, GreenBa16].

Weakness: Separating the data structures disrupts locality.

Simplified parallelization 
over separate neighbor lists0 1 2

neighbors of 0

…

neighbors of 1

neighbors of 2

…

Vertex IDs
Pointers to edges

Edges x

x

Scan



Enhancing Spatial Locality by  
Collocating Neighbor Data Structures
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Cache misses between 
vertices while reading all edges 

in any order (e.g. PageRank)

Idea: Collocate previously separate per-vertex data structures in the same data 
structure, which avoids cache misses when traversing edges in order.

neighbors of 0, neighbors of 1, neighbors of 2 …

x

x

Scan

PPCSR [WheatmanXu21]: 
collocating data with 

efficient parallelization

Question: Do these misses actually affect performance, or are they a low-order term?
[WheatmanXu21] Wheatman and Xu. “A Parallel Packed Memory Array to Store Dynamic Graphs.” ALENEX ’21. 

neighbors of 0

neighbors of 1

neighbors of 2

0 1 2 …

…

Vertex IDs
Pointers to edges

Edges

0 1 2 …

…

Scan



Collocating Neighbor Data Structures Exploits 
Naturally-Occurring Skewness in Graphs 

Collocating neighbor lists improves performance because real-world dynamic 
graphs, e.g., social network graphs, often follow a skewed (e.g., power-law) 
distribution with a few high-degree vertices and many low-degree vertices 
[BarabasiAl99].
Example power law:

Graph % < 10 neighbors % < 1000 neighbors
Twitter [BeamerAsPa15] 64.6 99.5

Number of Twitter followers

Frequency

These graphs exhibit 
high degree variance: 

for example, the 
maximum degree in 
the Twitter graph is 

about 3 million 
[BeamerAsPa15]
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Next step: refine the solution with a hierarchical design that takes 
advantage of skewness while maintaining locality as much as possible.
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Problem: High-degree 
vertices slow down updates 
for all vertices in the shared 

data structure Store high-degree 
vertices alone for 

updatability

Collocate low-
degree vertices for  

spatial locality

Insight: Further Optimizing for Locality with a 
Hierarchical Skew-Aware Design
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Shared Packed Memory Array 
[ItaiKoRo81, BenderDeFa00]

Trades locality for 
updatability

Terrace implements the skew-aware hierarchical design with cache-friendly 
data structures that store vertex neighbors depending on vertex degree.

Vertex  
degree

Implementing the Hierarchical Skew-Aware Design 
with Cache-Optimized Data Structures

Contiguous for 
spatial locality

Standalone B-tree 
[BayerMc72]



In theory, B-trees [BayerMc72] asymptotically dominate Packed Memory Arrays 
(PMA) [ItaiKoRo81, BenderDeFa00] in the classical external-memory model [AggarwalVi88].


Given a cache block size  and input size , B-trees and PMAs take  
block transfers to scan.


B-tree inserts take  transfers, while PMA inserts take .

B N Θ(N/B)

O(logB(N)) O(log2(N))

Selecting Data Structures for Dynamic Graphs
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Problem: Neither data 
structure clearly wins for 
dynamic graphs because 

graphs require fast 
updates and scans 

Solution: use both, 
depending on degree

The theory does not 
capture sequential vs 

random access



Query Speed in Dynamic-Graph Data Structures
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Both systems support

parallelization.


Both systems run the 

same algorithms 

by implementing

the Ligra [ShunBl13] 
abstraction.


Surprisingly, in some cases, 
Terrace achieves speedup 
on queries over Ligra 
[ShunBl13], a system for static 
graphs.

Breadth-first Search PageRank Betweenness 
Centrality

Connected 
Components

Terrace, a dynamic-graph data structure, uses a hierarchical design that takes 
advantage of graph structure.

Normalized Speedup 
of Terrace Over Aspen  
[DhulipalaShBl19]



Updatability in Dynamic-Graph Data Structures

Terrace

Aspen 
[DhulipalaShBl19]
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Insertion Throughput 
(in millions of edges 
per second)

Batch Size

Edges were generated

using an rMAT

distribution [ChakrabatiZhFa04]


and added in batches

using the provided API.

Terrace achieves the best of both worlds in terms of query and update 
performance by taking advantage of locality.



Exploiting Skewness Improves Cache-Friendliness
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The locality-first design in Terrace reduces cache misses during graph 
queries.

Query Ligra 
[ShunBl13]

Aspen 
[DhulipalaShBl19]

Terrace 
[PandeyWhXuBu21]

Breadth-first 
Search 3.5M 6.3M 1.1M

PageRank 174M 197M 128M

Static Dynamic

On the 
LiveJournal 

graph

Cache-friendliness translates into 
graph query performance 

Additional optimization: store 
some edges in-place for 

extra spatial locality



23

Fair and Comprehensive Benchmarking of 
Dynamic-Graph Containers

from “BYO: A Unified Framework for Benchmarking Large-Scale Graph Containers,” 

Wheatman, Dong, Shen, Dhulipala, Łącki, Pandey, and Xu.


VLDB ’24



Results Highlights

• The Terrace paper [PandeyWhXuBu21]  
reports a 1.7-2.6x speedup over 
Aspen [DhulipalaBlSh19]


• The Aspen paper [DhulipalaBlSh19] 
reports 1.8-15x speedup over other 
dynamic-graph data structures.


• The VCSR paper [IslamDaiCh22] reports 
speedups of 1.2x-2x speedup over 
PCSR [WheatmanXu18].


• …other papers report similar ratios
24



Graph Containers In Dynamic-Graph Systems
A fundamental design decision in the process of developing any dynamic-graph 
algorithm is the choice of the graph container (i.e., the data structure that 
represents the graph) [LeoBoncz21, DhulipalaBlGuSu22, DhulipalaBlSh19, EdigerMcRiBa12, …and many others].
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Dynamic-graph 
system

Dynamic containers 
supporting graph updates

Algorithm 
frameworks supporting 

graph queries

Data-access API

Express and 
perform analytics

Store graph topology and 
accommodate changes

“Contract” between the 
two parts



Existing Evaluations Compare Overall Systems
At present, it is almost impossible to answer the question: “which is the 
right graph container for a given application?”


The main reason is because most (if not all) works introducing new dynamic-
graph containers perform end-to-end comparisons with overall systems as 
the components are tightly coupled in the implementations.
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Evaluations are 
often of the form 

“system 1 is 
faster than 

system 2, so 
container 1 is 

faster than 
container 2”

Dynamic-graph 
system 1

Container 1

Framework 1

Dynamic-graph 
system 2

Container 2

Framework 2
>

Systems may 
differ in other 

ways, e.g., 
compiler, 

parallelization 
framework, 

language, etc.



Existing Systems Usually Optimize One 
Component Only
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Paper with new 
framework:

Container

Framework

Paper with new 
container:

Container

Framework

Ideal system:

Container

Framework

Framework 
developers often 
implement an ad 

hoc container with 
limited functionality 

or performance

Container developers 
often implement a 

minimal framework or 
use direct 

implementations with 
limited functionality and 

generality

The best overall systems 
would combine 

developments in both 
frameworks and 

containers



Changing the Container is Challenging in Current 
Framework Implementations
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Graph-algorithm frameworks/standards (e.g., Ligra [ShunBl13], GraphBLAS [Davis23, 

etc], GBBS [DhulipalaShBl21], etc. ) offer hope for standardizing comparisons 
between containers with high-performance frameworks, but current 
implementations are too complex to easily adapt.

Dynamic-graph 
system

Compressed Sparse 
Row (static)

Algorithm 
frameworks supporting 

graph queries

Data-access API

Most frameworks:

Dynamic-graph 
system

Arbitrary dynamic 
containers

Algorithm 
frameworks supporting 

graph queries

Data-access API

Target:

Limited by 
programmability:



BYO: Simplifying the Intermediate API
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Dynamic-graph 
system

Dynamic containers 
supporting graph updates

Algorithm 
frameworks supporting 

graph queries

Data-access API

Dynamic-graph 
system

Dynamic containers 
supporting graph updates

GBBS: a fast algorithm 
framework supporting 

graph queries 
[DhulipalaShBl21]

BYO: A simple 
translation layer

We introduce BYO, a simple, easy-to-use translation layer between the 
Graph Based Benchmark Suite [DhulipalaShBl21] and arbitrary graph data structures.

Using BYO, we evaluated 27 different graph containers (both off-the-shelf 
and specialized) on a suite of 10 algorithms x 10 graphs.



Results Highlights

• The Terrace paper [PandeyWhXuBu21]  
reports a 1.7-2.6x speedup over 
Aspen [DhulipalaBlSh19]


• The Aspen paper [DhulipalaBlSh19] 
reports 1.8-15x speedup over other 
dynamic-graph data structures.


• The VCSR paper [IslamDaiCh22] reports 
speedups of 1.2x-2x speedup over 
PCSR [WheatmanXu18].


• …other papers report similar ratios
30

Previously:

• All specialized containers (e.g., 
Aspen, DHB [GrintenPeWi22], Terrace 
[PandeyWhXuBu21], etc.) are within 10% 
of each other (on average). 

• An off-the-shelf B+-tree (from 
Abseil) is 1.22x slower than CSR 
(on average). The fastest 
specialized dynamic container 
(CPAM [DhulipalaBlGuSu22]) we tested 
was 1.11x slower than CSR (on 
average).

With standardized evaluation under BYO:



• The Terrace paper [PandeyWhXuBu21]  
reports a 1.7-2.6x speedup over 
Aspen [DhulipalaBlSh19]


• The Aspen paper [DhulipalaBlSh19] 
reports 1.8-15x speedup over other 
dynamic-graph data structures.


• The VCSR paper [IslamDaiCh22] reports 
speedups of 1.2x-2x speedup over 
PCSR [WheatmanXu18].


• …other papers report similar ratios

Results Highlights
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Previously:

• All specialized containers (e.g., 
Aspen, DHB [GrintenPeWi22], Terrace 
[PandeyWhXuBu21], etc.) are within 10% 
of each other (on average). 

• An off-the-shelf B+-tree (from 
Abseil) is 1.22x slower than CSR 
(on average). The fastest 
specialized dynamic container 
(CPAM [DhulipalaBlGuSu22]) we tested 
was 1.11x slower than CSR (on 
average).

With standardized evaluation under BYO:

What does this mean for 
dynamic-graph data 

structure developers?



Beyond high-level algorithm performance
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Specialized data structures can improve the worst-case performance on 
hard problem instances.

10 graphs (from 
57M to 4B edges) 

x 
10 algorithms = 
100 experiments 

per point



Another axis - update performance
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Specialized data structures can also overcome the classical query-update 
tradeof with parallelization of the update algorithm.

!!!



Relationship of System Components and BYO
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Specialized 
container 

e.g. 
CSR 

CPAM 

BYO: 
NeighborSet & 

GraphContainer 
API

GBBS 
Vertex 

neighborhood  
operators 

e.g. 
map 

reduce 
count 

GBBS 
Graph 

operators 
e.g., 

num_edges 
num_vertices

GBBS 
Graph 

VertexSubset 
operators 

e.g. 
Edge map 
Nghreduce 

GBBS 
Graph 

Algorithms 
e.g. 
BFS 
BC 

K-core 

map / 

iterator

Set container 
e.g. 

Red-black tree 
B-tree 

map 

neighbors

Apply some 
function over 

elements



Connecting BYO to Graph Containers using the 
NeighborSet API
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BYO exposes the NeighborSet abstraction to capture the two-level 
sequence-of-sets graph format, which appears in many representations 
including Stinger [EdigerMcRiBa12] (adjacency lists), Aspen [DhulipalaBlSh19], and CPAM 
[DhulipalaBlGuSu22] (trees of trees).

Vertex IDs

Pointers to 
edges

Neighbor 
Sets nghs of 0

0 1 2 …

…

nghs 
of 1 nghs of 2

Managed by BYO

Implemented by developer

Only needs to 
implement size and 

iterator

Enables easy 
parallelization over 

vertices



Advantages of the NeighborSet API
The NeighborSet API is designed to make it as easy as possible for the 
developer to integrate their container with BYO. It supports free translation 
from the standard C++ STL API.


It also incorporates the inline optimization from Terrace [PandeyWhXuBu21] to 
enable overall faster systems.
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nghs of 2

Managed by BYO

Implemented by developer

0 1 2
nghs of 0 …nghs of 1 nghs of 2

…

nghs of 0

NeighborSet API + inline edges

Vertex IDs

Pointers to 
edges

Neighbor 
Sets nghs of 0

0 1 2 …

…

nghs 
of 1 nghs of 2

Managed by BYO

Implemented by developer

NeighborSet API



Connecting BYO to Graph Containers using the 
GraphContainer API

Some graph containers do not represent neighbor sets as separate 
independent data structures (e.g., Compressed Sparse Row [TinneyWa67], F-
Graph [WheatmanBuBuXu24], Terrace [PandeyWhXuBu21], SSTGraph [WheatmanBu21]).


The GraphContainer API supports these types of containers, which 
collocate data for cross-set optimizations.
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Neighbor 
Sets nghs of 0, night of 1, nghs of 2…

Implemented by developer

Only needs to 
implement 

num_vertices and 
map_neighbors

Container manages both the 
vertex and neighbor sets



All You Need is Map
BYO simplifies the original GBBS neighborhood operators such as reduce, 
count, degree, etc. by implementing several of them with map.
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Functional primitive that 
applies an arbitrary 

function over a 
collection of elements.

BYO also connects with data structures that implement more optimized 
versions of map (i.e., parallel and early exit).



Empirical Frameworks Comparison
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BYO

BYO achieves competitive performance with other frameworks (Ligra 
[ShunBl13], GraphBLAS [Davis19, 23], and the GBBS (that it is based on).



BYO Expands the Scope of  
Algorithms for Benchmarking
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GAP 
[BeamerAsPa15]

BYO

Connectivity 

PageRank 

Triangle 
counting*

Breadth-first 
search 

Betweenness 
Centrality  

Single-source 
shortest 
paths*

O(k)-Spanner 

Low-diameter 
decomposition 

Approximate 
densest 

subgraph

k-core 

Graph coloring 

Maximal 
independent 

set
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Table of Winners

BYO enables users to ask the question “what container is well-suited to 
which applications on which graphs” without confounding factors from 
the framework/implementation details (e.g., parallelization framework, 
compiler, language, etc).



BYO Conclusion
BYO enables apples-to-apples comparisons between dynamic-graph containers 
by decoupling the graph container from the algorithm implementations.


The interface is simple, enabling comprehensive comparisons of new containers 
on a diverse set of applications with minimal programming effort.

42

GBBS: a fast algorithm framework supporting graph queries

BYO: A simple translation layer

std::set Abseil:: 
btree Aspen CPAM F-GraphTerrace DHB

…and many others. Maybe your container is next? B(ring) Y(our) O(wn)

Code available at: https://github.com/wheatman/BYO



Conclusion

•Dynamic-graph frameworks and containers 
are both active areas of study.

•Despite the huge effort devoted to developing 
dynamic-graph systems (over 30+ papers in 
the past 10 years), at present, it is hard to tell 
which system (i.e., which framework and 
container) is best for a given workload.

•Standardizing evaluations with frameworks 
is an important step in answering this 
question. 
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Dynamic-graph 
system

Dynamic containers 
supporting graph updates

Algorithm 
frameworks supporting 

graph queries

Data-access API

Part 2

Part 1



Where to go from here…

Associating large vector embeddings with nodes/edges in the graph 
Common in graph-based vector databases, Graph neural networks, etc.

The data transfer bottleneck changes from graph structure to 
associated data


Designing a framework for evaluating graph systems that 
concurrently run graph algorithms and updates 

Guaranteeing serializability is challenging in the presence of long 
running graph algorithms and updates

Graph databases propose transaction-based solutions (MVCC)

Several papers on developing custom solutions for specific graph 
algorithms 
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BACKUP
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Graph sizes
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