
Communication Optimization for Distributed
Execution of Graph Neural Networks

Süreyya Emre Kurt∗, Jinghua Yan∗, Aravind Sukumaran-Rajam†∗, Prashant Pandey∗, P. Sadayappan∗
∗Kahlert School of Computing, University of Utah, Salt Lake City, Utah

†Meta Platforms , Menlo Park, California

Abstract—Graph Neural Networks (GNNs) have emerged as
a very powerful and popular machine learning model for nu-
merous application domains. Each stage of a GNN requires an
aggregation (sparse matrix-matrix multiplication) and a linear
operation (dense matrix-matrix multiplication). Numerous efforts
have addressed the development of distributed implementations
for GNNs. Although efficient algorithms for distributed matrix
multiplication are well known, the challenge here is the collective
optimization of sequences of distributed matrix-matrix multi-
plications required for GNN, where many degrees of freedom
also exist in the ordering of the component matrix-multiplication
operations.

This paper develops a new approach to distributed
GNN, ReDistribution of Matrices (RDM), centered around
communication-free distributed matrix-multiplication enabled by
matrix redistribution between GNN stages. While the approach
is applicable to the numerous algorithmic variants of GNN, the
experimental evaluation focuses on GCN (Graph Convolutional
Network), including both full-batch training as well as sampling-
based training using GraphSAINT. Experimental evaluation with
2-layer and 3-layer GCN, using 128 or 256 hidden features, across
eight sparse datasets, on a multi-GPU system with 8 GPUs shows
that RDM attains a geometric mean speedup between 2× and
3.7× over two state-of-the-art multi-GPU GCN implementations,
CAGNET and DGCL.

Index Terms—Graph Neural Networks, Distributed Algo-
rithms, Multi-GPU GNN, Performance Modeling

I. INTRODUCTION

Graphs contain structural information that relate entities
(nodes) through relationships (edges). These relationships of-
ten provide transitive information for a node by examining
the information at neighbors; e.g., nodes are likely to exhibit
similar characteristics to their neighbors in the graph. Graph
Neural Networks [1] have emerged as a prominent machine
learning methodology to exploit the information contained in a
graph. There has been an explosion of GNN research over the
last decade. Due to the increasing size of graphs processed by
GNNs, there is a considerable interest in developing distributed
implementations for GNNs [2]–[10].

GNN algorithms like Graph Convolution Networks
(GCN) [11], GraphSAGE [12], Graph Attention Networks
(GAT) [13], and many others, have a computational structure
where each layer of the GNN uses the graph structure to
aggregate neighbor information, followed by application of a
learnable neural network layer to the results of the aggregation.
The aggregation operation can be efficiently implemented as
an SpMM (Sparse-Dense Matrix Multiplication, where one
matrix is sparse and the other is dense) operation and neural

operation can be implemented as a GEMM (dense matrix-
matrix multiplication).

The execution time of the aggregation step via an SpMM
with a very large sparse matrix is generally much higher
than the dense matrix-matrix multiplication for the neural
operations [14]. This is largely because of the significantly
lower performance (GFLOPs) achievable on CPUs and GPUs
for SpMM with a very large sparse matrix (N × N , where
N is the number of graph vertices) versus dense matrix
multiplication (GEMM). Further (as elaborated later), with
existing distributed GNN implementations [2], [4], [8], inter-
node communication is needed for the graph-aggregation step
via the SpMM operation, while the subsequent GEMM oper-
ations for the neural operation are performed locally without
any inter-node communication. Therefore the optimization of
distributed SpMM has been a focus of several recent studies
[4], [8].

Current implementations of distributed GNN generally use
a vertex-partitioned approach to distributing the work of the
aggregation step, as well as the neural processing among
the nodes of a multi-node system. The vertex partitioning
approach requires communication of the input features and
intermediate activations across processor nodes, for graph
edges whose vertices are mapped to different processors.

In this paper, we develop a different approach to distributed
GNN — GNN-RDM, based on ReDistribution of Matrices.
We seek to perform communication-free matrix multiplication
for both the sparse (aggregation) and dense (neural) steps,
with appropriate redistribution of dense matrices among the
memories of the distributed system between matrix opera-
tions. A significant advantage of this approach is improved
scalability with increase in the number of GPUs. While
existing distributed GNN schemes generally incur increasing
communication volumes as the number of GPUs is increased,
the total volume of data movement with RDM is independent
of the number of GPUs.

Exploiting algebraic properties that allow the reordering
of the dense and sparse matrix multiplications at each GNN
layer to reduce the number of data redistribution steps, we
develop a systematic taxonomy for a design space of configu-
rations for the redistribution-based GNN. We further develop
a performance model that can be used to identify pareto-
optimal configurations with respect to data movement cost
and the operation counts for SpMM operations, allowing a
model-driven approach to selection of the best configuration

TABLE I: Notations used in the paper.

Notation Definition
A Adjacency matrix for GCN with N vertices
PX Process with id X
P Total number of processes
Hin and H0 Input features to the GCN
Hout Final embedding calculated in GCN
Hi Output of layer i
fi Number of columns for matrix Hi

Wi Weight matrix for layer i

for a given set of GNN parameters (graph structure, input
embedding size, and sizes of intermediate neurons).

The space of algorithmic variants for GNN is very large,
with differences along many dimensions. This includes differ-
ences in the specific combining operation used (sum, min,
max, etc.) in aggregating data from neighbor vertices, the
normalization operation used, the batch size used etc. Another
difference among GNN variants is whether or not sampling on
the graph is performed when aggregating information from
neighbors, and if so how the sampling is done. The new
RDM approach to distributed GNN is broadly applicable
across the numerous variants of GNN used in applications
today, including both sampling-based GNNs and full-batch
GNNs.

In this paper, we demonstrate the impact of our work on two
significant GNN models: i) full-batch GCN, the primary mode
of training used for GNNs in metagenomics applications [15],
[16], and ii) GraphSaint GCN [17], which has demonstrated
that very high training accuracy can be achieved via graph-
sampling to create subgraphs for training.

The paper makes the following contributions:
• It develops a novel multi-GPU GNN implementation

based on data redistribution to minimize inter-node com-
munication.

• It develops a systematic taxonomy and a design space
of configurations for distributed multi-GPU GNN, along
with an analytical performance model to identify pareto-
optimal configurations with respect to communication
overhead and sparse operation count.

• It presents an experimental study demonstrating the per-
formance benefits of new approach to distributed GNN
over existing frameworks, both for full-batch training as
well as training based on cluster-sampling.

II. BACKGROUND ON GNN
A GNN comprises of a number of layers, each with a train-

able linear neural operator, along with an aggregation operator
that combines feature vectors from neighboring vertices in the
graph. In this section, we first summarize the operations at a
GNN layer for the forward and backward propagation during
the training of the GNN, followed by a description of the 1D
distributed GNN approach of CAGNET [4]. We use the same
notation as Tripathy et al. [4].

We first discuss full-batch GCN (Graph Convolutional Net-
work, a specific GNN algorithm) training without sampling
as implemented in CAGNET. Later, we discuss GCN with
sampling in Sec. III-F.

AT

Hl-1

T

Wl

ZlT

 T = AT*Hl-1
 Zl = T*Wl

sparse ops:
nnz*fl-1

network:
(P-1)*N*fl-1

dense ops:
N*fl-1*fl

Fig. 1: 1D scheme in CAGNET.
Forward Pass: Let A represent the adjacency matrix for the
connectivity graph. For layer l, let Hl−1 be the input, Hl the
output, and Wl the weight matrix. In the forward pass, there
are two main operations: aggregation and the linear layer. In
the aggregation operation, the transpose of adjacency matrix
A is multiplied with Hl−1 and the linear layer is applied to
the result. This is described in eq. (1). A non-linear function
is then applied to this output, as shown in eq. (2).

Zl = A⊤H l−1W l (1)

H l = σ(Zl) (2)

Backward Pass: The backward pass of a layer computes the
gradients. Let Gl be the gradient for H l. Based on the loss
value, the gradient is first computed for the last layer. The
backward pass at stage l receives Gl from stage l + 1, and
computes the gradient Y l for the weights W l and the gradient
Gl−1, as described in eqs. (3) and (4).

Gl−1 = AGl(W l)⊤ ⊙ σ′(Zl−1) (3)

Y l = (H l−1)⊤AGl (4)

CAGNET Distributed GNN: Prior schemes [4], [8] have
implemented distributed GNN by dividing both the sparse
adjacency matrix and the dense activations across the nodes,
with inter-node communication of needed dense activations
at each stage of the GNN. The 1D scheme in CAGNET [4]
divides both A and activations into horizontal bands and each
process is responsible for storing its own tile as shown in
Figure 1. For the SpMM operation T = A⊤ ∗ H l−1, each
process broadcasts its owned local data slice of H l−1 to other
nodes so that each node has access to all elements of H l−1 to
perform the computations for their local data slice of the output
T . The next operation, dense matrix multiplication (GEMM)
Zl = T ∗W l, does not require any communication since W l is
replicated among all the nodes. In the backward pass of GNN,
a similar order of SpMM (T = A ∗ Gl) and GEMM (U =
(H l−1)⊤T) and Hadamard product Gl−1 = U ⊙ σ′(Zl−1)
are applied. If a hardware multicast is not available, the total
volume of data to be moved for a forward layer l broadcast is
(P − 1) ∗N ∗ fl−1 where H l−1 contains N ∗ fl−1 elements.
For a 2 layer GNN with fin input features, hidden layers with
fh neurons and fout output classes, the total volume of data

movement from the broadcast operations during the SpMM
operations will be (P −1)(fin+2fh+fout)N , which is linear
in terms of the number of processes P .

III. COMMUNICATION OPTIMIZATION FOR DISTRIBUTED
GNN

In this section we describe GNN-RDM, a new approach
to distributed GNN based on ReDistribution of Matrices. In
contrast to previously developed schemes for distributed GNN
[3], [4], [7], [10], [18], which utilize a uniform strategy at
each stage in the GNN, we perform a more comprehensive
analysis of the data access patterns and inter-dependencies
between stages and devise a distributed GNN approach that
is demonstrated to achieve higher performance and be more
scalable with increase in number of nodes than existing
distributed GNN schemes.

As further elaborated below, the overall optimization prob-
lem for distributed GNN involves the following decisions:
[Operator level] For a given SpMM or GEMM operation at
a GNN stage, there are many possible distributed execution
options, corresponding to different partition/distribution strate-
gies for the input and output dense matrices.
[Block level] For each GNN layer, there is flexibility in the
order of the SpMM and GEMM operations, because of the
associativity of chain matrix multiplication: the matrix chain
product ABC can be computed either as (AB)C or A(BC).
This choice affects both the total number of arithmetic opera-
tions, as well as the amount of inter-processor communication
required for distributed execution.
[Network level, intra-pass] The choice of orders of the
SpMM and GEMM operations at adjacent layers affects the
computational cost (number of floating-point operations) as
well as the communication cost.
[Network level, across forward/backward pass] There is
potential for reducing the total number of SpMM operations in
the backward pass by saving and reusing a post-SpMM matrix
in the forward pass, but this constrains the relative order of
GEMM and SpMM in the backward pass.

A. Communication-Free Matrix Multiplication

A key idea behind our approach is that distributed matrix
multiplication can be communication-free if one of the two
input matrices is replicated on all nodes of a distributed system
and the other input matrix is appropriately partitioned across
processors. This property is used to devise a distributed GNN
scheme where communication for the SpMM and GEMM
operations is avoided by suitably redistributing the input dense
matrix operand to a form that enables communication-free
matrix multiplication for both operations.

Fig. 2 shows how matrix multiplication can be performed
without communication when one of the input matrices is fully
replicated among nodes and the other input matrix is suitably
partitioned/distributed. Consider Out = M ∗ In, where M is
fully replicated among nodes, as shown in Figure 2a, which
is representative of the SpMM operation in GNN. Vertically
slicing In and Out in a compatible manner will enable

In

OutM

P0 & P1 P0 P1

P0 P1

P0: Out[0:I-1][0:J/2-1]=
M*In[0:I-1][0:J/2-1]
P1: Out[0:I-1][J/2:J-1]=
M*In[0:I-1][J/2:J-1]

(a) GNN-SpMM: left input ma-
trix replicated (Out = M*In)

P0: Out[0:I/2-1][0:J-1]=
In[0:I/2-1][0:J-1]*M
P1: Out[I/2:I-1][0:J-1]=
In[I/2:I-1][0:J-1]*M

M

OutIn

P0

P1 P1

P0

P0 & P1

(b) GNN-GEMM: right input
matrix replicated (Out = In*M)

Fig. 2: Communication free distributed matrix multiplication
where one of the input matrices is replicated among nodes.

distributed matrix-multiplication without any inter-processor
communication. If either one of In or Out were horizontally
tiled, there would be a need to broadcast In or a reduc-
tion for Out, requiring a greater volume of data movement.
Similarly, if M is the right (second) operand in the matrix
multiplication Out = In ∗M , with M being fully replicated
across processors, and In and Out being horizontally sliced
across processors, communication-free matrix multiplication
is feasible, as shown in Figure 2b.

B. Operation Order

Section II described the operations needed for the forward
and backward layers for GCN. Consider Equation (1). There
are two choices for computation of A⊤H l−1W l: either first
perform a sparse-dense matrix multiplication (SpMM) to form
a temporary T = A⊤H l−1, followed by the dense matrix
product TW l; or first perform the dense matrix multiplication
T = H l−1W l, followed by the SpMM ATT . The associativity
of matrix-chain multiplication ensures that the two orders of
computing the triple matrix-chain multiplication are equiva-
lent. Similarly, in the backward pass (Equation (3)), there are
two options: either first perform SpMM AGl, or dense matrix
multiplication G(W l)⊤. As discussed later, the total number of
arithmetic operations depends on the chosen execution order.

C. SpMM Reuse across Forward and Backward Pass

Another factor that we consider is the fact that some compu-
tational reuse is feasible across the collection of computations
for the forward and backward passes of a layer. Fig. 3 shows
that if AGl is first computed for the computation of Gl−1,
it can also be reused by choosing it as the first operation
in computing W l (shown shaded yellow). An alternative is
to reuse a saved intermediate ATH l−1 from the forward
pass (shaded blue). From the above observation of potential
reuses, we can conclude that if the dense matrix multiplication
is executed first in both forward and backward passes, an
additional sparse operation will be required for computing
gradient of W l.

Gl-1=AGl(Wl)𝗧⊙𝜎′(Zl-1) Zl=A𝗧H(l-1)Wl

Hl=𝜎(Zl)

Forward Pass Backward Pass

Wl=Wl-(Hl-1)𝗧AGl

Fig. 3: Reuse between different GNN operations. A⊤H l−1 (or
(H l−1)⊤A) and AGl needs to computed twice. We can avoid
recomputation for one of them.

H0

Ta Tb

Z1

H1

Tc Td

Z2

H2

Tj

Th Ti

Tg

Te Tf

G2

Tb=A
TH0Ta=H

0W1

Td=A
TH1Tc=H

0W2

Z1=ATTa Z1=TbW
1

Z2=ATTc
Z2=TdW

2

Y2

Y1

Te=AG
2 Tf=G

2W2

G1=TeW
2 G1=ATf

Th=AG
1

G1=Tg⊙𝛔′(Z
1)

Tj=ThW
1 Tj=ATi

Y1=Tg(H
1)T

Y2=Te(H
2)T

Y1=Tb
TG1

Y2=Td
TG2

H1=𝛔(Z1)

H1=𝛔(Z2)

G1
Ti=G

1W1

G0

G0=Tj⊙𝛔′(Z
0)

Loss

Fig. 4: Computation order and reuses. Path chosen for case 10
in Table IV is highlighted in red.

Figure 4 shows all possible computation orders and the data
reuses. Each node in the graph represents a matrix and each
edge represents a different computation order. Doted edges
represent the possible reuse between forward and backward
operators. The group of nodes on the left (with yellow back-
ground) represents the forward computations and the group
of nodes on the right represents the backward computations.
The operators with turquoise background (Y 1, Y 2, and G0)
represents the final output. For example, the edges Ta and Tb

represent the dense first and sparse first orderings (sec. III-D,
fig. 5) respectively, for the first forward layer. Z1 can then
computed from Ta or Tb as A1Ta or TbW

1 respectively. The
remaining computations can be done similarly. The red arrows
shows the dense-sparse-dense-sparse ordering (corresponds to
ID 10 in Table IV). Note that Td is required to compute Y 2 in
the backward pass. It can be either saved during the forward
pass or recomputed during the backward pass. The dotted red
arrow indicates that in the chosen path (represented by red
arrow), we saved Td during the forward pass so that it can be
reused during the backward pass.

D. Data Movement Cost

We can observe that in both the forward and backward
passes, the SpMM operations are of the form AG, where
the sparse matrix is the left operand. From Fig. 2, vertical
slicing of the input/output dense matrices would result in
communication-free execution. In contrast, the dense matrix
multiplication operations are always of the form HW , for
which horizontal slicing of the input/output dense matrices
is needed for communication-free distributed execution.

Thus, regardless of which one of A⊤H l−1 or H l−1W l is
executed first in the forward pass in Equation (1), one of
SpMM or dense mat-mult uses the output of the other opera-
tion and they require their inputs to be distributed differently.
Thus, there will always be a need for redistribution of the
intermediate dense matrix. Since redistribution can be done by
an all-to-all personalized communication of the intermediate
result, the total data movement volume will be constant in
terms of the number of nodes.

Figures 5a and 5b illustrate the data partitioning and re-
distribution on a two node distributed-system (each dense
matrix is sliced into two parts) for both choices: perform
SpMM first or dense matrix-multiplication first. The number
of arithmetic operations, as well as the aggregate volume
of data movement, in a distributed system are shown above
each operation. For the SpMM operation in Fig. 5a, the
total number of FMA (Fused Multiply Add) operations is
nnz ∗ fl−1, where nnz is the number of nonzero elements
in the sparse matrix and fl−1 is the embedding size for the
input vectors at this stage, or the width (number of columns) in
the dense matrices. For the GEMM, the number of operations
is N ∗fl−1∗fl, where N is the number of vertices and fl is the
embedding size (the number of output neurons) at each graph
vertex for that layer. The redistribution of a vertically sliced
partition to a horizontally sliced partition (or vice-versa) will
require a total volume of inter-node data movement volume
of (P − 1)/P ∗ N ∗ f elements, where P is the number of
processors.

E. Handling Very Large Sparse Matrices

If the sparse matrix A is too large to fit in a single GPU’s
memory, it is partitioned and distributed among multiple
GPUs. Consider P GPUs to be viewed as a logical 2D grid of
size Pi × Pj . If there is sufficient aggregate GPU memory to
make RA replicas of A, they are organized in the following
manner: the sparse matrix A is divided into Pi = P/Pj row
panels and each GPU holds NiRA/P ×Tk tile of A. A group
of GPUs holding the entire A will also store a Ni×Nj/P tile
of B and can communicate among themselves to compute C
tile of size Ni × Nj/P using the 1D algorithm described in
[4]. Since A matrix is replicated RA times, the data-movement
of this algorithm is (P/RA − 1) ∗ |B| since B is broadcast
P/RA−1 times. When RA = 1 this scheme will be identical to
1D scheme presented in CAGNET [4]; however, when RA > 1
the data movement will be less than half of the RA = 1 case.

Since the data movement for SpMM and RA are inversely
related, choosing largest possible RA replication factor for A
would give the least data movement for this scheme. If we
assume the size of the memory per node is M , total size of
input features and activation is Hall =

∑
Hi, and the size

of the sparse adjacency matrix is G, then each process can
use M − Hall of it’s memory to store the adjacency matrix.
Therefore adjacency matrix can be replicated RA = P M−Hall

G

times. Therefore, the largest possible value of RA is P M−Hall

G .
Note that since there are P processes, adjacency matrix can
be replicated at most P times; so, when this number is larger

AT

Hl-1

T

Wl

ZlT

T = AT*Hl-1
 Zl = T*Wl

TT

Redistribute

sparse ops:
nnz*fl-1

dense ops:
N*fl-1*fl

network:
(P-1)/P*N*fl-1

(a) SpMM First

AT

T

Zl

Wl

THl-1

 Zl = AT*T T = Hl-1*Wl

T T

Redistribute

sparse ops:
nnz*fl

dense ops:
N*fl-1*fl

network:
(P-1)/P*N*fl

(b) GEMM First

Fig. 5: Comparison between SpMM or GEMM being the first operation in the first layer
of the GNN computation for a 2 node system.

P0 & P1

P2 & P3

A

B

C

P
1

P
0

P
3

P
2

P
1

P
0

P
3

P
2

Fig. 6: SpMM on a 4-node sys-
tem with 2-way row-panel par-
titioning of the sparse adjacency
matrix A.

P0

P1

Divide Redistribute Merge

P
0

P
1S
en
d

S
en
d

R
ec
v

R
ec
v

P
0

P
0

P
1

P
1

P
1

P
0

P
1

P
0

(a) Horizontal to vertical

P0

P1

Divide Redistribute Merge

P
0

P
1

P
0

P
0

P
1

P
1

S
en
d

P
1

P
0

P
1

P
0

S
en
d

R
ec
v

R
ec
v

(b) Vertical to horizontal

Fig. 7: Redistribution logic.

than P we are going to use RA = P or in other words we
will fully replicate adjacency matrix.

Fig. 6 shows an example where Pj = RA = 2 and P = 4.
Matrix A is divided into 2 row-panels on a 4 node system.
Each of the row panels of A is replicated among 4/2=2 nodes
(top row-panel is stored in P0 and P1; bottom row-panel in
P2 and P3). Each node computes a distinct slice of the output
dense matrix of size N/2 × f/2. In order to compute the
owned output slice, each node will need all partitions of the
dense input array in the same vertical slice. For example, P1
will need the input partitions owned by itself and P3. The
needed data is communicated by broadcasting each input dense
matrix partition to all processors owning partitions in the same
vertical slice, i.e., between P0 and P2; and between P1 and
P3.

F. Sampling in GNN

So far we have discussed full-batch, full-graph training, the
mode of GNN primarily used in some application domains
such as metagenomics [15], [16], and also demonstrated to
be very effective in other applications. However, the use of

sampling is very common, in order to address the neighbor-
hood explosion problem. In sampling based GNN methods,
the halo of the batch or k-hop neighborhood information uses
only a sampled subset of the connected vertices, instead of
all of them. A very effective approach to sampling is graph-
sampling to create independently processed subgraphs, e.g.,
GraphSaint GCN [17], which has demonstrated that very high
training accuracy can be achieved. We demonstrate the use
of our RDM-based distributed GNN with such a sampling
approach. For other kinds of sampling approaches that do
not create independent sub-graphs, a masked SpMM kernel
can be performed on the sampled neighbors of each vertex.
This method would be similar to our proposed GCN-RDM
scheme by passing along the sampled neighbor information
to all processes and replacing SpMM routine with masked
SpMM. Furthermore, a random generated seed can be passed
to all processes and each process can generate it’s sparse
mask individually, reducing the communication overhead for
the sampling mask.

IV. PERFORMANCE MODELING

A. Cost Model of a Layer

In Section III-B we described the impact on performance
of the relative order of SpMM and GEMM operations in
the forward and backward passes. This section discusses the
modeling of communication and computation cost. Figure 5
(a) and (b) show the SpMM-first and the GEMM-first ordering
in the forward pass; analysis of the backward layer is similar.

1) Forward Pass: In Equation (1), let W l represent a matrix
with dimensions fl−1 ∗fl, N represent the number of vertices
in the network and nnz represent the number of edges. The
extent of A is N ∗ N , H l−1 is N ∗ fl−1 and Zl is N ∗ fl.
The number of operations in the forward pass are described
in Table II. The number of operations in the GEMM does
not depend on the order, but the number of operations in
the SpMM depends on calculation order. If fl > fl−1, an
SpMM-first strategy yields lower communication volume and
computation for SpMM; if fl < fl−1 the GEMM-first strategy
leads to fewer operations in SpMM and lower communication

TABLE II: Number of operations in the forward pass.

SpMM first GEMM first
SpMM Ops nnz ∗ fl−1 nnz ∗ fl
GEMM Ops N ∗ fl−1 ∗ fl N ∗ fl−1 ∗ fl

Comm. (P − 1)/P ∗N ∗ fl−1 (P − 1)/P ∗N ∗ fl
Comm.
(RA < P)

(RA − 1)/RA ∗N ∗ fl−1

+(P/RA − 1) ∗N ∗ fl−1

(RA − 1)/RA ∗N ∗ fl
+(P/RA − 1) ∗N ∗ fl

TABLE III: #Ops. in backward pass (non-memoized).

SpMM first GEMM first
SpMM Ops nnz ∗ fl nnz ∗ fl−1

SpMM Ops
(N.M.) nnz ∗ fl

nnz ∗ fl−1

+ min(nnz ∗ fl, nnz ∗ fl−1)
GEMM Ops 2 ∗N ∗ fl−1 ∗ fl 2 ∗N ∗ fl−1 ∗ fl
Comm. (P − 1)/P ∗N ∗ fl (P − 1)/P ∗N ∗ fl−1

Comm.
(N.M.) (P − 1)/P ∗N ∗ fl

(P − 1)/P ∗N ∗ fl−1

+2*min(nnz ∗ fl, nnz ∗ fl−1)
Comm.
(RA < P)

(RA − 1)/RA ∗N ∗ fl−1

+(P/RA − 1) ∗N ∗ fl−1
(RA − 1)/RA ∗N ∗ fl

Comm.
(RA < P)
(N.M.)

(RA − 1)/RA ∗N ∗ fl−1

+(P/RA − 1) ∗N ∗ fl−1

(RA − 1)/RA ∗N ∗ fl
+(P/RA − 1) ∗N ∗ fl
+2*min(nnz ∗ fl, nnz ∗ fl−1)

volume. The number of operations and communication volume
of the nonlinear function in Equation (2) does not dependent
on the execution order.

After the last forward layer, the loss function is computed.
The loss function typically needs all the embeddings for a
single vertex to be in the same process node. Thus, an extra
redistribution is needed if the final embedding HL is vertically
tiled. Therefore, the cost of the last redistribution is (P −
1)/P ∗N .

2) Backward Pass: Ignoring the Hadamard product in
Equation (3), the analysis of SpMM-first and GEMM-first
schemes for the backward pass are almost identical to the
forward pass. Let the dimensions of Gl be N ∗ fl and Gl−1

be N ∗ fl−1. The GEMM cost will be same for both orders;
however, if A⊤H l−1 is not memoized in the forward pass and
the GEMM is executed first in the backward pass, an additional
SpMM of A⊤H l−1 or AGl is required. Table III summarizes
the total cost of SpMM, GEMM and communication.

3) Inter Layer Communication:: This is affected by the
order of multiplication. Figures 5a and 5b show how changing
the multiplication order changes the data distribution of H l−1

and H l among nodes. If the consecutive layers l and l + 1
perform SpMM-first (or GEMM-first), they will require an
additional redistribution of (P − 1)/P ∗N ∗ fl elements.

Figure 7a shows how data is redistributed from horizontal to
vertical partitioning. Initially, P0 and P1 contain a horizontal
slice of the data. Each processor then divides the data it owns
into P vertical chunks (the divide step). In the next step, each
processor redistributes the data. For example, P0 sends its
second vertical chuck to P1, and P1 sends its first vertical
chuck to P0. After the redistribution, each process contains the
data corresponding to the entire vertical chunk it should own;
however, the data is split across multiple chunks. In the final
step, each processor merges its chunks (Merge step). Vertical
to Horizontal redistribution also uses a similar approach and
is shown in Figure 7b.

4) Row Tiling for Adjacency Matrix A: The details of an
algorithm for RA < P is described in Section III-E. B and C

are divided into P/RA ×RA tiles in this scenario. If SpMM
is performed first in a layer, the volume of data movement for
redistribution will be (RA − 1)/RA ∗N ∗ fl−1 because each
1×RA group need to redistribute their C tile of size N/RA×
fl−1 among themselves to convert vertical slicing to horizontal
slicing, required for GEMM. Similarly if GEMM is performed
first, converting horizontal slicing to (P/RA)×RA slices will
require a volume of data movement of (RA − 1)/RA ∗N ∗ fl
. Tables II and III show the summary for cases for RA <
P . Moreover, the data movement within the SpMM operation
will be (P/RA − 1)NF , as described in Section III-E, where
F = fl−1 if SpMM is performed first and F = fl if GEMM
is performed first.

B. Redistribution Model

In this section we investigate which order of SpMMs and
GEMMs can yield the best performance.

If the CAGNET scheme [4] for a two layer GNN network is
used for GNN-RDM, it can result in three data redistributions.
As mentioned earlier, the order of operations affects the cost
and a different choice can yield a scheme with lower inter-
layer communication.

For a 2-layer GNN, there are 4 choices for the ordering of
SpMM and GEMM for the two layers. As mentioned in Sec-
tion IV-A, the cost of the GEMM operation does not change
depending on multiplication order. In Table IV, the total cost
of SpMM and communication are modeled. The second and
third column describes whether SpMM (S) or GEMM (D) is
executed first in the forward pass in layer 1 and 2, respectively.
Similarly, column 4 and 5 describes whether SpMM (S) or
GEMM (D) is executed first in the backward pass in layer
2 and 1, respectively. Since the nnz factor for each SpMM
and the (P − 1)/P ∗ N factor for each communication do
not change with the choice of order of execution, they are not
shown in the table. The entries in the table can be computed
using the equations described in Section IV-A in O(L × 2L)
time where L is the number of layers. Since the number of
layers is typically at most 4 in GNN applications, the cost of
computing this table is negligible in comparison to the time for
performing the training using an optimized order. Even though
there are 16 different configurations for a 2-layer network, as
shown in th enext section, only very few of them are Pareto
optimal configurations in terms of communication and sparse
operations. Therefore, after trying out each pareto-optimal
configuration in the first few epochs, we can dynamically
determine the fastest configuration and use that configuration
for the remaining epochs.

V. EXPERIMENTAL EVALUATION

We now present our empirical evaluation of RDM. We
compare RDM against two other state-of-the-art distributed
GNN systems, CAGNET [4] and DGCL [8] for full-batch
training. We further evaluate RDM on GraphSaint [17], which
uses a graph sampling approach that generates a number of
sampled sub-graphs that are used for training. We compare
RDM on GraphSAINT against the DGL implementation of

TABLE IV: Communication and computation cost: 2-layer
GNN.

ID Forward
Pass

Backward
Pass Communication Sparse Ops

0 S S S S fin + 4fh + 2fout fin + 2fh + fout
1 S D S S fin + 2fh + 4fout fin + fh + 2fout
2 D S S S 4fh + 2fout 3fh + fout
3 D D S S 4fh + 4fout 2fh + 2fout
4 S S S D 2fin + 2fh + 2fout 2fin + fh + fout
5 S D S D 2fin + 4fout 2fin + 2fout

6 D S S D fin + 2fh + 2fout
+2min(fin, fh)

fin + 2fh + fout
+min(fin, fh)

7 D D S D fin + 2fh + 4fout
+2min(fin, fh)

fin + fh + 2fout
+min(fin, fh)

8 S S D S fin + 4fh fin + 3fh

9 S D D S fin + 2fh + 2fout
+2min(fh, fout)

fin + 2fh + fout
+min(fh, fout)

10 D S D S 4fh 4fh

11 D D D S 4fh + 2fout
+2min(fh, fout)

3fh + fout
+min(fh, fout)

12 S S D D 2fin + 4fh 2fin + 2fh

13 S D D D fin + 2fh + 2fout
+2min(fh, fout)

2fin + fh + fout
+min(fh, fout)

14 D S D D fin + 4fh
+2min(fin, fh)

fin + 3fh
+min(fin, fh)

15 D D D D
fin + 4fh + 3fout
+2min(fh, fout)
+2min(fin, fh)

4fh + 3fout
+min(fh, fout)
+min(fin, fh)

GraphSAINT. DGL could not be compared for distributed full-
batch training since it is not supported. Similarly, we could
not evaluate GraphSAINT sampling with CAGNET or DGCL
because the only supported scheme is full-batch training.

A. Experimental Setup

We used the CAGNET [4] framework for implementing
RDM. We adopted the Graph Convolution Network (GCN)
model [11] and reused the graph normalization code in
CAGNET.

TABLE V: Datasets used in evaluation.

Dataset Vertices Edges Feature size Labels
OGB-Arxiv 169,343 1,166,243 128 40
OGB-MAG 1,939,743 21,111,007 128 349
OGB-Products 2,449,029 61,859,140 100 47
Reddit 232,965 114,848,857 602 41
Web-Google 875,713 5,105,039 256 100
Com-Orkut 3,072,441 117,185,083 128 100
CAMI Airways 1,000,000 22,901,745 256 25
CAMI Oral 1,000,000 20,734,972 256 32

a) Datasets: We used eight publicly available graph
datasets for evaluation, with characteristics listed in Table V.
OGB-Arxiv, OGB-MAG and OGB-Products are datasets from
the Open Graph Benchmark suite [19]. OGB-Arxiv is a
citation network graph of Computer Science arXiv papers.
OGB-Products represents an Amazon product co-purchasing
network. OGB-MAG is a heterograph with multiple types of
nodes and edges, containing a subset of the information from
Microsoft Academic Graph. For this study we use the paper-
cites-paper relation to generate the graph for use with GNN.
Reddit is a social network graph of the Reddit forum [12].
Web-Google [20] is a web graph where each node represents
a web page, and each edge is a hyperlink between web pages.

TABLE VI: Pareto-optimal configurations (IDs from Table IV)
for the datasets in Table V.

fin fh fout Candidates IDs
OGB-Arxiv 128 128 40 5
OGB-MAG 128 128 349 10
OGB-Products 100 128 47 5
Reddit 602 128 41 2, 3 and 10
Web-Google 256 128 100 2, 3 and 10
Com-Orkut 128 128 100 5 and 10
CAMI Airways 256 128 25 2, 3, and 10
CAMI Oral 256 128 32 2, 3, and 10

Com-Orkut [21] is an online social network where each node
represents a user and edges represent the friendship between
users. Since node features and labels are not provided for
Web-Google and Com-Orkut datasets, we generated random
values to evaluate runtime. Table V shows the details of these
datasets.

We also included two metagenomic graph datasets in our
evaluation. Recently, it has been shown that GNNs can be
used to classify sequences in metagenomics [15], [16], [22].

GNN-based classification techniques use connectivity infor-
mation between input metagenomic sequences to construct an
overlap graph [22]. In the overlap graph, each sequence acts
as a node and two nodes are connected by an edge if they have
an overlapping region. Then node classification is performed
using graph neural network in a semi-supervised setting. The
tetra nucleotide content, i.e., the frequencies of all four-length
sequences, is used as input node features.

We used two publicly available long read datasets from
the 2nd CAMI Toy Human Microbiome Project dataset: Oral
cavity and Airways.

To generate the overlap graph, we took the fastq file
containing all sequences in a dataset, aligned them pairwise
with minimap2 [23], and excluded self-aligned sequences with
the flag -X.

.
b) System Details: We evaluated RDM on a system with

two 32-core AMD EPYC 7513 CPUs and 8 NVIDIA RTX
A6000 GPUs. Each GPU has 48 GB GDDR6 memory. We
used PyTorch v1.9.0 as the deep learning framework, and
CUDA version 11.1. We used the built-in distributed APIs of
PyTorch to perform inter-device communication and NCCL
v2.7.8 as the communication backend.

c) GNN Implementation Details: We implemented 2-
layer and 3-layer GCN networks for the RDM scheme using
the CAGNET infrastructure [4]. We experimented with two
choices for the hidden layer dimension - 128 and 256. For
each RDM evaluation, the analytical model described in Sec.
Sec.sec:perf-model was used to identify all pareto optimal con-
figurations with respect to the computational and communica-
tion costs. The pareto optimal configurations were executed
and the best among those reported. For the 2-layer case for
128 hidden features, the pareto optimal configurations for the
datasets are shown in Table VI. The The Adam optimizer
was used to train all models (RDM, CAGNET, DGL). The
learning rate was set to 0.01 for all full-batch experiments. In
our experiments of Section V-C, the learning rate was set to

CAGNET DGCL RDM

2 4 8

0
2
0

4
0

T
hr

ou
gh

pu
t

(a) OGB-Arxiv
2 4 8

0
5

1
0

T
hr

ou
gh

pu
t

(b) OGB-MAG
2 4 8

0
1

2

T
hr

ou
gh

pu
t

(c) OGB-Products
2 4 8

0
2

4
6

8

T
hr

ou
gh

pu
t

(d) Reddit

2 4 8

0
5

1
0

T
hr

ou
gh

pu
t

(e) Web-Google
2 4 8

0
1

2

T
hr

ou
gh

pu
t

(f) Com-Orkut
2 4 8

0
2

4
6

8

T
hr

ou
gh

pu
t

(g) CAMI-Airways
2 4 8

0
2

4
6

8

T
hr

ou
gh

pu
t

(h) CAMI-Oral

Fig. 8: Training throughput (epochs per second): 2-Layer GCN; hidden-size=128; X-axis: #GPUs.

CAGNET DGCL RDM

2 4 8

0
2
0

4
0

T
hr

ou
gh

pu
t

(a) OGB-Arxiv
2 4 8

0
2

4
6

8

T
hr

ou
gh

pu
t

(b) OGB-MAG
2 4 8

0
1

2

T
hr

ou
gh

pu
t

(c) OGB-Products
2 4 8

0
2

4
6

T
hr

ou
gh

pu
t

(d) Reddit

2 4 8

0
2

4
6

T
hr

ou
gh

pu
t

(e) Web-Google
2 4 8

0
0
.5

1
1
.5

T
hr

ou
gh

pu
t

(f) Com-Orkut
2 4 8

0
2

4
6

8

T
hr

ou
gh

pu
t

(g) CAMI-Airways
2 4 8

0
2

4
6

8

T
hr

ou
gh

pu
t

(h) CAMI-Oral

Fig. 9: Training throughput (epochs per second): 2-Layer GCN; hidden-size=256; X-axis: #GPUs.

CAGNET DGCL RDM

2 4 8

0
1
0

2
0

3
0

T
hr

ou
gh

pu
t

(a) OGB-Arxiv
2 4 8

0
2

4
6

8

T
hr

ou
gh

pu
t

(b) OGB-MAG
2 4 8

0
0
.5

1
1
.5

T
hr

ou
gh

pu
t

(c) OGB-Products
2 4 8

0
2

4

T
hr

ou
gh

pu
t

(d) Reddit

2 4 8

0
2

4
6

T
hr

ou
gh

pu
t

(e) Web-Google
2 4 8

0
0
.5

1

T
hr

ou
gh

pu
t

(f) Com-Orkut
2 4 8

0
2

4
6

T
hr

ou
gh

pu
t

(g) CAMI-Airways
2 4 8

0
2

4
6

T
hr

ou
gh

pu
t

(h) CAMI-Oral

Fig. 10: Training throughput (epochs per second): 3-Layer GCN; hidden-size=128; X-axis: #GPUs.

CAGNET DGCL RDM

2 4 8

0
5

1
0
1
5
2
0

T
hr

ou
gh

pu
t

(a) OGB-Arxiv
2 4 8

0
2

4
6

T
hr

ou
gh

pu
t

(b) OGB-MAG
2 4 8

0
0
.5

1
1
.5

T
hr

ou
gh

pu
t

(c) OGB-Products
2 4 8

0
2

4

T
hr

ou
gh

pu
t

(d) Reddit

2 4 8

0
2

4

T
hr

ou
gh

pu
t

(e) Web-Google
2 4 8

0
0
.5

1

T
hr

ou
gh

pu
t

(f) Com-Orkut
2 4 8

0
2

4

T
hr

ou
gh

pu
t

(g) CAMI-Airways
2 4 8

0
2

4

T
hr

ou
gh

pu
t

(h) CAMI-Oral

Fig. 11: Training throughput (epochs per second): 3-Layer GCN; hidden-size=256; X-axis: #GPUs.

0.001 for GraphSAINT-RDM on the Metagenomics datasets
to enhance training stability. Each model was trained for
100 epochs, and the arithmetic mean for achieved throughput
(epochs per second) is reported.

B. Throughput Comparison: Full-Batch GNN

We first compare the training throughput of GNN-RDM
against CAGNET and DGCL. The reported throughput for
GNN-RDM are based on the best of the model pre-
dicted SpMM and GEMM candidate orders. Among multiple
CAGNET algorithms, we compare against the 1.5D algorithm
since it was shown to be the algorithm with the best throughput
by the authors. Fig. 8-11 present throughput data for the 8
datasets on 2/4/8 GPUs, for 2/3 GNN layers and 128/256
hidden features. All three implementations compute identical
outputs, with small differences due to reordering of floating
point operations across the schemes.

Compared to CAGNET, RDM achieves higher training
throughput for all of the datasets across all GPU configurations
(for a few cases CAGNET results could not be obtained since
it ran out of memory). Overall, RDM’s achieved throughput is
significantly higher than DGCL, especially on 8 GPUs. For a
couple of the benchmarks (OGB-Products and Reddit) DGCL
is faster than RDM on 2 GPUs, but RDM is faster than DGCL
on 4 and 8 GPUs. RDM exhibits much better scalability as
the number of GPUs is increased because the total volume of
inter-GPU communication remains constant, while the volume
of data movement increases with the number of GPUs for
CAGNET and DGCL.

Table VII summarizes the performance data in Fig. 8-11
as the geometric mean of speedup achieved by RDM over
CAGNET and DGCL over all datasets. The speedup over
CAGNET is at least 2× for all cases - 2, 4, or 8 GPUs, 2-
layer or 3-layer network, 128 or 256 hidden features. When
compared with DGCL, RDM performance is generally worse
on 2 GPUs, but over 2× (between 2.1× and 2.54×) better on

CAGNET RDM Comm

O
G

B
-A

rx
iv

O
G

B
-M

A
G

O
G

B
-P

ro
du

ct
s

R
ed

di
t

W
eb

-G
oo

gl
e

C
om

-O
rk

ut

C
A

M
I-

A
ir

w
ay

s

C
A

M
I-

O
ra

l0
0
.2

0
.4

0
.6

0
.8

E
po

ch
tim

e
(s

)

O
G

B
-A

rx
iv

O
G

B
-M

A
G

O
G

B
-P

ro
du

ct
s

R
ed

di
t

W
eb

-G
oo

gl
e

C
om

-O
rk

ut

C
A

M
I-

A
ir

w
ay

s

C
A

M
I-

O
ra

l0
0
.2

0
.4

0
.6

0
.8

Fig. 12: Communication in CAGNET and RDM for 8 GPUs.
4 GPUs and over 3× (between 3.13× and 3.74×) better on 8
GPUs.

TABLE VII: Geometric mean of speedup of RDM over
CAGNET and DGCL across the 8 datasets.

GPUs Layers Features Speedup vs.
CAGNET

Speedup vs.
DGCL

2
2 128 2.29 0.91

256 2.36 0.92

3 128 2.49 1.02
256 2.48 0.84

4
2 128 2.38 2.30

256 2.54 2.17

3 128 2.62 2.54
256 2.68 2.10

8
2 128 2.04 3.13

256 2.56 3.74

3 128 2.00 3.27
256 2.65 3.63

Communication Time: For the eight datasets, Figure 12
shows a breakdown of total epoch time into the time spent on
computation versus communication by CAGNET and RDM,
for the 2-layer GCN with 128 hidden features. The total time

spent in communication (the gray region in the bars) is lower
for RDM, often by a significant amount. For some cases,
the compute time (red or green region) for RDM is lower
than CAGNET but higher in some. This is in part due to the
difference in total number of operations for different order of
SpMM/GEMM, and in part due to the different width of the
dense-matrix slices processed by RDM and CAGNET - the
lower slice size for RDM can result in reduced data reuse
and lower compute throughput. The ratio of epoch times and
communication times between CAGNET and RDM for all
four networks (2/3 layers and 128/256 hidden features) are
presented in Table IX. RDM is consistently faster per-epoch,
largely due to the significantly lower communication overhead.

TABLE VIII: Assessment of analytical model for optimal
SpMM/GEMM order: 2-layer GCN with 128 hidden features.

Dataset #GPUs Pareto optimal Non-pareto optimal
2 30 36-50
4 22 25-38OGB-Arxiv
8 22 25-42
2 126 147-335
4 85 103-221OGB-MAG
8 76 97-226
2 859 756-969
4 622 422-692OGB-Products
8 402 482-662
2 384-418 1309-1864
4 157-168 775-985Reddit
8 138-186 344-489
2 135-180 200-250
4 95-139 145-198Web-Google
8 90-125 126-181
2 772-909 846-1045
4 445-626 510-757Com-Orkut
8 473-525 546-677
2 182-203 241-337
4 119-138 147-241CAMI-Airways
8 116-137 113-235
2 174-193 226-320
4 117-134 137-236CAMI-Oral
8 114-143 124-224

Model Validation: We assessed the effectiveness of our ana-
lytical modeling for ordering of SpMM/GEMM operations by
performing runs with all possible orderings of SpMM/GEMM.
Table VIII lists the measured epoch time for the Pareto
optimal configurations from the analytical model, as well as all
non-Pareto-optimal configurations. With very few exceptions
(e.g., OGB-Products on 2 and 4 GPUs), the model-predicted
configuration(s) had better performance, sometimes with very
significant differences (e.g., Reddit).

C. Evaluation with Cluster Sampling

The experiments above use RDM in full-batch GCN training
(i.e., the entire set of vertices is processed together, rather than
in small batches). In this section, we evaluate a redistribution-
based GNN implementation for the cluster sampling approach
of GraphSAINT [17], a recent GNN approach that uses
sampling to generate independent subgraphs for training and
has been shown to exhibit high accuracy. Each subgraph is
parallelized using our RDM scheme.

We also extend a DGL implementation of GraphSAINT
to use Distributed Data Parallelism (DDP) to run a
batch/subgraph on each GPU (G) in parallel. Since subgraphs
are run in a fully distributed manner, DDP can be expected to
exhibit good scalability. However, when using DDP, the results
of each of the G distributed forward and backward passes
are reduced and the model weights are updated using the
optimizer. If there are S subgraphs (i.e., batches) and G GPUs,
there will be S/G weight updates. Therefore, DDP increases
the effective batch size, which can have a negative effect
on the rate of model convergence. In contrast, GraphSAINT-
RDM computes the forward and backward pass for a single
subgraph using distributed GPU resources. This allows the
model weights to be updated after each subgraph, independent
of the number of GPUs being used.

Figure 13 shows plots of test accuracy as a function of
training time for the GraphSAINT-DGL implementation using
DDP, the RDM based GraphSAINT, and the full batch GCN
RDM implementation, for execution on 8 GPUs, using a
2-layer GNN with 128 hidden features. Trends are similar
with use of 256 hidden features and 3-layer networks; details
are omitted due to space limitations. Of the 8 datasets we
experimented, two do not have training datasets associated
with them (Com-Orkut, Web-Google) and are therefore not
presented here. For the metagenomics datasets, it is not com-
mon practice to use sampling because of loss of accuracy from
sampling. As expected, we observe that with the CAMI Oral
and CAMI Airways dataset, full-batch training (GCN-RDM)
achieves significantly higher accuracy than GraphSAINT-
RDM or GraphSaint-DGL. For the other datasets all three
schemes achieve comparable test accuracy, but for OGB-
Products and Reddit, GraphSAINT-RDM and GraphSAINT-
DGL converge much faster than GCN-RDM.

Our experimental results highlight that RDM can also be
used effectively in cluster-sampling GNN schemes. However,
there exist datasets where a sampling-based approach is infe-
rior to full-batch training, where GCN-RDM is very effective.
Whether full-batch training or sampling-based training is more
effective for a dataset (higher test accuracy or comparable
test accuracy but faster convergence), the RDM approach
developed in this paper is very effective for both scenarios
for distributed multi-GPU execution.

D. Space Requirement

The space requirement for GNN-RDM for 8 GPUs is shown
in Table X, for different values of RA. There is an inverse
relationship between the amount of memory used and the
amount of inter-node data communication as described in
section III-E. The case of RA = P corresponds to full
replication of the graph across all GPUs, while the other
extreme of RA = 1 corresponds to CAGNET. The maximum
possible value for RA is chosen based on the available GPU
memory.

TABLE IX: Ratio of CAGNET’s Epoch time and Communication time over RDM’s times.

Dataset 2-Layer Hidden:128 2-Layer Hidden:256 3-Layer Hidden:128 3-Layer Hidden:256
Epoch Comm Epoch Comm Epoch Comm Epoch Comm

OGB-Arxiv 1.98 1.87 2.92 2.70 1.97 1.82 1.93 1.54
OGB-MAG 3.15 4.60 2.72 3.26 2.82 3.94 3.20 3.99

OGB-Products 1.35 2.31 2.21 3.74 1.06 1.64 1.76 1.83
Reddit 2.24 2.37 2.76 2.54 1.63 2.52 2.33 2.91

Web-Google 3.47 3.71 3.09 2.77 3.02 3.02 2.65 2.21
Com-Orkut 1.48 2.79 1.80 2.14 1.35 2.16 2.00 2.40

CAMI-Airways 1.74 2.83 2.71 4.48 2.25 4.44 2.87 4.10
CAMI-Oral 1.68 2.64 2.68 4.13 2.24 4.05 2.91 4.00

GraphSAINT-RDM GraphSAINT-DGL GCN-RDM

0 10 20
0

0.2

0.4

0.6

A
cc

ur
ac

y

(a) OGB-Arxiv

0 20 40 60 80 100
0

0.1

0.2

0.3

(b) OGB-MAG

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

(c) OGB-Products

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

A
cc

ur
ac

y

(d) Reddit

0 50 100 150 200
0

0.2

0.4

0.6

0.8

(e) CAMI-Airways

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

(f) CAMI-Oral

Fig. 13: Test accuracy versus time for GCN-RDM, GraphSAINT-RDM, and GraphSAINT-DGL: 2-layers, 128 hidden features,
8 GPUs (Time in seconds).

TABLE X: Space requirement for CAGNET and RDM. RA

defines how many replicas of the adjacency matrix A are
stored. Data is for per-GPU space requirement in MBytes,
for distributed GCN on 8 GPUs.

GNN-RDMDataset CAGNET
RA = 2 RA = 4 RA = 8

OGB-Arxiv 26MB 28MB 32MB 39MB
OGB-MAG 618MB 650MB 713MB 840MB
OGB-Products 430MB 522MB 708MB 1.1GB
Reddit 262MB 434MB 779MB 1.5 GB
Web-Google 220MB 227MB 243MB 273MB
Com-Orkut 723MB 898MB 1.3GB 2GB
CAMI Airways 239MB 273MB 342MB 479MB
CAMI Oral 239MB 270MB 332MB 457MB

VI. RELATED WORK

Numerous efforts have addressed distributed GNNs on
CPUs and/or GPUs. PyTorch Geometric (PyG) and Deep
Graph Library (DGL) [24] are two widely used GNN training
frameworks. PyG is compatible with PyTorch and supports
training on CPU, single GPU and multiple GPUs. DGL is
compatible with PyTorch, MXNet and TensorFlow. DistDGL

[10] is the module integrated in DGL to support distributed
model training.

We found the DGL-based implementation of GraphSAINT
to be faster than PyG and so we used the former in our
evaluation.

CAGNET [4] implements a number of SpMM algorithms,
corresponding to 1D, 1.5D, 2D, and 3D schemes for dis-
tributed full-batch GNN training. DGCL [8] is a commu-
nication library that targets high-throughput full-batch GNN
training. DGCL supports partition-based training and makes
trade-offs between graph replication and communication in
the distributed setting. It also leverages high-performance links
such as NVLink to accelerate training. DistGNN [2] improves
upon DGL for full-batch distributed training for GNNs on
CPU clusters. DistGNN uses a minimum vertex-cut strategy
to partition graphs, and optimizes memory management and
cache reuse. The LIBXSMM library [25] is used in DistGNN
to implement loop reordering and vectorization to provide
high instruction-level parallelism. ROC [3] is a framework for
partition-based distributed GNN training. ROC first trains a

cost model to decide the optimal graph partitioning strategy to
reduce communication time between devices and uses dynamic
programming to optimize GPU memory usage. In this paper,
we have performed comparisons with two state-of-the-art full-
batch distributed GNN frameworks for GPUs: CAGNET and
DGCL.

A number of efforts have sought to optimize distributed
GNN using different forms of sampling. NEXTDOOR [5] is
an efficient sampling algorithm that speeds up sampling time
on GPUs by load balancing and caching of edges. They also
provide an API for different types of sampling.

The 2PGraph [6] system uses METIS to reorder the graph
to reduce the communication cost. It also proposes a fast
sampling algorithm to improve the sampling time similar to
Jangda et al. [5].

P3 [7] develops a distributed GNN approach that samples
the sparse graph and computes aggregated results in the first
layer by distributing input features so that each node has
feature sets of a distinct group of vertices.

The RDM-based approach is also applicable for other forms
of sampling besides GraphSAINT, but it is beyond the scope
of this paper.

VII. CONCLUSION

This paper presents a new approach to communication-
efficient implementation of distributed multi-GPU GNNs
based on the redistribution of dense matrices between row-
wise and column-wise partitions, along with communication-
free sparse and dense matrix multiplication. Experimental eval-
uation demonstrates performance improvement over state-of-
the-art publicly available multi-GPU GNN implementations.

ACKNOWLEDGMENTS

We thank the reviewers for their numerous suggestions to
improve the paper. The support and resources from the Center
for High Performance Computing at the University of Utah are
gratefully acknowledged. This work was supported in part by
the U.S. National Science Foundation through award 2009007
and the Advanced Scientific Computing Research (ASCR)
program within the Office of Science of the Department of
Enery (DOE) under contract number DE-AC02-05CH11231,
the Exascale Computing Project (17-SC-20-SC), a collabora-
tive effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration.

REFERENCES

[1] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “The graph neural network model,” IEEE transactions on neural
networks, vol. 20, no. 1, pp. 61–80, 2008.

[2] V. Md, S. Misra, G. Ma, R. Mohanty, E. Georganas, A. Heinecke,
D. Kalamkar, N. K. Ahmed, and S. Avancha, “Distgnn: Scalable dis-
tributed training for large-scale graph neural networks,” in International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–14.

[3] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving the
accuracy, scalability, and performance of graph neural networks with
ROC,” Machine Learning and Systems, vol. 2, pp. 187–198, 2020.

[4] A. Tripathy, K. Yelick, and A. Buluç, “Reducing communication in
graph neural network training,” in SC20: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2020, pp. 1–14.

[5] A. Jangda, S. Polisetty, A. Guha, and M. Serafini, “Accelerating graph
sampling for graph machine learning using gpus,” in Sixteenth European
Conference on Computer Systems, 2021, pp. 311–326.

[6] L. Zhang, Z. Lai, S. Li, Y. Tang, F. Liu, and D. Li, “2PGraph:
Accelerating GNN training over large graphs on GPU clusters,” in
2021 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2021, pp. 103–113.

[7] S. Gandhi and A. P. Iyer, “P3: Distributed deep graph learning at
scale,” in 15th USENIX Symposium on Operating Systems Design and
Implementation OSDI 21, 2021, pp. 551–568.

[8] Z. Cai, X. Yan, Y. Wu, K. Ma, J. Cheng, and F. Yu, “Dgcl: An effi-
cient communication library for distributed GNN training,” in Sixteenth
European Conference on Computer Systems, 2021, pp. 130–144.

[9] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai,
“NeuGraph: Parallel deep neural network computation on large
graphs,” in 2019 USENIX Annual Technical Conference (USENIX ATC
19), 2019, pp. 443–458.

[10] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang,
and G. Karypis, “Distdgl: distributed graph neural network training for
billion-scale graphs,” in 2020 IEEE/ACM 10th Workshop on Irregular
Applications: Architectures and Algorithms (IA3). IEEE, 2020, pp.
36–44.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[12] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[13] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[14] K. Huang, J. Zhai, Z. Zheng, Y. Yi, and X. Shen, “Understanding
and bridging the gaps in current GNN performance optimizations,” in
26th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2021, pp. 119–132.

[15] A. Lamurias, M. Sereika, M. Albertsen, K. Hose, and T. D. Nielsen,
“Metagenomic binning with assembly graph embeddings,” bioRxiv,
2022.

[16] X.-M. Zhang, L. Liang, L. Liu, and M.-J. Tang, “Graph neural networks
and their current applications in bioinformatics,” Frontiers in genetics,
vol. 12, 2021.

[17] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” arXiv preprint
arXiv:1907.04931, 2019.

[18] J. Dong, D. Zheng, L. F. Yang, and G. Karypis, “Global neighbor
sampling for mixed cpu-gpu training on giant graphs,” arXiv preprint
arXiv:2106.06150, 2021.

[19] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

[20] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community
structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–123,
2009.

[21] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowledge and Information Systems, vol. 42,
no. 1, pp. 181–213, 2015.

[22] A. Wickramarachchi and Y. Lin, “Metagenomics binning of long reads
using read-overlap graphs,” in RECOMB International Workshop on
Comparative Genomics. Springer, 2022, pp. 260–278.

[23] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioin-
formatics, vol. 34, no. 18, pp. 3094–3100, 2018.

[24] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma, Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li,
A. J. Smola, and Z. Zhang, “Deep graph library: Towards efficient and
scalable deep learning on graphs,” CoRR, vol. abs/1909.01315, 2019.
[Online]. Available: http://arxiv.org/abs/1909.01315

[25] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “Libxsmm:
accelerating small matrix multiplications by runtime code generation,”
in SC’16: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 2016, pp. 981–991.

