Data Systems at Scale: Scaling Up by Scaling Down and Out

> Prashant Pandey <u>ppandey@berkeley.edu</u> Berkeley Lab/UC Berkeley

Bioinformatics on twitter

Mick W@tson @BioMickWatson

Bioinformatics over the years:

1990s: doing a BLAST search 2000s: analysing 30 microarrays 2010s: nalysing 6Tb of NGS 2020s: creating a cloud the size of Netflix to reanalyse the whole of SRA for one figure

12:57 AM · 2/12/21 · Twitter Web App

117 Retweets 9 Quote Tweets 697 Likes

Michael Schatz @mike_schatz · 2h Replying to @BioMickWatson This is basically my life right now \mathbb{C}^{8} O_1 **1**↓ 企

 $\uparrow\uparrow$

Professor Bioinformatics and **Computational Biology** The University of Edinburgh

...

Associate Professor **Computational Biology** Johns Hopkins University

Sequence Read Archive (SRA) growth

SRA contains a lot of *diversity information*

Q: What if I find e.g., a new disease-related gene, and want to see if it appeared in other experiments?

Scalability is the bottleneck for data science

SRA contains a lot of *diversity information*

This renders what is otherwise an immensely valuable public resource *largely inert*

Scalability is a ubiquitous challenge

Cyber monitoring Internet of Things Financial tech Social networks AstroPhysics Chemistry

Environmental science

• People generate 2.5 quintillion bytes of data each day. (IBM, 2016)

- More than 150 zettabytes (150 trillion gigabytes) of data will need analysis by 2025. (Forbes, 2019)
- 90 percent of the world's data was created between 2015 and 2016 alone. (IBM, 2016)
 https://learn.g2.com/big-data-statistics

24. 88% of data is ignored by companies.

https://leftronic.com/big-data-statistics/

(Forrester Research)

A widely-quoted figure from a 2012 paper from Forrester Research says that, on average, companies analyze only 12% of the available data. Reasons for this include a lack of analytics tools, repressive data silos, and the difficulty in knowing which information is valuable and which is worth leaving.

My goal as a researcher is to build *scalable data systems* to *accelerate* and *scale* next generation data analysis

Shrink it

Goal: make data smaller to fit in RAM

Techniques:

- Compact & succinct data structures
- Filters, e.g., Bloom, quotient, etc.

Goal: make data smaller to fit in RAM

Techniques:

- Compact & succinct data structures
- Filters, e.g.,
 Bloom,
 quotient, etc.

Organize it

Goal: organize data in a disk-friendly way

Techniques:

- B-tree
- B^{ε} -tree
- LSM-tree

Shrink it

Goal: make data smaller to fit in RAM

Techniques:

- Compact & succinct data structures
- Filters, e.g.,
 Bloom,
 quotient, etc.

Organize it

Goal: organize data in a disk-friendly way

Techniques:

- B-tree
- B^{ε} -tree
- LSM-tree

Distribute it

Goal: partition and distribute data on multiple nodes

Techniques:

- Distributed hash table
- Distributed key-value store

Research output

Shrink	Organize	Distribute
--------	----------	------------

Data structures & Algorithms

Systems

Applications

Computational biology

Research output Organize Distribute Shrink **Buffered CMS Quotient Filter Order Min Data structures** ESA '18, SIGMOD '17, Hash **Scalable MG** & Algorithms SIGMOD '21 **ISMB '19** arXiv '19

Systems

Applications

Computational biology

Research output

Shrink Organize Distribute

Applications

Computational biology

Research output Distribute Shrink Organize **Buffered CMS Quotient Filter Order Min Data structures** ESA '18, SIGMOD '17, Hash **Scalable MG** & Algorithms SIGMOD '21 ISMB '19 arXiv '19 LERTs **BetrFS file system** SIGMOD '20 FAST '15, TOS 15, Systems FAST '16, TOS 16, Terrace SPAA '19, TOPC '21 SIGMOD '21 **LSM-Mantis** Squeakr, deBGR, Mantis, VariantStore bioRxiv '21 **Rainbowfish**, MST-Mantis **Applications** bioRxiv '20 ISMB '17, WABI '17, **BIOINFORMATICS '17,** Computational **Distributed** *k*-mer **RECOMB '18, Cell Systems** biology counting '18, RECOMB '19, IPDPS '21 JCB '20

In this talk:

In this talk:

Computational biology applications using quotient filters

Application 1: *k*-mer counting

- The *size* of the raw sequencing data makes the problem challenging
- *k*-mer counts follow *highly skewed distributions* making the problem computationally intensive

Application 1: Squeakr [Pandey et al. Bioinformatics '17]

Index space

Dataset	KMC2 [Deorowicz, et al '14]	Jellyfish2 (Bloom filter) [Marçais & Kingsford '11]	Squeakr (quotient filter)	Squeakr-exact (quotient filter)
F. vesca	8.3	8.3	4.8	9.3
G. gallus	32.8	31.7	13.0	28.8
M. balbisiana	48.3	16.3	11.1	14.2
H. sapiens 1	71.4	61.8	22.1	51.5
H. sapiens 2	107.4	61.8	30.8	60.1

Using *space-efficient* data structures, we can save space and build *simpler* and *efficient* systems

Application 2: sample discovery problem

Solomon & Kingsford Nat Biotech '16

...ACACGTA...

Check if this new

transcript has

been seen before?

SRA Samples (> 100K samples)

Return all samples that contain at least some user-defined fraction θ of the *k*-mers present in the query string.

Application 2: sample discovery problem

Solomon & Kingsford Nat Biotech '16

(> 100K samples)

Return all samples that contain at least some user-defined fraction θ of the *k*-mers present in the query string

Application 2: Mantis [Pandey et al. RECOMB '18, Cell Systems '18]

Space

Construction time

Query accuracy

SSBT (Bloom filter) [Solomon & Kingsford '17] Mantis (quotient filter) [Pandey et al. '18]

Application 2: Mantis [Pandey et al. RECOMB '18, Cell Systems '18]

Query time

Query accuracy

SSBT (Bloom filter) [Solomon & Kingsford '17] Mantis (quotient filter) [Pandey et al. '18]

Dictionary data structure

A dictionary maintains a set S from universe U.

A dictionary supports membership queries on *S*.

Filter data structure

A filter is an *approximate* dictionary.

A filter supports *approximate* membership queries on *S*.

False-positive rate enables filters to be compact

space $\geq n \log(1/\epsilon)$

space
$$= \Omega(n \log |U|)$$

Filter

Dictionary

False-positive rate enables filters to be compact

Classic filter: The Bloom filter [Bloom '70]

Bloom filters are ubiquitous (> 4300 citations)

Bloom filters have suboptimal performance

	Bloom filter	Optimal
Space (bits)	$pprox 1.44 \; n \log(1/\epsilon)$	$lpha n \ \log(1/\epsilon) + \Omega(n)$
CPU cost	$\Omega(1/\epsilon)$	O(1)
Data locality	$\Omega(1/\epsilon)$ probes	O(1) probes

Applications often work around Bloom filter limitations

Limitations	Workarounds	
No deletes	Rebuild	
No resizes	Guess N, and rebuild if wrong	
No filter merging or enumeration	???	
No values associated with keys	Combine with another data structure	

Bloom filter limitations increase system complexity, waste space, and slow down application performance

Quotienting is an alternative to Bloom filters [Knuth. Searching and Sorting Vol. 3, '97]

- Store fingerprints compactly in a hash table.
 - Take a fingerprint h(x) for each element x.

• Only source of false positives:

- Two distinct elements x and y, where h(x) = h(y)
- If x is stored and y isn't, query(y) gives a false positives

$$\Pr[x \text{ and } y \text{ collide}] = \frac{1}{2^p}$$

- b(x) = location in the hash table
 t(x) = tag stored in the hash table
- Collisions in the hash table?
- Linear probing
- Robin Hood hashing

(17] Resolving collisions in the QF [Fandey et al. Slowod

• QF uses two metadata bits to resolve collisions and identify home bucket

• The metadata bits group tags by their home bucket

(17] Resolving collisions in the QF [Fandey et al. Slowod

• QF uses two metadata bits to resolve collisions and identify home bucket

• The metadata bits group tags by their home bucket

(17] Resolving collisions in the QF [Fandey et al. Slowod

• QF uses two metadata bits to resolve collisions and identify home bucket

• The metadata bits group tags by their home bucket

The metadata bits enable us to identify the slots holding the contents of each bucket.

Quotienting enables many features in the QF

- Good cache locality
- Efficient scaling out-of-RAM
- Deletions
- Enumerability/Mergeability
- Resizing
- Maintains count estimates or associate values
- Uses variable-sized encoding for counts [Counting quotient filter]
 - Asymptotically optimal space: $O(\sum |C(x)|)$

Quotienting enables many features in the QF

- Good cache locality
- Efficient scaling out-of-RAM
- Deletions
- Enumerability/Mergeability
- Resizing
- Maintains count estimates or associate values
- Uses variable-sized encoding for counts [Counting quotient filter]
 - Asymptotically optimal space: $O(\sum |C(x)|)$

Mantis uses the QF

to map small keys to values

Squeakr uses the QF

to count items

Quotient filters use less space than Bloom filters for all practical configurations

	Quotient filter	Bloom filter	Optimal
Space (bits)	$pprox n \; \log(1/\epsilon) + 2.125 n$	$pprox 1.44 \; n \log(1/\epsilon)$	$pprox n \ \log(1/\epsilon) + \Omega(n)$
CPU cost	O(1) expected	$\Omega(1/\epsilon)$	O(1)
Data locality	1 probe + scan	$\Omega(1/\epsilon)$ probes	O(1) probes

The quotient filter has theoretical advantages over the Bloom filter

Quotient filters perform better (or similar) to other non-counting filters

- Insert performance is similar to the state-of-the-art non-counting filters
- Query performance is significantly fast at low load-factors and slightly slower at higher load-factors

Vector quotient filter (VQF)^[Pandey et al. SIGMOD '21]

Combining hashing techniques (**Robin Hood + 2-choice hashing**) Using ultra-wide vector operations (**AVX512-BW**)

Vector quotient filter (VQF)^[Pandey et al. SIGMOD '21]

Combining hashing techniques (**Robin Hood + 2-choice hashing**) Using ultra-wide vector operations (**AVX512-BW**)

Quotient filter's impact in computer science

Theoretically well-founded data structures can have a *big impact* on multiple subfields across *academia and industry*

Quotient filter's impact in computer science

Theoretically well-founded data structures can have a *big impact* on multiple subfields across *academia and industry*

Learned "Shrink it". Now "Organize it"

Timely event detection problem

In **timely event-detection problem (TED)**, we want to answer standing queries

Features we need in the solution

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

Features we need in the solution

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

• Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)

Features we need in the solution

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

• Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)

• Malicious traffic forms a small portion of the stream

Very small reporting thresholds

One-pass streaming has errors

- Heavy hitter problem: report items whose frequency $\geq \varphi N$
- Exact one-pass solution solution requires $\Omega(N)$ space

One-pass streaming has errors

- Approximate solution: report all items with count ≥ φN, none
 with < (φ−ε)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.
 16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]
 - Approximate solutions require $\Omega(1/\varepsilon)$ space

Real time with false-positives!

One-pass streaming has errors

- Approximate solution: report all items with count ≥ φN, none
 with < (φ−ε)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.
 16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]
 - Approximate solutions require $\Omega(1/\varepsilon)$ space

Real time with false-positives!

One-pass solution has:

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

• Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)

• Malicious traffic forms a small portion of the stream

Two-pass streaming isn't real-time

- A second pass over the stream can get rid of errors
- Store the stream on SSD and access it later

Two-pass solution has:

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

• Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)

• Malicious traffic forms a small portion of the stream

Very small reporting thresholds

If data is stored: why not access it?

Idea: combine streaming and external memory (EM)^[Pandey et al. SIGMOD '20]

Use an efficient external-memory counting data structure to scale Misra-Gries algorithm to SSDs

Operations in external memory dictionaries

Bender et al. '12

InsertQuery
$$O\left(\frac{1}{B}\log\frac{N}{M}\right)$$
 $O\left(\log\frac{N}{M}\right)$

Performance bounds are parameterized by block transfer size B, memory size M, data size N.

Operations in external memory dictionaries

Operations in external memory dictionaries

EM dictionary doesn't have real-time reporting

EM dictionary doesn't have real-time reporting

We define the time stretch of a report to be

We define the time stretch of a report to be

Leveled External-Memory Reporting Table (LERT) [Pandey et al. SIGMOD '20]

• Given a stream of size *N* and $\varphi N > \Omega(N/M)$ the amortized cost of solving real-time event detection is

$$O\left(\left(rac{1}{B}+rac{1}{(\phi-1/M)N}
ight)\lograc{N}{M}
ight)$$

• For a **constant** α , can support arbitrarily small thresholds φ with amortized cost

$$O\left(\frac{1}{B}\log\frac{N}{M}\right)$$

Takeaway: Online reporting comes at the cost of throughput but almost online reporting is essentially free!

Leveled External-Memory Reporting Table (LERT) [Pandey et al. SIGMOD '20]

• Given a stream of size *N* and $\varphi N > \Omega(N/M)$ the amortized cost of solving real-time event detection is

(1 1)

Can achieve timely reporting at effectively the optimal insert cost; no query cost

 $\Lambda \tau$

with amortized cost

$$O\left(\frac{1}{B}\log\frac{N}{M}\right)$$

Takeaway: Online reporting comes at the cost of throughput but almost online reporting is essentially free!

Evaluation

- Empirical timeliness
- High-throughput ingestion

Evaluation: empirical time stretch

Average time stretch is 43% smaller than theoretical upper bound.

Evaluation: scalability

The insertion throughput increases as we add more threads. We can achieve > 13M insertions/sec.
LERT: supports scalable and real-time reporting

• Stream is large (e.g., terabytes) and high-speed (millions/sec)

High throughput ingestion

• Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)

• Malicious traffic forms a small portion of the stream

Very small reporting thresholds

Ongoing/future work

Ongoing/future work

Goal: Overcome *decades-old* data structure *trade-offs* using new algorithmic paradigms and modern hardware

Existing hash table techniques

Separate chaining

- Chaining with linked-list
- Chaining with binary tree

Open addressing

- Linear probing
- Coalesced chaining
- Cuckoo hashing
- Hopscotch hashing
- Robin Hood hashing
- 2-choice hashing
- d-left hashing
- Cuckoo hashing suffers from *random hopping*
- Linear probing/Robin Hood hashing suffer from *long chains*
- 2-choice/d-left hashing suffer from *multiple probes*

Iceberg hash table

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton

Balanced for most items

Very low variance

- Step 1: set *primary bin* by single hashing
 - If the bin has $< \tau$ type 1 items, insert the new item in the bin as type 1
- Step 2: If there are $< \Box$ *type 2* items, insert the new item using d-left as *type 2*
- Step 3: select the *primary bin* and inserted as *type 3*

$$au = h + (3h\log h)^{2/3}$$
 $\delta = cn$ $h = rac{\#items}{\#bins}$

Iceberg hash table

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton

- If the bin has $< \tau$ type 1 items, insert the new item in the bin as type 1
- Step 2: If there are $< \Box$ *type 2* items, insert the new item using d-left as *type 2*
- Step 3: select the *primary bin* and inserted as *type 3*

$$au = h + (3h\log h)^{2/3}$$
 $\delta = cn$ $h = rac{\# items}{\# bins}$

Iceberg hash table performance

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton

Throughput (Table size = 67 Million Single thread)

- 6.8X faster for insertions
- ~2X faster for queries
- 1.6X faster for deletes

Future work: system for streaming graphs

Goal: build *highly scalable* streaming graph representation system

"One-size-fits-all" approach is suboptimal

Neighbor access requires at least *two cache misses* For dynamic, all operations have a *log factor*

"One-size-fits-all" approach is suboptimal

Neighbor access requires at least *two cache misses* For dynamic, all operations have a *log factor* High variance in the degree distribution

Hierarchical structure + dynamic partitioning

Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick

- In-place structure for vertices with low degree
- Shared sparse-array (PMA) for vertices with medium degree
- Independent B-tree for vertices with high degree

Hierarchical structure + dynamic partitioning

Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick

- In-place structure for vertices with low degree
- Shared sparse-array (PMA) for vertices with medium degree
- Independent B-tree for vertices with high degree

Hierarchical structure + dynamic partitioning

Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick

Future work: ML/DL for scalable indexing

Goal: optimize large-scale indexing solutions using machine learning

Sample discovery problem

SRA Samples (> 100K samples)

Return all samples that contain at least some user-defined fraction θ of the *k*-mers present in the query string

Mantis index for sample discovery problem

SRA Samples (> 100K samples)

Mantis index is based on a map from *k*-mers to a list of samples where the *k*-mer appears.

ML for sample discovery problem

SRA Samples (> 100K samples)

ACTGAGTGA ACGTTGTGC

The loss function is optimized for the edit distance between sequences We are planning to use (Order Min Hash ISMB '19) a LSH for edit distance

Metagenomic reads classification

Collaborators: Giulia Guidi, Alok Tripathi, Aydin Buluc, Kathy Yelick

- Generate overlap graph: reads \rightarrow nodes & overlap \rightarrow edges
- Node features \rightarrow Tetra nucleotide freq of reads
- Reference-based mapping as ground truth labels

Overlap graph + graph neural network (GNN)

Collaborators: Giulia Guidi, Alok Tripathi, Aydin Buluc, Kathy Yelick

Kraken2 and MetaGNN (F1 Score)

Metagenomic Datasets

Can achieve higher accuracy using graph-based learning

Conclusion

- Scalability of data management systems will be the biggest challenge in future
- Changing hardware give rise to new algorithmic paradigms

We need to *redesign* existing data structures to take full advantage of modern hardware and *rebuild* data systems to efficiently support *future* data science.

https://prashantpandey.github.io

Backup slides

Implementation: 2 Meta-bits per slot.

 $\mathbf{h}(\mathbf{x}) \dashrightarrow \boldsymbol{h}_{\boldsymbol{\theta}}(\mathbf{x}) \parallel \boldsymbol{h}_{\boldsymbol{1}}(\mathbf{x})$

runends

Abstract Representation

Implementation: 2 Meta-bits per slot.

$$\mathbf{h}(\mathbf{x}) \longrightarrow h_{\theta}(\mathbf{x}) \parallel h_{1}(\mathbf{x})$$

Implementation: 2 Meta-bits per slot.

$$\mathbf{h}(\mathbf{x}) \longrightarrow h_{\theta}(\mathbf{x}) \parallel h_{I}(\mathbf{x})$$

Abstract Representation

Implementation: 2 Meta-bits per slot.

$$\mathbf{h}(\mathbf{x}) \longrightarrow h_{\theta}(\mathbf{x}) \parallel h_{1}(\mathbf{x})$$

Abstract Representation -2^{q} 0 1 2 3 4 5 6 7 h(a) h(d) h(b)

Implementation: 2 Meta-bits per slot.

$$\mathbf{h}(\mathbf{x}) \dashrightarrow \boldsymbol{h}_{\boldsymbol{\theta}}(\mathbf{x}) \parallel \boldsymbol{h}_{\boldsymbol{1}}(\mathbf{x})$$

Implementation: 2 Meta-bits per slot.

$$\mathbf{h}(\mathbf{x}) \dashrightarrow \boldsymbol{h}_{\boldsymbol{\theta}}(\mathbf{x}) \parallel \boldsymbol{h}_{\boldsymbol{1}}(\mathbf{x})$$

occupieds

1

t(*a*)

Cascade filter: write-optimized quotient filter [Bender et al. '12, Pandey et al. '17]

- The Cascade filter efficiently scales out-of-RAM
- It accelerates insertions at some cost to queries

Cascade filter: flushing [Bender et al. '12, Pandey et al. '17]

Items are initially inserted in the RAM level

Cascade filter: flushing [Bender et al. '12, Pandey et al. '17]

When RAM is full, items are flushed to the smallest level on disk i with space to insert items in level 0 to i-1

Cascade filter: flushing [Bender et al. '12, Pandey et al. '17]

When RAM is full, items are flushed to the smallest level on disk i with space to insert items in level 0 to i-1
Cascade filter: flushing [Bender et al. '12, Pandey et al. '17]

When RAM is full, items are flushed to the smallest level on disk i with space to insert items in level 0 to i-1

Cascade filter: flushing [Bender et al. '12, Pandey et al. '17]

When RAM is full, items are flushed to the smallest level on disk i with space to insert items in level 0 to i-1

Cascade filter: flushing [Bender et al. '12, Pandey et al. '17]

When RAM is full, items are flushed to the smallest level on disk i with space to insert items in level 0 to i-1

Cascade filter: query [Bender et al. '12, Pandey et al. '17]

A query operation requires a lookup in each non-empty level

Divide each level into $1 + 1/\alpha$, equal-sized bins.

When a bin is full, items move to the adjacent bin

When a bin is full, items move to the adjacent bin

Last bin flushed to first bin of the next level

Last bin flushed to first bin of the next level

Last bin flushed to first bin of the next level

Time-stretch LERT I/O complexity

$$O\left(\left(\frac{\alpha+1}{\alpha}\right)\frac{1}{B}\log\frac{N}{M}\right)$$
Optimal insert cost for
Write-optimized data
structure

Time-stretch LERT I/O complexity

 $O\left(\left(\frac{\alpha+1}{\alpha}\right)\frac{1}{B}\log\frac{N}{M}\right)$ Optimal insert cost for Extra cost because we only Write-optimized data move one bin during a flush. Constant loss for structure constant α

Quotient filters use less space than Bloom filters for all practical configurations

Bloom filter: ~1.44 $log(1/\epsilon)$ bits/element. Quotient filter: ~2.125 + $log(1/\epsilon)$ bits/element.

Cyber monitoring \rightarrow real-time data analysis

Defense systems for cyber security monitor *high-speed* streams for malicious traffic over *large periods* of time

Malicious traffic forms a *small portion* of the stream

Automated systems take defensive actions for *every reported event*

External memory model [Aggarwal+Vitter '08]

• How computations work:

- Data is transferred in blocks between RAM and disk.
- The number of block transfers dominate the running time.

• Goal: Minimize number of block transfers

• Performance bounds are parameterized by block size B, memory size M, data size N.

Cascade filter: write-optimized quotient filter [Bender et al. '12, Pandey et al. '17]

- The Cascade filter efficiently scales out-of-RAM
- It accelerates insertions at some cost to queries

• Stream of elements arrive over time

- Stream of elements arrive over time
- An event occurs at time t if S_t occurs exactly T times in (s_1, s_2, \dots, s_t)

- Stream of elements arrive over time
- An event occurs at time t if S_t occurs exactly T times in (s_1, s_2, \dots, s_t)

- Stream of elements arrive over time
- An event occurs at time t if S_t occurs exactly T times in (s_1, s_2, \dots, s_t)
- In **timely event-detection problem (TED)**, we want to report all events shortly after they occur.

Trade-off: Insertion throughput degrades with load factor

Performance suffers due to high-overhead of *collision resolution*

Trade-off: Insertion throughput degrades with load factor

Insertion throughput vs load factor of state-of-the-art filters

Many update-intensive applications (e.g., network caches, data analytics, etc.) maintain filters at high load factors

Combining techniques + new hardware

Combining hashing techniques (**Robin Hood + 2-choice hashing**) Using ultra-wide vector operations (**AVX512-BW**)

Combining techniques + new hardware

Pandey et al. SIGMOD '21

Combining hashing techniques (**Robin Hood + 2-choice hashing**) Using ultra-wide vector operations (**AVX512-BW**)

Future work: population-scale variant index

Goal: Build a *population-scale* index on variation data to enable downstream apps to gain *quick insights into variants*

Country-scale sequencing efforts produce huge amounts of sequencing data

Individuals

- 1000 Genomes project [https://www.internationalgenome.org/]
- The Cancer Genome Atlas (TCGA) [https://portal.gdc.cancer.gov/]
- Genotype-Tissue Expression (GTEx) [https://gtexportal.org/home/]

Country-scale sequencing efforts produce huge amounts of sequencing data

Individuals

- 1000 Genomes project [https://www.internationalgenome.org/]
- The Cancer Genome Atlas (TCGA) [https://portal.gdc.cancer.gov/]
- Genotype-Tissue Expression (GTEx) [https://gtexportal.org/home/]

Variation data analysis can improve downstream applications

Indexing in multiple coordinates is challenging

Reference-only indexes map positions only in the reference coordinate system

$$f(p_i, p_j)
ightarrow (v_i \dots v_n), ext{ where } p_i \leq p_j$$

Pan-genome analysis involves queries based on sample coordinate systems

$$\sum_{\substack{\text{Num}\ \text{Samples}}} \left\{ egin{array}{l} f_1(p_i,p_j)
ightarrow (v_i \ldots v_n), ext{ where } p_i \leq p_j \ dots \ f_s(p_i,p_j)
ightarrow (v_i \ldots v_n), ext{ where } p_i \leq p_j \end{array}
ight.$$

Maintaining thousands of mappings *increases* computational *complexity* and *memory footprint Limits scalability* to population-scale data

Indexing in multiple coordinates is challenging

Reference-only indexes map positions only in the reference coordinate system

$$f(p_i, p_j)
ightarrow (v_i \dots v_n)$$
, where $p_i \leq p_j$

Pan-genome analysis involves queries based on sample coordinate systems

 $\sum_{\text{Sam}}^{N_{\text{U}}} \underbrace{ \begin{array}{c} \textbf{Existing systems don't support multiple coordinate} \\ \textbf{systems. The ones that do, don't scale} beyond a few \\ \textbf{thousand samples.} \\ (f_s(p_i, p_j) \rightarrow (v_i \dots v_n), \text{ where } p_i \leq p_j) \end{array} }$

Maintaining thousands of mappings *increases* computational *complexity* and *memory footprint Limits scalability* to population-scale data

An inverted index on the pan-genome graph

Collaborators: Yinjie Gao, Carl Kingsford

- Partition the variation graph based on coordinate ranges
- Store partitions on disk
- Succinct index for reference coordinate system
- Local-graph exploration to map position from reference to sample coordinate

Variation graph

Queries often require loading 1-2 partitions

Classic filter: The Bloom filter [Bloom '70]

Bloom filter: a bit array + k hash functions

Classic filter: The Bloom filter [Bloom '70]

Bloom filter: a bit array + k hash functions (here k = 2)

Classic filter: The Bloom filter [Bloom '70]

Bloom filter: a bit array + *k* hash functions (here *k*=2)

Classic filters: The Bloom filter [Bloom '70]

Bloom filter: a bit array + *k* hash functions (here *k*=2)

Bloom filters are ubiquitous (> 4300 citations)

Metagenomic classification pipeline

[Ye et al. 2019]

Classification is the *critical first step* in many metagenomic analysis pipeline

Existing indexing techniques offer low accuracy

Metagenomic Datasets

Indexing-based classification is done based *only on the contents on the input sequences*