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Sequence Read Archive (SRA) growth
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Q: What if I find e.g., a new disease-related gene, and want to see if 
it appeared in other experiments?
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Scalability is the bottleneck for data science
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Current index size 
(< 100 TBs)

This renders what is otherwise an immensely valuable public 
resource largely inert

SRA contains a lot of diversity information



Scalability is a ubiquitous challenge 
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https://leftronic.com/big-data-statistics/

https://learn.g2.com/big-data-statistics

Cyber monitoring
Internet of Things
Financial tech
Social networks
AstroPhysics
Chemistry
Environmental science
.
.
.
.
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My goal as a researcher

My goal as a researcher is to build scalable data 
systems to accelerate and scale next generation 

data analysis
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Three approaches to handle massive data
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Goal: make data 
smaller to fit in 
RAM

Techniques:
● Compact & 

succinct data 
structures

● Filters, e.g., 
Bloom, 
quotient, etc. 

Three approaches to handle massive data

Shrink it
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Goal: organize 
data in a 
disk-friendly way

Techniques:
● B-tree
● Bε-tree
● LSM-tree
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Goal: partition and 
distribute data on 
multiple nodes

Techniques:
● Distributed 

hash table
● Distributed 

key-value store

Goal: organize 
data in a 
disk-friendly way

Techniques:
● B-tree
● Bε-tree
● LSM-tree

Goal: make data 
smaller to fit in 
RAM

Techniques:
● Compact & 

succinct data 
structures

● Filters, e.g., 
Bloom, 
quotient, etc. 

Three approaches to handle massive data

Shrink it Organize it Distribute it
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Computational biology applications 
using quotient filters



Application 1: k-mer counting
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Biological 
samples

Raw sequencing data
(Sequence Read 

Archive)

Sequencing

Preprocessing

Downstream
applications

k-mer Count

ACTGATG 10

GGTGCAT 20

AACTGGA

CCGTGAC 1000

GGTGTGC 4000000

CGTGCAC 11

GTGTCAC 9090992

2

● The size of the raw sequencing data makes the problem challenging
● k-mer counts follow highly skewed distributions making the problem 

computationally intensive 

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

1. Genome/metagenome
    assembly
2. Error correction
3. Metagenomic
    classification
4. Sequence clustering
5. Sequence search
6. Abundance study
etc.

k-mer counting
> 30 papers



Application 1: Squeakr [Pandey et al. Bioinformatics ‘17]
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Dataset KMC2
[Deorowicz, et al ‘14]

Jellyfish2
(Bloom filter)

[Marçais & Kingsford ‘11]

Squeakr
(quotient filter)

Squeakr-exact
(quotient filter)

F. vesca 8.3 8.3 4.8 9.3

G. gallus 32.8 31.7 13.0 28.8

M. balbisiana 48.3 16.3 11.1 14.2

H. sapiens 1 71.4 61.8 22.1 51.5

H. sapiens 2 107.4 61.8 30.8 60.1

Using space-efficient data structures, we can save space and build 
simpler and efficient systems

Index space



Application 2: sample discovery problem

20

Return all samples that contain at least some user-defined fraction θ of the 
k-mers present in the query string.

SRA Samples
(> 100K samples)

...ACACGTA...

Solomon & Kingsford Nat Biotech ‘16

…
.

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

Check if this new 
transcript has 

been seen before?



Application 2: sample discovery problem
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Return all samples that contain at least some user-defined fraction θ of the 
k-mers present in the query string

...ACACGTA...

...
ACACG
CACGT
ACGTA

...

k-mers
> 10 Billion

…
.

𝛉 > 0.75?

𝛉 > 0.75?

…
.

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

Check if this new 
transcript has 

been seen before?

Solomon & Kingsford Nat Biotech ‘16

SRA Samples
(> 100K samples)



Application 2: Mantis [Pandey et al. RECOMB ‘18, Cell Systems 

‘18]
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SSBT (Bloom filter) [Solomon & Kingsford ‘17]
Mantis (quotient filter) [Pandey et al. ‘18]
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SSBT (Bloom filter) [Solomon & Kingsford ‘17]
Mantis (quotient filter) [Pandey et al. ‘18]

A space efficient map yields a faster, smaller, 
simpler, and an exact solution to the sample 

discovery problem

Application 2: Mantis [Pandey et al. RECOMB ‘18, Cell Systems 

‘18]



Dictionary data structure

a
c

b

d

A dictionary maintains a set S from universe U.

A dictionary supports membership queries on S.

membership(a): 

membership(b):

membership(c):

membership(d):

S

24



Filter data structure

a
c

b

d

A filter is an approximate dictionary.

A filter supports approximate membership queries on S.

membership(a): 

membership(b):

membership(c):

membership(d): false 
positive

S

25



A filter guarantees a false-positive rate ε

if q ∈ S, return            with probability 1  

                                     with probability ẟ 1 - ε 
if q ∉ S, return 
                                     with probability  ≤ ε false positive

true negative

true positive

one-sided 
errors

26



False-positive rate enables filters to be compact

DictionaryFilter

27



False-positive rate enables filters to be compact

DictionaryFilter

Small

Large

For most practical purposes: 
ε = 2%, a Bloom filter requires ≈ 8 bits/item

28



Storage systems

NetworkingStreaming applications

Computational biology

Databases

29

Classic filter: The Bloom filter [Bloom ‘70]

Bloom filters are ubiquitous (> 4300 citations)



Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits)

CPU cost

Data locality

30



Limitations Workarounds

No deletes Rebuild

No resizes Guess N, and rebuild if wrong

No filter merging or enumeration ???

No values associated with keys Combine with another data structure

Applications often work around Bloom filter 
limitations

Bloom filter limitations increase system complexity, waste 
space, and slow down application performance

31



● Store fingerprints compactly in a hash table.
○ Take a fingerprint h(x) for each element x.

● Only source of false positives:
○ Two distinct elements x and y, where h(x) = h(y)
○ If x is stored and y isn’t, query(y) gives a false positives

       h(x)x

Quotienting is an alternative to Bloom filters 
[Knuth. Searching and Sorting Vol. 3, ‘97]

p

32



• b(x) = location in the hash table
• t(x) = tag stored in the hash table

q r
b(x)

b(x) t(x)

t(x)
 

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index

Storing fingerprints compactly

p
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• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?

b(x)

t(x)
 

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p
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• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing
● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p
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• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing
● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p

t(y) belongs to 
slots 4 or 5?

36



● QF uses two metadata bits to resolve collisions 
and identify home bucket

● The metadata bits group tags by their home 
bucket

Resolving collisions in the QF [Pandey et al. SIGMOD 

‘17]

1 1

t(u) t(v) t(w) t(x) t(y)

37



● QF uses two metadata bits to resolve collisions 
and identify home bucket

● The metadata bits group tags by their home 
bucket

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

38

Resolving collisions in the QF [Pandey et al. SIGMOD 

‘17]



● QF uses two metadata bits to resolve collisions 
and identify home bucket

● The metadata bits group tags by their home 
bucket

The metadata bits enable us to identify the slots holding 
the contents of each bucket.

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

39More

Resolving collisions in the QF [Pandey et al. SIGMOD 

‘17]



● Good cache locality
● Efficient scaling out-of-RAM
● Deletions
● Enumerability/Mergeability
● Resizing
● Maintains count estimates or associate values
● Uses variable-sized encoding for counts [Counting quotient filter]

○ Asymptotically optimal space: O(∑ |C(x)|)

Quotienting enables many features in the QF

40



● Good cache locality
● Efficient scaling out-of-RAM
● Deletions
● Enumerability/Mergeability
● Resizing
● Maintains count estimates or associate values
● Uses variable-sized encoding for counts [Counting quotient filter]

○ Asymptotically optimal space: O(∑ |C(x)|)

Quotienting enables many features in the QF

41

Squeakr uses the QF 
to count items

Mantis uses the QF 
to map small keys to 

values



Quotient filters use less space than Bloom filters 
for all practical configurations

Quotient filter Bloom filter Optimal

Space (bits)

CPU cost

Data locality

The quotient filter has theoretical advantages over the 
Bloom filter

42



● Insert performance is similar to the state-of-the-art non-counting filters
● Query performance is significantly fast at low load-factors and slightly slower 

at higher load-factors

Inserts Lookups

Quotient filters perform better (or similar) to 
other non-counting filters

43



Vector quotient filter (VQF)[Pandey et al. SIGMOD ‘21]

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVX512-BW)

44



Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVX512-BW)

45

Constant high 
performance from 

empty to full

Faster 
overall

Vector quotient filter (VQF)[Pandey et al. SIGMOD ‘21]



Quotient filter’s impact in computer science

46

Computational biology
1. Squeakr
2. deBGR
3. Mantis
4. VariantStore

Databases/Systems
1. Anomaly detection
2. BetrFS file system

Theoretically well-founded data structures can have a big impact on 
multiple subfields across academia and industry

QFDatabases

Sequence
Search
Index

Stream
Analysis

Key-value
Stores

QF on 
GPUs

Deduplica-t
ion

Graph 
represen-

tation
Assembler
(SPAdes)



Quotient filter’s impact in computer science
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Computational biology
1. Squeakr
2. deBGR
3. Mantis
4. VariantStore
5. SPAdes assembler
6. Khmer software
7. MQF

Databases/Systems
1. Anomaly detection
2. BetrFS file system
3. Counting on GPUs
4. Concurrent filters

Industry
1. VMware
2. Nutanix
3. Apocrypha
4. Hyrise
5. A data security  

startup

Theoretically well-founded data structures can have a big impact on 
multiple subfields across academia and industry

QFDatabases

Sequence
Search
Index

Stream
Analysis

Key-value
Stores

QF on 
GPUs

Deduplica-t
ion

Graph 
represen-

tation
Assembler
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Data structures 
& Algorithms

Quotient Filter
SIGMOD ‘17, 
SIGMOD ‘21

Buffered CMS
ESA ‘18,

Scalable MG 
arXiv ‘19

Order Min 
Hash

ISMB ‘19

BεtrFS file system
FAST ‘15, TOS 15, 
FAST ‘16, TOS 16, 

SPAA ‘19, TOPC ‘21
Systems

Applications
Squeakr, deBGR, Mantis, 
Rainbowfish, MST-Mantis

ISMB ‘17, WABI ‘17, 
BIOINFORMATICS ‘17, 

RECOMB ‘18, Cell Systems 
‘18, RECOMB ‘19, 

JCB ‘20

Computational 
biology

Distributed k-mer 
counting

IPDPS ‘21

LSM-Mantis
bioRxiv ‘21

 VariantStore 
bioRxiv ‘20

Learned “Shrink it”. Now “Organize it”

LERTs
SIGMOD ‘20

Terrace
SIGMOD ‘21

Organize it
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Demand query

Show me your
red pickups

In timely event-detection problem (TED), we want to answer 
standing queries 

…alert if you
get five new
red pickups

Standing query

Timely event detection problem

https://firehose.sandia.gov



Features we need in the solution

● Stream is large (e.g., terabytes) and high-speed 
(millions/sec)

High throughput ingestion

50



Features we need in the solution

● Stream is large (e.g., terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Sampling

51



Features we need in the solution

● Stream is large (e.g., terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

● Malicious traffic forms a small portion of the 
stream

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

Sampling

52



One-pass streaming has errors

● Heavy hitter problem: report items whose frequency ≥ φN  
● Exact one-pass solution solution requires Ω(N) space

RAM

53



One-pass streaming has errors

● Approximate solution: report all items with count ≥ φN, none 
with < (φ−ε)N [Alon et al. 96, Berinde et al. 10,  Bhattacharyya et al. 16, Bose et al. 03, Braverman et al. 

16,  Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

● Approximate solutions require Ω(1/ε) space

RAM

Real time with false-positives!

Maintain count 
estimates in RAM
[Misra & Gries ‘82]
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One-pass streaming has errors

● Approximate solution: report all items with count ≥ φN, none 
with < (φ−ε)N [Alon et al. 96, Berinde et al. 10,  Bhattacharyya et al. 16, Bose et al. 03, Braverman et al. 

16,  Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

● Approximate solutions require Ω(1/ε) space

RAM

Real time with false-positives!

Maintain count 
estimates in RAM
[Misra & Gries ‘82]

For some apps, φN is a small constant, 
 So Ω(1/ε) is very very large!!

Can’t solve in RAM for very small φ

55



One-pass solution has:

● Stream is large (e.g., terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

● Malicious traffic forms a small portion of the 
stream

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

56



Two-pass streaming isn’t real-time

● A second pass over the stream can get rid of errors
● Store the stream on SSD and access it later

RAM

Scales to very small φ 
but offline!

Second pass

SSD

57



Two-pass solution has:

● Stream is large (e.g., terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

● Malicious traffic forms a small portion of the 
stream

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

58



If data is stored: why not access it?

RAM

SSD

Why wait for second pass?

59



         Idea: combine streaming and 
         external memory (EM)[Pandey et al. SIGMOD ‘20]

Use an efficient external-memory counting 
data structure to scale Misra-Gries 

algorithm to SSDs
60

Streaming 
model

External memory 
algorithms



Operations in external memory dictionaries

Insert Query

61

Bender et al. ‘12

Performance bounds are parameterized by block transfer size B, 
memory size M, data size N.



Performance bounds are parameterized by block transfer size B, 
memory size M, data size N.

Insert Query

< 1 I/O per 
observation

62

Operations in external memory dictionaries
Bender et al. ‘12



Performance bounds are parameterized by block transfer size B, 
memory size M, data size N.

Insert Query

< 1 I/O per 
observation

> 1 I/O per 
observation

63

Operations in external memory dictionaries
Bender et al. ‘12



Performance bounds are parameterized by block transfer size B, 
memory size M, data size N.

EM dictionary doesn’t have real-time reporting

Insert Query

< 1 I/O per 
observation

> 1 I/O per 
observation

But every insert is also a query in 
real-time reporting!

64

Bender et al. ‘12



Performance bounds are parameterized by block transfer size B, 
memory size M, data size N.

Insert Query

< 1 I/O per 
observation

> 1 I/O per 
observation

But every insert is also a query in 
real-time reporting!

Traditional EM dictionary doesn’t solve 
the problem! 

65

EM dictionary doesn’t have real-time reporting
Bender et al. ‘12



We define the time stretch of a report to be

1st occurrence Tth occurrence Reporting time

Timeline L
DLifetime

Delay

Time stretch = 1 + 𝛼 = 1 + 
Delay

Lifetime

         Idea: reporting with bounded delay

66More



We define the time stretch of a report to be

1st occurrence Tth occurrence Reporting time

Timeline L
DLifetime

Delay

Time stretch = 1 + 𝛼 = 1 + 
Delay

Lifetime

         Idea: reporting with bounded delay

Main idea: the longer the lifetime of an item, 
the more leeway we have in reporting it

67More



Leveled External-Memory Reporting Table 
(LERT) [Pandey et al. SIGMOD ‘20]

● Given a stream of size N and φN > Ω(N/M) the amortized 
cost of solving real-time event detection is

● For a constant 𝛼, can support arbitrarily small thresholds φ 
with amortized cost 

Takeaway: Online reporting comes at the cost of throughput but 
almost online reporting is essentially free! 68



● Given a stream of size N and φN > Ω(N/M) the amortized 
cost of solving real-time event detection is

● For a constant 𝛼, can support arbitrarily small thresholds φ 
with amortized cost

Takeaway: Online reporting comes at the cost of throughput but 
almost online reporting is essentially free!

Can achieve timely reporting at effectively 
the optimal insert cost; no query cost

69

Leveled External-Memory Reporting Table 
(LERT) [Pandey et al. SIGMOD ‘20]



Evaluation

● Empirical timeliness

● High-throughput ingestion

70



Evaluation: empirical time stretch

Average time stretch is 43% smaller than theoretical upper bound.
71

Cascade filter [Bender et al. ‘12]
State-of-the-art external memory counting 
table



Evaluation: scalability

The insertion throughput increases as we add more threads.
We can achieve > 13M insertions/sec.

72



LERT: supports scalable and real-time reporting 

● Stream is large (e.g., terabytes) and high-speed 
(millions/sec)

● Events are high-consequence real-life events

● Malicious traffic forms a small portion of the 
stream

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

73
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High performance 
filters/hash tables 

Scalable streaming 
graph processing 

system

Distributed Mantis: publicly 
hosted for scientific use

Graph neural networks for 
metagenomics

Event detection for 
infinite streams

Ongoing/future work 

Distributed hash table 
(based on quotient 

filters)

Optimize large-scale 
indexes using ML

Population-scale index for 
multi-coordinate variation 

data

Shrink Organize Distribute

Data structures 
& Algorithms

Systems

Applications

Computational 
biology

CQF on 
GPUs
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Future work: next gen data structure library 

Goal: Overcome decades-old data 
structure trade-offs using new algorithmic 

paradigms and modern hardware

76



Existing hash table techniques

77

Separate chaining
● Chaining with linked-list
● Chaining with binary tree

Open addressing
● Linear probing
● Coalesced chaining
● Cuckoo hashing
● Hopscotch hashing
● Robin Hood hashing
● 2-choice hashing
● d-left hashing

● Cuckoo hashing suffers from random hopping
● Linear probing/Robin Hood hashing suffer from long chains
● 2-choice/d-left hashing suffer from multiple probes 



Iceberg hash table

78

d-left hashingSingle hashing

Balanced for most items Very low variance

● Step 1: set primary bin by single hashing

○ If the bin has < 𝜏 type 1 items, insert the new item in the bin as type 1

● Step 2: If there are < ẟ type 2 items, insert the new item using d-left as type 2

● Step 3: select the primary bin and inserted as type 3

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton



● Step 1: set primary bin by single hashing

○ If the bin has < 𝜏 type 1 items, insert the new item in the bin as type 1

● Step 2: If there are < ẟ type 2 items, insert the new item using d-left as type 2

● Step 3: select the primary bin and inserted as type 3

Iceberg hash table

79

d-left hashingSingle hashing

Balanced for most items Very low varianceLimits variance across bins without random 
hopping and multiple probes

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton



Iceberg hash table performance
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● 6.8X faster for insertions
● ~2X faster for queries
● 1.6X faster for deletes

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton



Future work: system for streaming graphs

Goal: build highly scalable streaming 
graph representation system
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“One-size-fits-all” approach is suboptimal

LIGRA [Shun & Blelloch ‘13] ASPEN [Dhulipala et al. 

‘19]

LIGRA ASPEN

add_edge

get_neighbors

Static Dynamic

Neighbor access requires at least two cache misses
For dynamic, all operations have a log factor

82

Vertices

Edges

Tree-of-trees



Dynamic
Vertices

Edges

Tree-of-trees

Compressed Sparse Rows 
[Shun & Blelloch ‘13]

C-tree [Dhulipala et al. 

‘19]

LIGRA ASPEN

add_edge

get_neighbors

Static Dynamic

Neighbor access requires at least two cache misses
For dynamic, all operations have a log factor
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Static → Fast computations; no updates
Dynamic → Slower computations; updates

“One-size-fits-all” approach is suboptimal



Real world graphs are often skewed

84

High variance in the 
degree distribution
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High variance in the 
degree distribution

● In-place structure for vertices 
with low degree

● Shared sparse-array (PMA) for 
vertices with medium degree

● Independent B-tree for vertices 
with high degree

Hierarchical structure + dynamic partitioning
Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick
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High variance in the 
degree distribution

● In-place structure for vertices 
with low degree

● Shared sparse-array (PMA) for 
vertices with medium degree

● Independent B-tree for vertices 
with high degree

Hierarchical structure + dynamic partitioning
Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick



Hierarchical structure + dynamic partitioning

High variance in the 
degree distribution

87

Terrace: 
fast updates

● In-place structure for vertices 
with low degree

● Shared sparse-array (PMA) for 
vertices with medium degree

● Independent B-tree for vertices 
with high degree

Terrace: 
faster computations

Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick



Future work: ML/DL for scalable indexing

Goal: optimize large-scale indexing 
solutions using machine learning 

88



Sample discovery problem

89

Return all samples that contain at least some user-defined fraction θ of the 
k-mers present in the query string

...ACACGTA...

...
ACACG
CACGT
ACGTA

...

k-mers
> 10 Billion

…
.

𝛉 > 0.75?

𝛉 > 0.75?

…
.

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

Check if this new 
transcript has 

been seen before?

Solomon & Kingsford Nat Biotech ‘16

SRA Samples
(> 100K samples)



Mantis index for sample discovery problem

90

Mantis index is based on a map from k-mers to a list of samples where the 
k-mer appears. 

Mantis index

...ACACGTA...

…
.

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

Check if this new 
transcript has 

been seen before?

SRA Samples
(> 100K samples)



ML for sample discovery problem
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The loss function is optimized for the edit distance between sequences

We are planning to use (Order Min Hash ISMB ‘19) a LSH for edit distance 

CNN with 
three layers

...ACACGTA...

…
.

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

Check if this new 
transcript has 

been seen before?

SRA Samples
(> 100K samples)

Collaborators: Nick Bhattacharya, Aydin Buluc, Kathy Yelick



Metagenomic reads classification

92

● Generate overlap graph: reads→nodes & overlap →edges
● Node features →Tetra nucleotide freq of reads
● Reference-based mapping as ground truth labels

Overlap graph with no labels Overlap graph with training labels Overlap graph with learned labels

● Assign ground truth labels to 
training nodes

● Assign tetra-nucleotide 
frequency as node vectors

Semi-supervised learning using 
Graph Convolutional Network 

(GCN)

Collaborators: Giulia Guidi, Alok Tripathi, Aydin Buluc, Kathy Yelick



Overlap graph + graph neural network (GNN)

93

Can achieve higher accuracy using graph-based learning

Collaborators: Giulia Guidi, Alok Tripathi, Aydin Buluc, Kathy Yelick



https://prashantpandey.github.io

● Scalability of data management 
systems will be the biggest 
challenge in future

● Changing hardware give rise
to new algorithmic paradigms

Conclusion

We need to redesign existing data structures to take full advantage of modern 
hardware and rebuild data systems to efficiently support future data science.

Data Science at Scale

ML Genomics Cyber Sec. NLP

Data Systems

Scale down Scale to disk Scale out

Modern hardware
Vector inst. GPU NVM SSD

Data structures & Algorithms
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https://prashantpandey.github.io
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Backup slides
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Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract Representation

0 1 2 3 4 5 6 7

Quotient filter design
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runends
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Abstract Representation

h(a)
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1
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Quotient filter design



Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q
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runends

2q
Abstract Representation

h(a)

h(b)

0 1 2 3 4 5 6 7

1

1

t(a) t(b)

Quotient filter design



Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract Representation

h(d)h(a)

h(b)

0 1 2 3 4 5 6 7

1 1

1 1

t(a) t(b) t(d)

Quotient filter design



Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract Representation

h(d)h(a)

h(b) h(e)

0 1 2 3 4 5 6 7

1 1

1 1

t(a) t(b) t(d) t(e)

Quotient filter design



Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract Representation

h(d)h(a)

h(b)

h(c)

0 1 2 3 4 5 6 7

1 1

1 1

t(a) t(b) t(c) t(d) t(e)

h(e)

Quotient filter design

Back



L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Cascade filter: write-optimized quotient filter
[Bender et al. ‘12, Pandey et al. ‘17]

Mr1

MrL

Efficient merging

105

● The Cascade filter efficiently scales out-of-RAM
● It accelerates insertions at some cost to queries



L

0

1

RAM

FLASH

log(N/M)

Items are initially inserted in the RAM level

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]
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L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]
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When RAM is full, items are flushed to the smallest level on 
disk i with space to insert items in level 0 to i-1
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log(N/M)
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Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]
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When RAM is full, items are flushed to the smallest level on 
disk i with space to insert items in level 0 to i-1



L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]
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When RAM is full, items are flushed to the smallest level on 
disk i with space to insert items in level 0 to i-1
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0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]

110

When RAM is full, items are flushed to the smallest level on 
disk i with space to insert items in level 0 to i-1



L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]
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When RAM is full, items are flushed to the smallest level on 
disk i with space to insert items in level 0 to i-1



L

0

1

RAM

FLASH

log(N/M)

N

Query (x)M

Mr1

MrL

Cascade filter: query
[Bender et al. ‘12, Pandey et al. ‘17]
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A query operation requires a lookup in each non-empty level
Back



Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Divide each level into 1+ 1/𝛼, equal-sized bins.

Mr1

MrL
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Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

When a bin is full, items move to the adjacent bin

Mr1

MrL
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Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

When a bin is full, items move to the adjacent bin

Mr1

MrL
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Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Last bin flushed to first bin of the next level

Mr1

MrL
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Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Last bin flushed to first bin of the next level

While flushing consolidate 
counts; report if hits threshold 

Mr1

MrL
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Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Last bin flushed to first bin of the next level

While flushing consolidate 
counts; report if hits threshold 

Mr1

MrL

Main idea: item is not put on a deeper 
level until it’s “aged sufficiently”

118



Time-stretch LERT I/O complexity

Optimal insert cost for 
Write-optimized data 

structure
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Time-stretch LERT I/O complexity

Extra cost because we only 
move one bin during a 
flush. Constant loss for 

constant 𝛼

Optimal insert cost for 
Write-optimized data 

structure

120Back



Bloom filter: ~1.44 log(1/ε) bits/element.
Quotient filter: ~2.125 + log(1/ε) bits/element.

Quotient filters use less space than Bloom filters 
for all practical configurations

False-positive rate 
< 1/64 (or 0.15).

121

Accuracy



Cyber monitoring → real-time data analysis

Defense systems for cyber security 
monitor high-speed streams for 
malicious traffic over large periods 
of time

Malicious traffic forms a small 
portion of the stream

Automated systems take defensive 
actions for every reported event

122



● How computations work:
○ Data is transferred in blocks between RAM and disk.

○ The number of block transfers dominate the running time.

● Goal: Minimize number of block transfers
○ Performance bounds are parameterized by block size B, memory size M, 

data size N.

RAM DISK

M

B

B

External memory model [Aggarwal+Vitter ‘08]
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L

0

1

RAM

FLASH

log(N/M)

N

Counting QFM

Cascade filter: write-optimized quotient filter
[Bender et al. ‘12, Pandey et al. ‘17]

Mr1

MrL

● The Cascade filter efficiently scales out-of-RAM
● It accelerates insertions at some cost to queries

124More



Timely event detection problem

● Stream of elements arrive over time

S1

Time

S2 St

125



● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in 

(s1,s2….st)

S1

Time

S2 St

t

Timely event detection problem
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● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in 

(s1,s2….st)

S1

Time

S2 St

t

Event!

Suppose T= 4

Timely event detection problem
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● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in 

(s1,s2….st)
● In timely event-detection problem (TED), we want to report 

all events shortly after they occur.

S1

Time

S2 St

t

Event!

Suppose T= 4

Report

Timely event detection problem

128



16X 
drop4X 

drop

Performance suffers due to high-overhead of collision resolution 

129

Trade-off: Insertion throughput degrades with 
load factor



Trade-off: Insertion throughput degrades with 
load factor

Insertion throughput vs load factor of state-of-the-art filters

Many update-intensive applications (e.g., network caches, data 
analytics, etc.) maintain filters at high load factors

130

Performance 
only matters at 

high load factors



Combining techniques + new hardware

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVX512-BW)

131



Combining techniques + new hardware

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVX512-BW)

132

Constant high 
performance from 

empty to full

More

Pandey et al. SIGMOD ‘21

#


Future work: population-scale variant index

Goal: Build a population-scale index on 
variation data to enable downstream apps 

to gain quick insights into variants
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Country-scale sequencing efforts produce huge 
amounts of sequencing data

AAA
CG
CCCG
T
ACTT

AAA
CG
CCCG
T
ACTT
A

CGT
ACTT
A

AAA
CG
CCCG
TT

CCCG
T
ACTT
A

AAA
CG
CCCG
T
ACTT
A

AAA
CG
CCCG
T
ACTT

AAA
GT
ACTT
A

AAA
CG
CCCT
A

CCCG
T
ACTT
A

Assembled data

Individuals

Raw sequencing 
data

Assembly
…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG

AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….

Variant 
calling

Genomic variants
Variant call 

Format (VCF)

Sequencing

● 1000 Genomes project [https://www.internationalgenome.org/]

● The Cancer Genome Atlas (TCGA) [https://portal.gdc.cancer.gov/]

● Genotype-Tissue Expression (GTEx) [https://gtexportal.org/home/]
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Country-scale sequencing efforts produce huge 
amounts of sequencing data

AAA
CG
CCCG
T
ACTT

AAA
CG
CCCG
T
ACTT
A

CGT
ACTT
A

AAA
CG
CCCG
TT

CCCG
T
ACTT
A

AAA
CG
CCCG
T
ACTT
A

AAA
CG
CCCG
T
ACTT

AAA
GT
ACTT
A

AAA
CG
CCCT
A

CCCG
T
ACTT
A

Assembled data

Individuals

Raw sequencing 
data

Assembly
…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG

AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….

Variant 
calling

Genomic variants
Variant call 

Format (VCF)

Sequencing

● 1000 Genomes project [https://www.internationalgenome.org/]

● The Cancer Genome Atlas (TCGA) [https://portal.gdc.cancer.gov/]

● Genotype-Tissue Expression (GTEx) [https://gtexportal.org/home/]
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Squeakr, deBGR, 
Rainbowfish, Mantis, 

MST-Mantis, LSM-Mantis ??



Variation data analysis can improve downstream 
applications
● Population-level disease analysis

● Genome-wide association studies

● Personalized medicine

● Cancer remission-rate prediction

● Colocalization analysis

● PCR primer design

● Genome assembly

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

Sequencing & 
assembly

Individuals
Population Genomes

Return all positions 
with variants in a 
gene

List all people, with 
sequence S in a gene

Count the number of 
variants in a gene

List all people, with 
> N variants in a geneFor person P, return 

the closest variant 
from position X
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Indexing in multiple coordinates is challenging
Reference-only indexes map positions only in the reference coordinate system

......

Pan-genome analysis involves queries based on sample coordinate systems

Num 
Samples

Maintaining thousands of mappings increases computational complexity 
and memory footprint
Limits scalability to population-scale data
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Indexing in multiple coordinates is challenging
Reference-only indexes map positions only in the reference coordinate system

......

Pan-genome analysis involves queries based on sample coordinate systems

Num 
Samples

Maintaining thousands of mappings increases computational complexity 
and memory footprint
Limits scalability to population-scale data

Existing systems don’t support multiple coordinate 
systems. The ones that do, don’t scale beyond a few 

thousand samples.

138



An inverted index on the pan-genome graph

● Partition the variation graph 
based on coordinate ranges

● Store partitions on disk

● Succinct index for reference 
coordinate system

● Local-graph exploration to 
map position from 
reference to sample 
coordinate

Position index

Variation 
graph

Queries often require 
loading 1-2 partitions

139

Collaborators: Yinjie Gao, Carl Kingsford



Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions

0 0 0 0 0 0 0
m

a
c b

d

S

140



Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k = 2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(a) = 1
h2(a) = 3

h1(c) = 5
h2(c) = 3

141

true 
negative



Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(b) = 2
h2(b) = 5 true 

negative
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Classic filters: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(d) = 1
h2(d) = 3 False 

positive
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Bloom filters are ubiquitous (> 4300 citations)

Storage systems

NetworkingStreaming applications

Computational biology

Databases
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Metagenomic classification pipeline

145

Binning

Profiling

[Ye et al. 2019]

Classification is the critical first step in many metagenomic 
analysis pipeline



Existing indexing techniques offer low accuracy

146

Indexing-based classification is done based only on the contents 
on the input sequences


