Data Systems at Scale:
Scaling Up by Scaling Down and Out

Prashant Pandey

ppandey@berkeley.edu
Berkeley Lab/UC Berkeley

mailto:ppandey@berkeley.edu

Bioinformatics on twitter
Mick W@tson

Bioinformatics over the years:

1990s: doing a BLAST search
2000s: analysing 30 microarrays
2010s: nalysing 6Tb of NGS

2020s: creating a cloud the size of
Netflix to reanalyse the whole of SRA
for one figure

’ Michael Schatz @n

' This is basically my life right now

Sequence Read Archive (SRA) growth

SRA contains a lot of diversity information

B L SRA [database growth
B 43, 68,222 /665,818,116 total base
| 20,223,332)713, 769,219 opén accesgs bases
10000
= f
= Total bases St P
" / \
1000 N
= &
oF
S & J Open access
N =
en s
=) +| 100
q (Y
N
?3“ !
B i
o~
= g
¥
1o A
E //
- | s
L
I
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2¢
Total bases
Open access hnses 81/8/2621 12:67pm

Q: What if I find e.g., a new disease-related gene, and want to see 1f
it appeared 1n other experiments?

Scalability 1s the bottleneck for data science

SRA contains a lot of diversity information

E L SRA |[database growth
B 43, 68,222 /665,818,116 total baseE
| 20,223,342 ,/713,769,219 open acces bases
10000
= |
- Total bases | —
1000 : s \\
s 3
S & J Open access
N =
1 :‘J_
%ﬂ | 1o0
- S
-~
1> 2 s
= _;‘
o~
B e
3]
!
= W¥—__ Current index size
. (< 100 TBs)
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2¢
Total bases
Open access hnses 81/8/2621 12:67pm

This renders what is otherwise an immensely valuable public
resource largely inert

Scalability 1s a ubiquitous challenge

Cyber monitoring
Internet of Things
Financial tech
Social networks
AstroPhysics
Chemuistry

* People generate|2.5 quintillion bytes of data each day|(IBM, 2016)

(Forbes, 2019)

2016)

* More than 150 zettabytes (150 trillion gigabytes) of data will need analysis by 2025.

* 90 percent of the world's data was created between 2015 and 2016 alone. (IBM,

https://learn.g2.com/big-data-statistics

Environmental science

* 241 88% of data is ignored by companies. https://leftronic.com/big-data-statistics/
. (Forrester Research)
. A widely-quoted figure from a 2012 paper from Forrester Research says that, on average, companies analyze

only 12% of the available data. Reasons for this include a lack of analytics tools, repressive data silos, and the

difficulty in knowing which information is valuable and which is worth leaving.

My goal as a researcher

Three approaches to handle massive data

Three approaches to handle massive data

6 -\
Goal: make data

smaller to fit in
RAM

Techniques:

e (Compact &
succinct data
structures

e Filters, e.g.,
Bloom,
quotient, etc.

o / 8

Three approaches to handle massive data

q -\ q -\
Goal: make data Goal: organize
smaller to fit in datain a
RAM disk-friendly way
Techniques: Techniques:

e (Compact & e B-tree
succinct data e B-t-tree
structures e [SM-tree

e Filters, e.g.,

Bloom,
quotient, etc.

o AN / 9

Three approaches to handle massive data

Goal: make data
smaller to fit in

RAM

Techniques:

e (Compact &
succinct data
structures

e Filters, e.g.,
Bloom,
quotient, etc.

/-\/

[Organize it]

Goal: organize
datain a
disk-friendly way

Techniques:
e B-tree

e B°®-tree

e [SM-tree

/

o

\/—\

Goal: partition and
distribute data on
multiple nodes

Techniques:

e Distributed
hash table

e Distributed
key-value store

o S

Research output

A

Data structures
& Algorithms

Systems

Applications

Computational
biology

11

Research output

A

Data structures
& Algorithms

Systems

Applications

Computational
biology

12

Research output

A

Data structures
& Algorithms

Systems

Applications

Computational
biology

13

Research output

A

Data structures
& Algorithms

Systems

Applications

Computational
biology

In this talk:

A

Data structures
& Algorithms

[ShrinKk it

Systems

Applications

Computational
biology

In this talk:

A

Data structures
& Algorithms

[Shrink it \
Organize it J

-

-

Applications

Computational
biology

16

Application 1: k-mer counting

k-mer

Count

ACTGATG

10

Preprocessing | GGTGCAT

20

2

- AACTGGA
CCGTGAC

0oHd®

1000

GGTGTGC

4000000

CGTGCAC

ACTGAGTGA

é‘ ACTGAGTGA

7

C
Biological

11

samples GTGTCAC

9090992

Raw sequencing data

(Sequence Read k-mer counting
Archive) > 30 papers

1. Genome/metagenome
assembly
2. Error correction
3. Metagenomic
- classification
4. Sequence clustering
5. Sequence search

6. Abundance study
etc.

Downstream
applications

e The size of the raw sequencing data makes the problem challenging
® /-mer counts follow highly skewed distributions making the problem

computationally intensive

18

Application 1: Squeakr

Index space

[Pandey et al. Bioinformatics “17]

Dataset KMC2 Jellyfish2 Squeakr Squeakr-exact
[Deorowicz, etal 1141 1 (Bloom filter) | (quotient filter) | (quotient filter)
[Margais & Kingsford “11]
F vesca 8.3 8.3 4.8 9.3
G. gallus 32.8 31.7 13.0 28.8
M. balbisiana 48.3 16.3 11.1 14.2
H. sapiens 1 71.4 61.8 22.1 51.5
H. sapiens 2 107.4 61.8 30.8 60.1

Using space-efficient data structures, we can save space and build

simpler and efficient systems

19

Application 2: sample discovery problem

Solomon & Kingsford Nat Biotech ‘16

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

..ACACGTA...

Check if this new
transcript has
been seen before?

SRA Samples
(> 100K samples)

Return all samples that contain at least some user-defined fraction 6 of the
k-mers present in the query string.

20

Application 2: sample discovery problem

Solomon & Kingsford Nat Biotech ‘16

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACACG

ACACGTA.. EEE) CACGT
e ons ACGTA
Check if this new
transcript has
been seen before? 0>0.75?

k-mers \
> 10 Billion

SRA Samples
(> 100K samples)

Return all samples that contain at least some user-defined fraction 6 of the
k-mers present in the query string

21

40 B SSBT 100 B SSBT
B Mantis B Mantis
30 75
é 20 0 P
o >
) 2
© 10 25
0 0
2652 Experiments 2652 Experiments
Space Construction time
4800
B SSBT 1.00 B SSBT
16565 B Mantis B Mantis
0.75
m
3
2 100 S o0
3 z
2 o
15: o
H o 0.25
1 0.00
10 transcripts 100 transcripts 1000 transcripts 10 transcripts 100 transcripts 1000 transcripts
Query time Query accuracy

SSBT (Bloom filter) [Solomon & Kingsford ‘17]
Mantis (quotient filter) [Pandey et al. ‘18] 22

Giga Bytes

Seconds (Log Scale)

g
o
o

-
o

10 transcripts

B SSBT 100
B Mantis

Precision

100 transcripts 1000 transcripts 10 transcripts 100 transcripts

1000 transcripts

Query time Query accuracy

SSBT (Bloom filter) [Solomon & Kingsford ‘17]
Mantis (quotient filter) [Pandey et al. ‘18]

B SSBT

B Mantis

23

Dictionary data structure

A dictionary maintains a set S from universe U.

membership(a):
membership(b):
membership(c): ¢
membership(d): X

A dictionary supports membership queries on S.

24

Filter data structure

A filter 1s an approximate dictionary.

membership(a):
membership(b):
membership(c): ¢

false

membership(d): " 4 positive

A filter supports approximate membership queries on S.

25

A filter guarantees a false-positive rate €

ifg € S,return o/ with probability 1 true positive

(x with probability [11 - & true negative
if g & S, return <

L / with probability <& false positive

one-sided
errors

26

False-positive rate enables filters to be compact

space > nlog(1/e) space = (}(nlog|U|)

q

'

Filter Dictionary

27

False-positive rate enables filters to be compact

space > nlog(1/e) space = (}(nlog|U|)

q

I

Filter Dictionary

For most practical purposes:
€ = 2%, a Bloom filter requires = 8 bits/item

28

Classic filter: The Bloom filter [Bloom “7]

Bloom filters are ubiquitous (> 4300 citations)

Streaming applications Networking

Mysal , . ORACLE , + SOl server

Computational biolo Storage systems
p gy | J \) X) ge sy

TGATCGTAGCTGATCGATGCA"G& \
3 it 2

4 m"
\Acorcnvcclo“ %“\\1\1\\\\ \(

® Wi W'

29

Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits) |~ 1.44 nlog(1/e)|~ n log(1/e) + Q(n)
CPU cost (1/€) O(1)
Data locality | €X(1/¢) probes O(1) probes

30

Applications often work around Bloom filter

limitations

Limitations Workarounds
No deletes Rebuild
No resizes Guess N, and rebuild 1f wrong
No filter merging or enumeration 777
No values associated with keys Combine with another data structure

Bloom filter limitations increase system complexity, waste
space, and slow down application performance

31

Quotienting 1s an alternative to Bloom filters

[Knuth. Searching and Sorting Vol. 3, ‘97]

e Store fingerprints compactly in a hash table.
o Take a fingerprint /(x) for each element x.

GEED — ¢

< >

>
log |U| p

e Only source of false positives:
o Two distinct elements x and y, where /(x) = A(y)
o If x 1s stored and y 1sn’t, query(y) gives a false positives

Pr[x and vy collide] = 2%

32

Storing fingerprints compactly

b(x)

A i A W N =D

—
: .

A

24

Bucket index

V
JEINTES) «~—Tag

q r

® h(x) = location 1n the hash table
® f{(x) = tag stored 1n the hash table

33

Storing fingerprints compactly

Bucket index

V
JEINTES) «~—Tag

—
: .

q r
b A
b
» 1 e b(x) = location in the hash table
9) ® f{(x) = tag stored 1n the hash table
q
3 2 Collisions 1n the hash table?
——> 4

v

6

34

Storing fingerprints compactly

Bucket index

V
JEINTES) «~—Tag

—
: .

q r
b A
b
» 1 e b(x) = location in the hash table
9) ® {(x) = tag stored 1n the hash table
q
3 2% Collisions in the hash table?
e Linear probing
_— 4 e Robin Hood hashing
v
6

35

Storing fingerprints compactly

Bucket index

V
JEINTES) «~—Tag

—
: .

q r
b A
b 1 e b(x) = location in the hash table
9) ® f{(x) = tag stored 1n the hash table
3 2 Collisions in the hash table?
e Linear probing
_— 4 e Robin Hood hashing
v
%ﬁ t(y) belongs to }
6 slots 4 or 5?

Y 36

1S1011S 11

e QF uses two metadata bits to resolve collisions
and 1dentify home bucket

tx) | Hy)

e The metadata bits group tags by their home
bucket

37

1S1011S 11

e QF uses two metadata bits to resolve collisions
and 1dentify home bucket

insert v

e The metadata bits group tags by their home
bucket

38

1S1011S 11

e QF uses two metadata bits to resolve collisions
and 1dentify home bucket

insert v

tx) | W)

e The metadata bits group tags by their home
bucket

The metadata bits enable us to 1dentify the slots holding
the contents of each bucket.

More 39

Quotienting enables many features in the QF

Good cache locality

Efficient scaling out-of-RAM

Deletions

Enumerability/Mergeability

Resizing

Maintains count estimates or associate values

Uses variable-sized encoding for counts [Counting quotient filter]
o Asymptotically optimal space: O |C(x)|)

Quotienting enables many features in the QF

Good cache locality
Efficient scaling out-of-RAM
Deletions

to map small keys to

Mantis uses the QF
values

Enumerability/Mergeability

Resizing

Squeakr uses the QF
to count items

Maintains count estimates or associate values
Uses variable-sized encoding for counts [Counting quotient filter]
o Asymptotically optimal space: O |C(x)|)

Quotient filters use less space than Bloom filters

for all practical configurations

Quotient filter Bloom filter Optimal

Space (bits) | & n log(1/e) +2.125n | ~ 1.44 nlog(1/€) |~ n log(1/€) + Q(n)

CPU cost O(1) expected Q(1/€) O(1)

Data locality 1 probe + scan Q(1/€) probes O(1) probes

The quotient filter has theoretical advantages over the
Bloom filter

42

Quotient filters perform better (or similar) to

other non-counting filters

Inserts Lookup
55 T T T I 99 | |
50 |- —e— QF [
45| SWmCE 4
—e— BF

Million Insertions per Second

Million False Lookups per Second

0 20 40 60 80 100
Load Factor Load Factor

e [nsert performance 1s similar to the state-of-the-art non-counting filters
e (Query performance is significantly fast at low load-factors and slightly slower
at higher load-factors

43

Vector quotient filter (VQF)LPandey etal. SIGMOD “21]

—#—— Vector quotient filter (no sc) B Vector quotient filter (no sc)
—=—— Vector Quotient filter (insert sc) B Vector Quotient filter (insert sc)
—=x—— Quotient filter
- Cuckoo filter
——— Morton filter

w
=}
1

N
o
¥ L

Throughput (Million/sec)

Throughput (Millions/sec)

o
- :5:1

o———7— 77— T 7T T T T T T T T T T T T T 1 e — o
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 Insert Exists lookup Random lookup Remove

Load factor Operations

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVXS512-BW)

44

Vector quotient filter (VQF)LFandey etal. SIGMOD “21]

B Vector quotient filter (no sc)
B Vector Quotient filter (insert sc)
Quotient filter

——#—— Vector quotient filter (no sc)
—a——— Vector Quotient filter (insert sc)
—=x—— Quotient filter

@ Cuckoo filter
Morton filter

w
=}
1

Morton filter

304

N
o

20

Throughput (Million/sec)

Throughput (Millions/sec)

=
=
g :
; :

)
O
U0
vorl
*e
2]
)
*o?!
+o*]
ve
2]
0.0
XX
2]
)
voll
+o?]
020
*o?]
o]
020
'+2]
)
voll
0%
'+2]
)
*o]
o]
020
o
m looku R

O— 77T 7T T T T T T T T T T T T T T T 1 o-—E -
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95 o Exists lookup Rafdor 166K

Load factor Operations

eeeee

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVXS512-BW)

45

Quotient filter’s impact in computer science

Computational biology
1. Squeakr

2. deBGR

3. Mantis

4. VariantStore

4 N

- /
e D

Databases/Systems
1. Anomaly detection
2. BetrFS file system

o

J

Deduplica-t
ion

Stream
Analysis

Theoretically well-founded data structures can have a big impact on
multiple subfields across academia and industry

46

Quotient filter’s impact in computer science

(Computational biolog)m

Squeakr

deBGR

Mantis
VariantStore
SPAdes assembler
Khmer software

-

MQF /
~

4 Databases/Systems

1. Anomaly detection

2. BetrFS file system

3. Counting on GPUs
\4. Concurrent filters)

/S'IPS“!\’T‘

Industry
VMware
Nutanix
Apocrypha
Hyrise

~

A data security

startup

J

Deduplica-t
ion

Theoretically well-founded data structures can have a big impact on

multiple subfields across academia and industry

47

Learned “Shrink 1t”. Now “Organize 1t”

A

Data structures
& Algorithms

Systems

Organize it }

Applications

Computational
biology

48

Timely event detection problem

Standing query

...alert if you
get five new
red pickups

Demand query

Show me your
red pickups

In timely event-detection problem (TED), we want to answer
standing queries

https://firehose.sandia.gov 49

Features we need 1n the solution

e Stream is large (e.g., terabytes) and high-speed
(millions/sec)

High throughput ingestion

50

Features we need in the solution

e Stream is large (e.g., terabytes) and high-speed
(millions/sec)

High throughput ingestion

e Events are high-consequence real-life events

No false-negatives; few false-positives @

Timely reporting (real-time)

51

Features we need in the solution

e Stream is large (e.g., terabytes) and high-speed
(millions/sec)

High throughput ingestion

e Events are high-consequence real-life events

No false-negatives; few false-positives @

Timely reporting (real-time)

e Malicious traffic forms a small portion of the
stream

Very small reporting thresholds

52

One-pass streaming has errors

e Heavy hitter problem: report items whose frequency > /N
e Exact one-pass solution solution requires Q(/N) space

0000000000

o (o) lase] o] lsc)]

53

One-pass streaming has errors

e Approximate solution: report all items with count > ¢/N, none

Wlth < (¢_3)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.
16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

e Approximate solutions require ((1/¢) space

0000000000

w0 |Loo) ot ksl oo

Real time with false-positives!

54

One-pass streaming has errors

e Approximate solution: report all items with count > ¢/N, none

Wlth < (¢ —&)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.
16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

e Approximate solutions require ((1/¢) space
a

For some apps, @V 1s a small constant,
So (2(1/¢) 1s very very large!!
Can’t solve in RAM for very small ¢

©)
o (Lol lase] o] lsc)]

Real time with false-positives!

55

One-pass solution has:

e Stream is large (e.g., terabytes) and high-speed
(millions/sec)

High throughput ingestion

e Events are high-consequence real-life events

No false-negatives; few false-positives

<N K

Timely reporting (real-time)

e Malicious traffic forms a small portion of the
stream

Very small reporting thresholds x

56

Two-pass streaming 1sn’t real-time

e A second pass over the stream can get rid of errors
e Store the stream on SSD and access it later

0000000000

Scales to very small ¢
but offline!

o (|ae] late] Lot lsicl]

SSD

57

Two-pass solution has:

e Stream is large (e.g., terabytes) and high-speed
(millions/sec)

&

High throughput ingestion

= ¢
[£

e Events are high-consequence real-life events

No false-negatives; few false-positives

x

Timely reporting (real-time)

e Malicious traffic forms a small portion of the
stream

Very small reporting thresholds

AN

58

If data 1s stored: why not access 1t?

e

Why wait for second pass? }

\

0000000000

| —)

o (o) lase] o] lsc)]

P Idea: combine streaming and

extemal memory (EM)[Pandey et al. SIGMOD 20]

{ Streaming

External memory
model

algorithms

" Use an efficient external-memory counting A
data structure to scale Misra-Gries
S algorithm to SSDs y

60

Operations 1n external memory dictionaries

Bender et al. ‘12

Insert Query
0, (%log %) O (log %)

Performance bounds are parameterized by block transfer size 5,
memory size M, data size /.

61

Operations 1n external memory dictionaries

Bender et al. ‘12

Insert Query
0, (%log %) O (log %)

«re parameterized by block transfer size 5,
memory size M, data size V.

62

Operations 1n external memory dictionaries

Bender et al. ‘12

Insert Query
0, (%log %) O (log %)

«re parameterized b 1ze B,

memory size M, data size V.
63

EM dictionary doesn’t have real-time reporting

Bender et al. ‘12

p
But every insert is also a query in

Kreal-time reporting!

IIIOVIU Juvly

O (%log %) 0, (log %)

«re parameterized b 1ze B,
memory size M, data size V.

64

EM dictionary doesn’t have real-time reporting

Bender et al. ‘12

But every insert is also a query in
real-time reporting!

IIIOVIU Juvly

0, (%log %) O (log %)
yi \

Traditional EM dictionary doesn’t solve

the problem!

(g) \"J

observation

Perfo ¢ parameterized b 1ze B,

memory size M, data size V.

65

@ Idea: reporting with bounded delay

We define the time stretch of a report to be

. Delay
Time stretch=1+a =1+
Lifetime
o Delay
Lifetime — D) —1&
Timeline = L .
P Y. @ - ® -
1 occurrence T™ occurrence Reporting time

More

66

@ Idea: reporting with bounded delay

We define the time stretch of a report to be

Delay

Time stretch=1+a =1+

Main idea: the longer the lifetime of an item,
the more leeway we have in reporting it

1 occurrence T™ occurrence Reporting time

More 67

Leveled External-Memory Reporting Table

(LERT) [Pandey et al. SIGMOD €20]

e (i1ven a stream of size N and p/N > Q(N/M) the amortized
cost of solving real-time event detection is

O ((% + it) oe)

e For a constant a, can support arbitrarily small thresholds ¢
with amortized cost

O (Llog &)
B M
Takeaway: Online reporting comes at the cost of throughput but
almost online reporting is essentially free!

68

Leveled External-Memory Reporting Table

(LERT) [Pandey et al. SIGMOD €20]

e (i1ven a stream of size N and p/N > Q(N/M) the amortized
cost of solving real-time event detection is

AT 1 \ . AT\
(N

Can achieve timely reporting at effectively

the optimal insert cost; no query cost
S /

with amortized cost

O (Llog &)
B M
Takeaway: Online reporting comes at the cost of throughput but
almost online reporting is essentially free!

69

e Empirical timeliness

e High-throughput ingestion

70

Evaluation: empirical time stretch

Time stretch

12

10

4 ! |
==t

/ CF . . . TSL
Cascade filter [Bender et al. ‘12] Distributions

State-of-the-art external memory counting
table

Average time stretch 1s 43% smaller than theoretical upper bound.

71

Evaluation: scalability

Ratio =

Data Size

RAM

15
Q
@
A
g
5
S 10|
=
2
—
=
s —
fo —e— Ratio: 16
g —m— Ratio: 32
= — 4 Ratio: 64
[_‘ O | I |
0 20 40 60

Number of threads

The insertion throughput increases as we add more threads.

We can achieve > 13M insertions/sec.

72

LERT: supports scalable and real-time reporting

e Stream is large (e.g., terabytes) and high-speed
(millions/sec)

High throughput ingestion

e Events are high-consequence real-life events

No false-negatives; few false-positives

Timely reporting (real-time)
e Malicious traffic forms a small portion of the
stream

Very small reporting thresholds

73

Ongoing/future work

A

Data structures
& Algorithms

Applications
Computational
o -

Systems

74

Ongoing/future work

A

Data structures
& Algorithms

Systems

Applications

Computational
biology

75

Future work: next gen data structure library

76

Existing hash table techniques

Separate chaining Open addressing

2-choice hashing
d-left hashing

e Chaining with linked-list e Linear probing

e Chaining with binary tree e (oalesced chaining
e (Cuckoo hashing
e Hopscotch hashing
e Robin Hood hashing
°
[

e Cuckoo hashing suffers from random hopping
e Linear probing/Robin Hood hashing suffer from long chains
e 2-choice/d-left hashing suffer from multiple probes

77

Iceberg hash table

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton

Balanced for most items Very low variance

e Step 1: set primary bin by single hashing

o Ifthe bin has <t fype I items, insert the new item in the bin as fype /
e Step 2: If there are < [fype 2 items, insert the new item using d-left as 1ype 2
e Step 3: select the primary bin and inserted as 1ype 3

7=h+ (3hlogh)?’® §=cn h= iZZZS

78

Iceberg hash table

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton

Limits variance across bins without random

hopping and multiple probes
. /

o Ifthe bin has <t fype I items, insert the new item in the bin as fype /

e Step 2: If there are < [fype 2 items, insert the new item using d-left as 1ype 2
e Step 3: select the primary bin and inserted as 1ype 3

r—h+(3hlogh?® §=cn h=4e

79

Iceberg hash table performance

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton

Throughput (Table size = 67 Million Single thread)

B Iceberg hash table [l Cuckoo hash table B Power of 2 choices

20
15

10

Million Ops/sec

Insert Positive query Negative query Delete

Operation

e 0.8X faster for insertions
e ~2X faster for queries

e 1.6X faster for deletes
80

Future work: system for streaming graphs

81

“One-size-fits-all” approach 1s suboptimal

Static Dynamic
Vertex IDs 024 2 i
Pointers to Vertices
Edges |nghsof0 | |nghsof1 ||nghsof2| ... Edges
Tree-of-trees
LIGRA [Shun & Blelloch “13] ASPEN [Dhulipala et al.
‘19]
LIGRA ASPEN
add_edge O((|E| +|V1))/B) | O(log V| + ¢* log(deg(u))/B)
get neighbors O(deg(u)/B) O(log |V| + deg(u)/B + deg(u)/c)

Neighbor access requires at least two cache misses
For dynamic, all operations have a log factor

82

“One-size-fits-all” approach 1s suboptimal

Static Dynamic

Vertex IDs 01 2
Pointers to Vertices

RN

Edges nghs of 0 | [nghsof1 | [nghsof 2| ... Edges

Static — Fast computations; no updates
Dynamic — Slower computations; updates

LIGRA ASPEN
add_edge O((|E| + |V1]))/B) | O(log|V] + ¢ log(deg(u))/B)
get neighbors O(deg(u)/B) O(log |V| + deg(u)/B + deg(u)/c)

Neighbor access requires at least two cache misses
For dynamic, all operations have a log factor

83

Real world graphs are often skewed

High variance in the
degree distribution

84

Hierarchical structure + dynamic partitioning

Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick

e In-place structure for vertices
with low degree
High variance in the ‘ e Shared sparse-array (PMA) for
degree distribution vertices with medium degree
e Independent B-tree for vertices

\ with high degree /

85

Hierarchical structure + dynamic partitioning

Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick

e In-place structure for vertices
with low degree
High variance in the ‘ e Shared sparse-array (PMA) for
degree distribution vertices with medium degree
e Independent B-tree for vertices

ith high degree
@ 4

| | | | | |

w

el "|0Ligrall Aspenl] Terrace

(A]
T
|

10°

10° 4 —e— Terrace Insert L]
—a— Terrace Insert Orkut
—e— Aspen Insert L]
10' ¢ —+— Aspen Insert Orkut

Normalized Running Time

Throughput (edges per seconds)

I M

| | |
BFS PR BC CC SSSp TC

(=]

10° 10* 102 10° 10* 10° 10° 107
Batch Size
86

Hierarchical structure + dynamic partitioning

Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick

High variance in the ‘ o

degree distribution

Throughput (edges per seconds)

10°

10° ¢

10" 1§

107

In-place structure for vertices
with low degree

Shared sparse-array (PMA) for
vertices with medium degree
Independent B-tree for vertices
with high degree

—e— Terrace Insert L]
—a— Terrace Insert Orkut
—e— Aspen Insert L]
—— Aspen Insert Orkut

10° 10!

102 10 100 10° 105 107
Batch Size

w

Do
|

Normalized Running Time

——
—
—
— wm
——

| | | | | i
BFS PR BC CC SSSp TC

87

Future work: ML/DL for scalable indexing

88

Sample discovery problem

Solomon & Kingsford Nat Biotech ‘16

B

0>075"
ACACG
.ACACGTA.. HEM) CACGT
e ACGTA
Check if this new
transcript has
been seen before? 0>0.75?

k-mers \
> 10 Billion

SRA Samples
(> 100K samples)

Return all samples that contain at least some user-defined fraction 6 of the
k-mers present in the query string

89

Mantis index for sample discovery problem

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG

Input Samples QF TAAACGTGA

CGTCACGTA
Color Class Table
S1 S2 S3 S4
0 1 1 0

1
0
1

SRR SRR SRR SRR
001 002 003 004

ACTG || ACTG

..ACACGTA... ‘ ey ey T

ChecKk if this new TTTC || TTTC
transcript has GCGT || GCGT || GCGT
been seen before? AGec | aee

0
10| 1|0
1

- |-

Mantis index

SRA Samples
(> 100K samples)

Mantis index is based on a map from A-mers to a list of samples where the

k-mer appears.
90

ML for sample discovery problem

Collaborators: Nick Bhattacharya, Aydin Buluc, Kathy Yelick

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
Convolution layer TAAACGTGA

..ACACGTA... ‘ ‘

Check if this new
transcript has
been seen before?

Fully-connected

CNN with
three layers

SRA Samples
(> 100K samples)

The loss function is optimized for the edit distance between sequences

We are planning to use (Order Min Hash ISMB ‘19) a LSH for edit distance

91

Metagenomic reads classification

Collaborators: Giulia Guidi, Alok Tripathi, Aydin Buluc, Kathy Yelick

Overlap graph with no labels Overlap graph with training labels Overlap graph with learned labels

s

&0 2.,
adg o T XA
|:> - &
A b '.@
% Ee
& e
<« ‘e
s

e Assign ground truth labels to
training nodes

e Assign tetra-nucleotide (GCN)
frequency as node vectors

Semi-supervised learning using
Graph Convolutional Network

e (Generate overlap graph: reads—nodes & overlap —edges
e Node features —Tetra nucleotide freq of reads
e Reference-based mapping as ground truth labels

92

Overlap graph + graph neural network (GNN)

Collaborators: Giulia Guidi, Alok Tripathi, Aydin Buluc, Kathy Yelick

Kraken2 and MetaGNN (F1 Score)

B Kraken2 B MetaGNN
100

75

50

Accuracy

25

CAMI Low CAMI Medium CAMI High CAMI Airways CAMI Oral

Metagenomic Datasets

Can achieve higher accuracy using graph-based learning

93

Conclusion

e Scalability of data management

Data Science at Scale

systems will be the biggest

ML || Genomics || Cyber Sec.

NLP

challenge in future s

e (Changing hardware give rise

Data Systems

[Data structures & Algorithms]

~

to new algorithmic paradigms

Scale down][Scale to disk][Scale out

\
b

)
’

Modern hardware

Vector 1nst. GPU | NVM

SSD

We need to redesign existing data structures to take full advantage of modern
hardware and rebuild data systems to efficiently support future data science.

https://prashantpandey.github.io

94

https://prashantpandey.github.io

95

96

97

Backup slides

Quotient filter design

Implementation:
2 Meta-bits per slot.

h(x) --> h (x) || h(x)

runends

occupieds

Abstract Representation

>

"

o

24

| —

Quotient filter design

Implementation: q
2 Meta-bits per slot. - 2

Abstract Representation

>

h(x) --> h (x) || h(x) . (v)

runends

occupieds

"

&

(—

Quotient filter design

Abstract Representation

Implementation: q
2 Meta-bits per slot.) 2 -
h(x) --> h (x) || h (x) v
h(a)
\/
runends h(b)
Oﬁupieds

&

(—

Quotient filter design

Implementation:

Abstract Representation

. < 24 -
2 Meta-bits per slot.
h(x) --> h(x) || h(X) v V
h(*a) h(d)
runends h(b)
occupieds
N i
. 1
4) —

Quotient filter design

Implementation:

Abstract Representation

. - 2(1 >
2 Meta-bits per slot.
h(x) --> h(x) || h(X) v V
h(a) h(d)
\ \
runends h() — h(e)
occupieds
N i
A "
—
4 | —

Quotient filter design

Abstract Representation

Implementation: ;
2 Meta-bits per slot.) 2 -
h(x) --> h (x) || & (X) ¥ ¥
h(@a) h(d)
v v
runends h(vb) h(e)
occupieds h(c)
R i
_> 1
" t(d) | t(e) [

Back

Cascade filter: write-optimized quotient filter
[Bender et al. ‘12, Pandey et al. ‘17]

e The Cascade filter efficiently scales out-of-RAM
e [t accelerates insertions at some cost to queries

105

Cascade filter: flushing

[Bender et al. ‘12, Pandey et al. ‘17]

Items are 1nitially inserted in the RAM level

106

Cascade filter: flushing

[Bender et al. ‘12, Pandey et al. ‘17]

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items 1n level 0 to i-1 o

Cascade filter: flushing

[Bender et al. ‘12, Pandey et al. ‘17]

When RAM 1s full, items are flushed to the smallest level on
disk i with space to insert items 1n level 0 to i-1 o8

Cascade filter: flushing

[Bender et al. ‘12, Pandey et al. ‘17]

When RAM 1s full, items are flushed to the smallest level on
disk i with space to insert items 1n level 0 to i-1 06

Cascade filter: flushing

[Bender et al. ‘12, Pandey et al. ‘17]

When RAM 1s full, items are flushed to the smallest level on
disk i with space to insert items 1n level 0 to i-1 o

Cascade filter: flushing

[Bender et al. ‘12, Pandey et al. ‘17]

When RAM 1s full, items are flushed to the smallest level on
disk i with space to insert items 1n level 0 to i-1 »

Cascade filter: query
[Bender et al. ‘12, Pandey et al. ‘17]

A query operation requires a lookup in each non-empty level

Back 112

Time-stretch LERT

Divide each level into 1+ 1/a, equal-sized bins.

113

Time-stretch LERT

When a bin is full, items move to the adjacent bin

114

Time-stretch LERT

When a bin is full, items move to the adjacent bin

115

Time-stretch LERT

Last bin flushed to first bin of the next level

116

Time-stretch LERT

_— Quotient filter

Last bin flushed to first bin of the next level

117

Time-stretch LERT

_ Quotient filter
0 <
/% RAM
N v s s s s s s R [FLASH

10{ Main idea: item is not put on a deeper

level until it’s “aged sufficiently” o

\

Last bin flushed to first bin of the next level

118

Time-stretch LERT I/O complexity

Write-optimized data

Optimal insert cost for
structure

119

Time-stretch LERT I/O complexity

/" Extra cost because we only
move one bin during a
flush. Constant loss for

_ constant o J

Write-optimized data

Optimal insert cost for
structure

Back 120

Quotient filters use less space than Bloom filters

for all practical configurations

Accuracy —
—| —— BF / =

[\
)

—4—CF

[a—
<t
[

False-positive rate
<1/64 (or 0.15).

p—t
O
|

—logz(FalsePositveRate)

ot
[

e
|
|

) 10 15 20 25
Number of bits per element

Bloom filter: ~1.44 log(1/¢) bits/element.
Quotient filter: ~2.125 + log(1/¢) bits/element.

121

Cyber monitoring — real-time data analysis

Defense systems for cyber security
monitor high-speed streams for

malicious traffic over large periods
of time

Malicious traffic forms a small
portion of the stream

Automated systems take defensive
actions for every reported event

122

Aggarwal+Vitter ‘08]

External memory model !

e How computations work:

o Data 1s transferred in blocks between RAM and disk.

o The number of block transfers dominate the running time.
e Goal: Minimize number of block transfers

o Performance bounds are parameterized by block size 5, memory size M,

data size M.
P
=
o
—y— =

123

Cascade filter: write-optimized quotient filter
[Bender et al. ‘12, Pandey et al. ‘17]

e The Cascade filter efficiently scales out-of-RAM
e [t accelerates insertions at some cost to queries

More 124

Timely event detection problem

e Stream of elements arrive over time

125

Timely event detection problem

e Stream of elements arrive over time
® An event occurs at time ¢ 1f § occurs exactly 7' times in

($55,----5)

(%)

S

1 2

X0ARAG0A

| >

Time t

126

Timely event detection problem

e Stream of elements arrive over time
® An event occurs at time ¢ 1f § occurs exactly 7' times in

($55,----5)

Event! }

(%)

S

1 2

X0ARAG0A

| >

Time ! [Suppose T= 4 1 .

Timely event detection problem

e Stream of elements arrive over time

® An event occurs at time ¢ 1f § occurs exactly 7' times in
($55,----5)

e In timely event-detection problem (TED), we want to report
all events shortly after they occur.

Event! }

S S

1 2

TOARASOA R | @

| >

Time { [Suppose T=4 } 128

Trade-off: Insertion throughput degrades with

load factor

w
o
1

Throughput (Millions/sec)

20+

—=X—— Quotient filter
o Cuckoo filter
——— Morton filter

=
o
1

B

0

llllllllllllllll
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Load factor

16X
drop

Performance suffers due to high-overhead of collision resolution

129

Trade-off: Insertion throughput degrades with

load factor

Insertion throughput vs load factor of state-of-the-art filters

—=X—— Quotient filter
o Cuckoo filter
——— Morton filter

w
o
1

N
o
1

Throughput (Millions/sec)
/

-

®

@
&
]
@
&
®
L2
¢
[}
@
@

]

H
o
f

\x\\‘**-x%\t§
\\%’

I

T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Load factor

0

Many update-intensive applications (e.g., network caches, data
analytics, etc.) maintain filters at high load factors

130

Combining techniques + new hardware

——#—— Vector Quotient Filter

@ —=—— Quotient filter
Cuckoo filter

——— Morton filter

w
o
|

N
o
|

Throughput (Millions/sec)

4

Y T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95

Load factor

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVXS512-BW)

131

Combining techniques + new hardware

Pandey et al. SIGMOD ‘21

—#—— Vector Quotient Filter
—=—— Quotient filter
Cuckoo filter

Morton filter

w
(=]

N
o
|

10

Throughput (Millions/sec)

4

Y T T T T T T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 8 90 95

Load factor

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVXS512-BW)

More

132

#

Future work: population-scale variant index

133

Country-scale sequencing efforts produce huge

amounts of sequencing data

Variant .
calling |

f- & l
" _
l Sequencing

> &
"

Genomic variants

. Assembled data Variant call
Raw sequencing Format (VCF)

data

Individuals

e 1000 Genomes proj ect [https://www.internationalgenome.org/]

e The Cancer Genome Atlas (TCGA) [htps:/portal.gde.cancer.gov/]

e Genotype-Tissue Expression (GTEx) [https:/gtexportal.org/home/] -

Country-scale sequencing efforts produce huge

amounts of sequencing data

Variant .
calling |

f- &’ l
i
l Sequencing Assembly

£
9y

Genomic variants

. Assembled data Variant call
Raw sequencing Format (VCF)

data

i

Individuals

e 1000 Genomes proj ect [https://www.internationalgenome.org/]

e The Cancer Genome Atlas (TCGA) [htps:/portal.gde.cancer.gov/]

e Genotype-Tissue Expression (GTEx) [https:/gtexportal.org/home/] .

Variation data analysis can improve downstream

applications

Count the number of
variants in a gene

e Population-level disease analysis

e (Genome-wide association studies
e Personalized medicine

e (Cancer remission-rate prediction
List all people, with
> N variants in a gene

e C(olocalization analysis
For person P, return

the closest variant
from position X

e PCR primer design

e (Genome assembly

Return all positions
with variants in a

=)

Sequencing &
assembly

Population Genomes

List all people, with
sequence S in a gene

Individuals
136

Indexing in multiple coordinates 1s challenging

Reference-only indexes map positions only in the reference coordinate system

f(pi,pj) — (vi ...v,), wherep; < p;
Pan-genome analysis involves queries based on sample coordinate systems

”f;(Pi,Pj) — (’Uz‘ . -vn), wherep; < Pj

Num
Samples 3

\fs(piapj) — ('Uz' .. -’Un)a Wherepz’ < p;

Maintaining thousands of mappings increases computational complexity
and memory footprint

Limits scalability to population-scale data
137

Indexing in multiple coordinates 1s challenging

Reference-only indexes map positions only in the reference coordinate system

f(pi,p;) = (vi...vy,), wherep; < p,

Pan-genome analysis involves queries based on sample coordinate systems

€ Existing systems don’t support multiple coordinate h
- systems. The ones that do, don’t scale beyond a few
> thousand samples.)

CJs(DiyP;) — (Vi ...Vy,), Wherep; < pj

Maintaining thousands of mappings increases computational complexity
and memory footprint

Limits scalability to population-scale data
138

An 1nverted index on the pan-genome graph

Collaborators: Yinjie Gao, Carl Kingsford
e Partition the variation graph ~

based on coordinate ranges Queries often require

e Store partitions on disk J

e Succinct index for reference
coordinate system

e Local-graph exploration to
map position from
reference to sample

Sample 1: 1

coordinate R

Sample 3: 1

loading 1-2 partitions

l rank(pos=5) = 3

[[t]t]oofsfsfofo]fo]

0fofo]fo]

Position bit vector

list[3] =2

Reference node list | 0 | 1 | 2 | 4 |

5

Sample 1: 3
Sample 1: 2 Sample 3: 3
Sample 2: 2 Sample 4: 3

Sample 1: 6
Sample 2: 3
Sample 3: 6
Sample 4: 6

Sample 3: 2
Sample 4: 2

Sample 4: 7

Sample 1: 7
Sample 2: 4
Sample 3: 7
Sample 4: 10

TGCTGATCT

139

Classic filter: The Bloom filter [Bloom “7]

Bloom filter: a bit array + k£ hash functions

O 000|000

140

Classic filter: The Bloom filter [Bloom “7]

Bloom filter: a bit array + k£ hash functions (here k = 2)

- true
=3 negative) &

h(c)=>5

h,(c)=3 II

141

Classic filter: The Bloom filter [Bloom “70]

Bloom filter: a bit array + k£ hash functions (here A/=2)

m
0 1j0j1/o/1 0
h(b) =2
BORE ' netgl.z:lt(i%ve X

142

Classic filters: The Bloom filter [Bloom “701

Bloom filter: a bit array + k£ hash functions (here A/=2)

. ‘ False
D=3 positive v

143

Bloom filters are ubiquitous (> 4300 citations)

Streaming applications Networking

Mysal , . ORACLE , + SOl server

& SN SN Y
Computational biolo Storage systems
p gy | J \) X) ge Sy

TGATCGTAGCTGATCGATGCA"G& \
3 it 2

\Acorcnvcclo A m\\h\\\\\ \(

Db W'

144

Metagenomic classification pipeline

ATACATGACA

— Classification

. (N0
&= -.*.i > Ya CCTATATATTAT
g ‘ Extraction and | \;\‘5/ Seqteneing ACAATATGAC
I et processing | CATACCGATT
2N | e CAGATTATGA
\$0g DAY CCTAATGGTAT
\ &/ \G
\\,- 7 : \\._/ g/
Metagenomic Library Unclassified
sample containing mix sequenced
containing mix of short DNA DNA reads
of microbes fragments

[Ye et al. 2019]

Binning

CUITATAIAL A
CATACCGATT

CCTAATGGTAT

it

Classification to
their species of
origin, and an
abundance profile

Profiling

Classification is the critical first step in many metagenomic

analysis pipeline

145

Existing indexing techniques offer low accuracy

Kraken2 (F1 Score)

100
75

50

Accuracy

25

oh—_-___

CAMI Low CAMI Medium CAMI High CAMI Airways CAMI Oral

Metagenomic Datasets

Indexing-based classification 1s done based only on the contents
on the input sequences

146

