
Data Systems at Scale:
Scaling Up by Scaling Down and Out

Prashant Pandey
ppandey@berkeley.edu

Berkeley Lab/UC Berkeley

1

mailto:ppandey@berkeley.edu

Bioinformatics on twitter

2

Professor Bioinformatics and
Computational Biology
The University of Edinburgh

Associate Professor
Computational Biology
Johns Hopkins University

Sequence Read Archive (SRA) growth

3

L
og

-s
ca

le
SRA contains a lot of diversity information

Q: What if I find e.g., a new disease-related gene, and want to see if
it appeared in other experiments?

Total bases

Open access

L
og

-s
ca

le

Scalability is the bottleneck for data science

4

Total bases

Open access

L
og

-s
ca

le

Current index size
(< 100 TBs)

This renders what is otherwise an immensely valuable public
resource largely inert

SRA contains a lot of diversity information

Scalability is a ubiquitous challenge

5

https://leftronic.com/big-data-statistics/

https://learn.g2.com/big-data-statistics

Cyber monitoring
Internet of Things
Financial tech
Social networks
AstroPhysics
Chemistry
Environmental science
.
.
.
.
.

My goal as a researcher

My goal as a researcher is to build scalable data
systems to accelerate and scale next generation

data analysis

6

Three approaches to handle massive data

7

Goal: make data
smaller to fit in
RAM

Techniques:
● Compact &

succinct data
structures

● Filters, e.g.,
Bloom,
quotient, etc.

Three approaches to handle massive data

Shrink it

8

Goal: organize
data in a
disk-friendly way

Techniques:
● B-tree
● Bε-tree
● LSM-tree

Goal: make data
smaller to fit in
RAM

Techniques:
● Compact &

succinct data
structures

● Filters, e.g.,
Bloom,
quotient, etc.

Three approaches to handle massive data

Shrink it Organize it

9

Goal: partition and
distribute data on
multiple nodes

Techniques:
● Distributed

hash table
● Distributed

key-value store

Goal: organize
data in a
disk-friendly way

Techniques:
● B-tree
● Bε-tree
● LSM-tree

Goal: make data
smaller to fit in
RAM

Techniques:
● Compact &

succinct data
structures

● Filters, e.g.,
Bloom,
quotient, etc.

Three approaches to handle massive data

Shrink it Organize it Distribute it

10

Research output

11

Data structures
& Algorithms

Systems

Applications

Computational
biology

Shrink Organize Distribute

Research output

12

Data structures
& Algorithms

Quotient Filter
SIGMOD ‘17,
SIGMOD ‘21

Buffered CMS
ESA ‘18,

Scalable MG
arXiv ‘19

Order Min
Hash

ISMB ‘19

Systems

Applications

Computational
biology

Shrink Organize Distribute

Research output

13

Data structures
& Algorithms

Quotient Filter
SIGMOD ‘17,
SIGMOD ‘21

Buffered CMS
ESA ‘18,

Scalable MG
arXiv ‘19

Order Min
Hash

ISMB ‘19

BεtrFS file system
FAST ‘15, TOS 15,
FAST ‘16, TOS 16,

SPAA ‘19, TOPC ‘21
Systems

Applications

Computational
biology

Shrink Organize Distribute

LERTs
SIGMOD ‘20

Terrace
SIGMOD ‘21

Research output

14

Data structures
& Algorithms

Quotient Filter
SIGMOD ‘17,
SIGMOD ‘21

Buffered CMS
ESA ‘18,

Scalable MG
arXiv ‘19

Order Min
Hash

ISMB ‘19

BεtrFS file system
FAST ‘15, TOS 15,
FAST ‘16, TOS 16,

SPAA ‘19, TOPC ‘21
Systems

Applications
Squeakr, deBGR, Mantis,
Rainbowfish, MST-Mantis

ISMB ‘17, WABI ‘17,
BIOINFORMATICS ‘17,

RECOMB ‘18, Cell Systems
‘18, RECOMB ‘19,

JCB ‘20

Computational
biology

Distributed k-mer
counting

IPDPS ‘21

LERTs
SIGMOD ‘20

Shrink Organize Distribute

LSM-Mantis
bioRxiv ‘21

 VariantStore
bioRxiv ‘20

Terrace
SIGMOD ‘21

In this talk:

15

Data structures
& Algorithms

Quotient Filter
SIGMOD ‘17,
SIGMOD ‘21

Buffered CMS
ESA ‘18,

Scalable MG
arXiv ‘19

Order Min
Hash

ISMB ‘19

BεtrFS file system
FAST ‘15, TOS 15,
FAST ‘16, TOS 16,

SPAA ‘19, TOPC ‘21
Systems

Applications
Squeakr, deBGR, Mantis,
Rainbowfish, MST-Mantis

ISMB ‘17, WABI ‘17,
BIOINFORMATICS ‘17,

RECOMB ‘18, Cell Systems
‘18, RECOMB ‘19,

JCB ‘20

Computational
biology

Distributed k-mer
counting

IPDPS ‘21

Shrink Organize Distribute

LSM-Mantis
bioRxiv ‘21

 VariantStore
bioRxiv ‘20

Shrink it
LERTs

SIGMOD ‘20

Terrace
SIGMOD ‘21

In this talk:

16

Data structures
& Algorithms

Quotient Filter
SIGMOD ‘17,
SIGMOD ‘21

Buffered CMS
ESA ‘18,

Scalable MG
arXiv ‘19

Order Min
Hash

ISMB ‘19

BεtrFS file system
FAST ‘15, TOS 15,
FAST ‘16, TOS 16,

SPAA ‘19, TOPC ‘21
Systems

Applications
Squeakr, deBGR, Mantis,
Rainbowfish, MST-Mantis

ISMB ‘17, WABI ‘17,
BIOINFORMATICS ‘17,

RECOMB ‘18, Cell Systems
‘18, RECOMB ‘19,

JCB ‘20

Computational
biology

Distributed k-mer
counting

IPDPS ‘21

Shrink Organize Distribute

LSM-Mantis
bioRxiv ‘21

 VariantStore
bioRxiv ‘20

Shrink it
LERTs

SIGMOD ‘20

Terrace
SIGMOD ‘21

Organize it

17

Computational biology applications
using quotient filters

Application 1: k-mer counting

18

Biological
samples

Raw sequencing data
(Sequence Read

Archive)

Sequencing

Preprocessing

Downstream
applications

k-mer Count

ACTGATG 10

GGTGCAT 20

AACTGGA

CCGTGAC 1000

GGTGTGC 4000000

CGTGCAC 11

GTGTCAC 9090992

2

● The size of the raw sequencing data makes the problem challenging
● k-mer counts follow highly skewed distributions making the problem

computationally intensive

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

1. Genome/metagenome
 assembly
2. Error correction
3. Metagenomic
 classification
4. Sequence clustering
5. Sequence search
6. Abundance study
etc.

k-mer counting
> 30 papers

Application 1: Squeakr [Pandey et al. Bioinformatics ‘17]

19

Dataset KMC2
[Deorowicz, et al ‘14]

Jellyfish2
(Bloom filter)

[Marçais & Kingsford ‘11]

Squeakr
(quotient filter)

Squeakr-exact
(quotient filter)

F. vesca 8.3 8.3 4.8 9.3

G. gallus 32.8 31.7 13.0 28.8

M. balbisiana 48.3 16.3 11.1 14.2

H. sapiens 1 71.4 61.8 22.1 51.5

H. sapiens 2 107.4 61.8 30.8 60.1

Using space-efficient data structures, we can save space and build
simpler and efficient systems

Index space

Application 2: sample discovery problem

20

Return all samples that contain at least some user-defined fraction θ of the
k-mers present in the query string.

SRA Samples
(> 100K samples)

...ACACGTA...

Solomon & Kingsford Nat Biotech ‘16

…
.

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

Check if this new
transcript has

been seen before?

Application 2: sample discovery problem

21

Return all samples that contain at least some user-defined fraction θ of the
k-mers present in the query string

...ACACGTA...

...
ACACG
CACGT
ACGTA

...

k-mers
> 10 Billion

…
.

𝛉 > 0.75?

𝛉 > 0.75?

…
.

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

Check if this new
transcript has

been seen before?

Solomon & Kingsford Nat Biotech ‘16

SRA Samples
(> 100K samples)

Application 2: Mantis [Pandey et al. RECOMB ‘18, Cell Systems

‘18]

22

SSBT (Bloom filter) [Solomon & Kingsford ‘17]
Mantis (quotient filter) [Pandey et al. ‘18]

23

SSBT (Bloom filter) [Solomon & Kingsford ‘17]
Mantis (quotient filter) [Pandey et al. ‘18]

A space efficient map yields a faster, smaller,
simpler, and an exact solution to the sample

discovery problem

Application 2: Mantis [Pandey et al. RECOMB ‘18, Cell Systems

‘18]

Dictionary data structure

a
c

b

d

A dictionary maintains a set S from universe U.

A dictionary supports membership queries on S.

membership(a):

membership(b):

membership(c):

membership(d):

S

24

Filter data structure

a
c

b

d

A filter is an approximate dictionary.

A filter supports approximate membership queries on S.

membership(a):

membership(b):

membership(c):

membership(d): false
positive

S

25

A filter guarantees a false-positive rate ε

if q ∈ S, return with probability 1

 with probability ẟ 1 - ε
if q ∉ S, return
 with probability ≤ ε false positive

true negative

true positive

one-sided
errors

26

False-positive rate enables filters to be compact

DictionaryFilter

27

False-positive rate enables filters to be compact

DictionaryFilter

Small

Large

For most practical purposes:
ε = 2%, a Bloom filter requires ≈ 8 bits/item

28

Storage systems

NetworkingStreaming applications

Computational biology

Databases

29

Classic filter: The Bloom filter [Bloom ‘70]

Bloom filters are ubiquitous (> 4300 citations)

Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits)

CPU cost

Data locality

30

Limitations Workarounds

No deletes Rebuild

No resizes Guess N, and rebuild if wrong

No filter merging or enumeration ???

No values associated with keys Combine with another data structure

Applications often work around Bloom filter
limitations

Bloom filter limitations increase system complexity, waste
space, and slow down application performance

31

● Store fingerprints compactly in a hash table.
○ Take a fingerprint h(x) for each element x.

● Only source of false positives:
○ Two distinct elements x and y, where h(x) = h(y)
○ If x is stored and y isn’t, query(y) gives a false positives

 h(x)x

Quotienting is an alternative to Bloom filters
[Knuth. Searching and Sorting Vol. 3, ‘97]

p

32

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

q r
b(x)

b(x) t(x)

t(x)

2q

0

1

2

3

4

5

6

h(x) Tag
Bucket index

Storing fingerprints compactly

p

33

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?

b(x)

t(x)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p

34

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing
● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p

35

• b(x) = location in the hash table
• t(x) = tag stored in the hash table

Collisions in the hash table?
● Linear probing
● Robin Hood hashing

b(x)

t(x)

t(y)

0

1

2

3

4

5

6

b(y)

t(y)

2q

Storing fingerprints compactly

q r

b(x) t(x)h(x) Tag
Bucket index

p

t(y) belongs to
slots 4 or 5?

36

● QF uses two metadata bits to resolve collisions
and identify home bucket

● The metadata bits group tags by their home
bucket

Resolving collisions in the QF [Pandey et al. SIGMOD

‘17]

1 1

t(u) t(v) t(w) t(x) t(y)

37

● QF uses two metadata bits to resolve collisions
and identify home bucket

● The metadata bits group tags by their home
bucket

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

38

Resolving collisions in the QF [Pandey et al. SIGMOD

‘17]

● QF uses two metadata bits to resolve collisions
and identify home bucket

● The metadata bits group tags by their home
bucket

The metadata bits enable us to identify the slots holding
the contents of each bucket.

insert v

1 1

t(u) t(v) t(v) t(w) t(x) t(y)

39More

Resolving collisions in the QF [Pandey et al. SIGMOD

‘17]

● Good cache locality
● Efficient scaling out-of-RAM
● Deletions
● Enumerability/Mergeability
● Resizing
● Maintains count estimates or associate values
● Uses variable-sized encoding for counts [Counting quotient filter]

○ Asymptotically optimal space: O(∑ |C(x)|)

Quotienting enables many features in the QF

40

● Good cache locality
● Efficient scaling out-of-RAM
● Deletions
● Enumerability/Mergeability
● Resizing
● Maintains count estimates or associate values
● Uses variable-sized encoding for counts [Counting quotient filter]

○ Asymptotically optimal space: O(∑ |C(x)|)

Quotienting enables many features in the QF

41

Squeakr uses the QF
to count items

Mantis uses the QF
to map small keys to

values

Quotient filters use less space than Bloom filters
for all practical configurations

Quotient filter Bloom filter Optimal

Space (bits)

CPU cost

Data locality

The quotient filter has theoretical advantages over the
Bloom filter

42

● Insert performance is similar to the state-of-the-art non-counting filters
● Query performance is significantly fast at low load-factors and slightly slower

at higher load-factors

Inserts Lookups

Quotient filters perform better (or similar) to
other non-counting filters

43

Vector quotient filter (VQF)[Pandey et al. SIGMOD ‘21]

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVX512-BW)

44

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVX512-BW)

45

Constant high
performance from

empty to full

Faster
overall

Vector quotient filter (VQF)[Pandey et al. SIGMOD ‘21]

Quotient filter’s impact in computer science

46

Computational biology
1. Squeakr
2. deBGR
3. Mantis
4. VariantStore

Databases/Systems
1. Anomaly detection
2. BetrFS file system

Theoretically well-founded data structures can have a big impact on
multiple subfields across academia and industry

QFDatabases

Sequence
Search
Index

Stream
Analysis

Key-value
Stores

QF on
GPUs

Deduplica-t
ion

Graph
represen-

tation
Assembler
(SPAdes)

Quotient filter’s impact in computer science

47

Computational biology
1. Squeakr
2. deBGR
3. Mantis
4. VariantStore
5. SPAdes assembler
6. Khmer software
7. MQF

Databases/Systems
1. Anomaly detection
2. BetrFS file system
3. Counting on GPUs
4. Concurrent filters

Industry
1. VMware
2. Nutanix
3. Apocrypha
4. Hyrise
5. A data security

startup

Theoretically well-founded data structures can have a big impact on
multiple subfields across academia and industry

QFDatabases

Sequence
Search
Index

Stream
Analysis

Key-value
Stores

QF on
GPUs

Deduplica-t
ion

Graph
represen-

tation
Assembler
(SPAdes)

48

Data structures
& Algorithms

Quotient Filter
SIGMOD ‘17,
SIGMOD ‘21

Buffered CMS
ESA ‘18,

Scalable MG
arXiv ‘19

Order Min
Hash

ISMB ‘19

BεtrFS file system
FAST ‘15, TOS 15,
FAST ‘16, TOS 16,

SPAA ‘19, TOPC ‘21
Systems

Applications
Squeakr, deBGR, Mantis,
Rainbowfish, MST-Mantis

ISMB ‘17, WABI ‘17,
BIOINFORMATICS ‘17,

RECOMB ‘18, Cell Systems
‘18, RECOMB ‘19,

JCB ‘20

Computational
biology

Distributed k-mer
counting

IPDPS ‘21

LSM-Mantis
bioRxiv ‘21

 VariantStore
bioRxiv ‘20

Learned “Shrink it”. Now “Organize it”

LERTs
SIGMOD ‘20

Terrace
SIGMOD ‘21

Organize it

49

Demand query

Show me your
red pickups

In timely event-detection problem (TED), we want to answer
standing queries

…alert if you
get five new
red pickups

Standing query

Timely event detection problem

https://firehose.sandia.gov

Features we need in the solution

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

High throughput ingestion

50

Features we need in the solution

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Sampling

51

Features we need in the solution

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Malicious traffic forms a small portion of the
stream

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

Sampling

52

One-pass streaming has errors

● Heavy hitter problem: report items whose frequency ≥ φN
● Exact one-pass solution solution requires Ω(N) space

RAM

53

One-pass streaming has errors

● Approximate solution: report all items with count ≥ φN, none
with < (φ−ε)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.

16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

● Approximate solutions require Ω(1/ε) space

RAM

Real time with false-positives!

Maintain count
estimates in RAM
[Misra & Gries ‘82]

54

One-pass streaming has errors

● Approximate solution: report all items with count ≥ φN, none
with < (φ−ε)N [Alon et al. 96, Berinde et al. 10, Bhattacharyya et al. 16, Bose et al. 03, Braverman et al.

16, Charikar et al. 02, Cormode et al. 05, Demaine et al. 02, Dimitropoulos et al. 08, Larsen et al. 16, Manku et al. 02.]

● Approximate solutions require Ω(1/ε) space

RAM

Real time with false-positives!

Maintain count
estimates in RAM
[Misra & Gries ‘82]

For some apps, φN is a small constant,
 So Ω(1/ε) is very very large!!

Can’t solve in RAM for very small φ

55

One-pass solution has:

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Malicious traffic forms a small portion of the
stream

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

56

Two-pass streaming isn’t real-time

● A second pass over the stream can get rid of errors
● Store the stream on SSD and access it later

RAM

Scales to very small φ
but offline!

Second pass

SSD

57

Two-pass solution has:

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Malicious traffic forms a small portion of the
stream

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

58

If data is stored: why not access it?

RAM

SSD

Why wait for second pass?

59

 Idea: combine streaming and
 external memory (EM)[Pandey et al. SIGMOD ‘20]

Use an efficient external-memory counting
data structure to scale Misra-Gries

algorithm to SSDs
60

Streaming
model

External memory
algorithms

Operations in external memory dictionaries

Insert Query

61

Bender et al. ‘12

Performance bounds are parameterized by block transfer size B,
memory size M, data size N.

Performance bounds are parameterized by block transfer size B,
memory size M, data size N.

Insert Query

< 1 I/O per
observation

62

Operations in external memory dictionaries
Bender et al. ‘12

Performance bounds are parameterized by block transfer size B,
memory size M, data size N.

Insert Query

< 1 I/O per
observation

> 1 I/O per
observation

63

Operations in external memory dictionaries
Bender et al. ‘12

Performance bounds are parameterized by block transfer size B,
memory size M, data size N.

EM dictionary doesn’t have real-time reporting

Insert Query

< 1 I/O per
observation

> 1 I/O per
observation

But every insert is also a query in
real-time reporting!

64

Bender et al. ‘12

Performance bounds are parameterized by block transfer size B,
memory size M, data size N.

Insert Query

< 1 I/O per
observation

> 1 I/O per
observation

But every insert is also a query in
real-time reporting!

Traditional EM dictionary doesn’t solve
the problem!

65

EM dictionary doesn’t have real-time reporting
Bender et al. ‘12

We define the time stretch of a report to be

1st occurrence Tth occurrence Reporting time

Timeline L
DLifetime

Delay

Time stretch = 1 + 𝛼 = 1 +
Delay

Lifetime

 Idea: reporting with bounded delay

66More

We define the time stretch of a report to be

1st occurrence Tth occurrence Reporting time

Timeline L
DLifetime

Delay

Time stretch = 1 + 𝛼 = 1 +
Delay

Lifetime

 Idea: reporting with bounded delay

Main idea: the longer the lifetime of an item,
the more leeway we have in reporting it

67More

Leveled External-Memory Reporting Table
(LERT) [Pandey et al. SIGMOD ‘20]

● Given a stream of size N and φN > Ω(N/M) the amortized
cost of solving real-time event detection is

● For a constant 𝛼, can support arbitrarily small thresholds φ
with amortized cost

Takeaway: Online reporting comes at the cost of throughput but
almost online reporting is essentially free! 68

● Given a stream of size N and φN > Ω(N/M) the amortized
cost of solving real-time event detection is

● For a constant 𝛼, can support arbitrarily small thresholds φ
with amortized cost

Takeaway: Online reporting comes at the cost of throughput but
almost online reporting is essentially free!

Can achieve timely reporting at effectively
the optimal insert cost; no query cost

69

Leveled External-Memory Reporting Table
(LERT) [Pandey et al. SIGMOD ‘20]

Evaluation

● Empirical timeliness

● High-throughput ingestion

70

Evaluation: empirical time stretch

Average time stretch is 43% smaller than theoretical upper bound.
71

Cascade filter [Bender et al. ‘12]
State-of-the-art external memory counting
table

Evaluation: scalability

The insertion throughput increases as we add more threads.
We can achieve > 13M insertions/sec.

72

LERT: supports scalable and real-time reporting

● Stream is large (e.g., terabytes) and high-speed
(millions/sec)

● Events are high-consequence real-life events

● Malicious traffic forms a small portion of the
stream

High throughput ingestion

No false-negatives; few false-positives

Timely reporting (real-time)

Very small reporting thresholds

73

74

High performance
filters/hash tables

Scalable streaming
graph processing

system

Distributed Mantis: publicly
hosted for scientific use

Graph neural networks for
metagenomics

Event detection for
infinite streams

Ongoing/future work

Distributed hash table
(based on quotient

filters)

Optimize large-scale
indexes using ML

Population-scale index for
multi-coordinate variation

data

Shrink Organize Distribute

Data structures
& Algorithms

Systems

Applications

Computational
biology

CQF on
GPUs

75

High performance
filters/hash tables

Scalable streaming
graph processing

system

Distributed Mantis: publicly
hosted for scientific use

Graph neural networks for
metagenomics

Event detection for
infinite streams

Ongoing/future work

Distributed hash table
(based on quotient

filters)

Optimize large-scale
indexes using ML

Population-scale index for
multi-coordinate variation

data

Shrink Organize Distribute

Data structures
& Algorithms

Systems

Applications

Computational
biology

CQF on
GPUs

Future work: next gen data structure library

Goal: Overcome decades-old data
structure trade-offs using new algorithmic

paradigms and modern hardware

76

Existing hash table techniques

77

Separate chaining
● Chaining with linked-list
● Chaining with binary tree

Open addressing
● Linear probing
● Coalesced chaining
● Cuckoo hashing
● Hopscotch hashing
● Robin Hood hashing
● 2-choice hashing
● d-left hashing

● Cuckoo hashing suffers from random hopping
● Linear probing/Robin Hood hashing suffer from long chains
● 2-choice/d-left hashing suffer from multiple probes

Iceberg hash table

78

d-left hashingSingle hashing

Balanced for most items Very low variance

● Step 1: set primary bin by single hashing

○ If the bin has < 𝜏 type 1 items, insert the new item in the bin as type 1

● Step 2: If there are < ẟ type 2 items, insert the new item using d-left as type 2

● Step 3: select the primary bin and inserted as type 3

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton

● Step 1: set primary bin by single hashing

○ If the bin has < 𝜏 type 1 items, insert the new item in the bin as type 1

● Step 2: If there are < ẟ type 2 items, insert the new item using d-left as type 2

● Step 3: select the primary bin and inserted as type 3

Iceberg hash table

79

d-left hashingSingle hashing

Balanced for most items Very low varianceLimits variance across bins without random
hopping and multiple probes

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton

Iceberg hash table performance

80

● 6.8X faster for insertions
● ~2X faster for queries
● 1.6X faster for deletes

Collaborators: Joe Durie, Alex Conway, Rob Johnson, Michael Bender, Martin Farach-Colton

Future work: system for streaming graphs

Goal: build highly scalable streaming
graph representation system

81

“One-size-fits-all” approach is suboptimal

LIGRA [Shun & Blelloch ‘13] ASPEN [Dhulipala et al.

‘19]

LIGRA ASPEN

add_edge

get_neighbors

Static Dynamic

Neighbor access requires at least two cache misses
For dynamic, all operations have a log factor

82

Vertices

Edges

Tree-of-trees

Dynamic
Vertices

Edges

Tree-of-trees

Compressed Sparse Rows
[Shun & Blelloch ‘13]

C-tree [Dhulipala et al.

‘19]

LIGRA ASPEN

add_edge

get_neighbors

Static Dynamic

Neighbor access requires at least two cache misses
For dynamic, all operations have a log factor

83

Static → Fast computations; no updates
Dynamic → Slower computations; updates

“One-size-fits-all” approach is suboptimal

Real world graphs are often skewed

84

High variance in the
degree distribution

85

High variance in the
degree distribution

● In-place structure for vertices
with low degree

● Shared sparse-array (PMA) for
vertices with medium degree

● Independent B-tree for vertices
with high degree

Hierarchical structure + dynamic partitioning
Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick

86

High variance in the
degree distribution

● In-place structure for vertices
with low degree

● Shared sparse-array (PMA) for
vertices with medium degree

● Independent B-tree for vertices
with high degree

Hierarchical structure + dynamic partitioning
Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick

Hierarchical structure + dynamic partitioning

High variance in the
degree distribution

87

Terrace:
fast updates

● In-place structure for vertices
with low degree

● Shared sparse-array (PMA) for
vertices with medium degree

● Independent B-tree for vertices
with high degree

Terrace:
faster computations

Collaborators: Helen Xu, Brian Wheatman, Aydin Buluc, Kathy Yelick

Future work: ML/DL for scalable indexing

Goal: optimize large-scale indexing
solutions using machine learning

88

Sample discovery problem

89

Return all samples that contain at least some user-defined fraction θ of the
k-mers present in the query string

...ACACGTA...

...
ACACG
CACGT
ACGTA

...

k-mers
> 10 Billion

…
.

𝛉 > 0.75?

𝛉 > 0.75?

…
.

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

Check if this new
transcript has

been seen before?

Solomon & Kingsford Nat Biotech ‘16

SRA Samples
(> 100K samples)

Mantis index for sample discovery problem

90

Mantis index is based on a map from k-mers to a list of samples where the
k-mer appears.

Mantis index

...ACACGTA...

…
.

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

Check if this new
transcript has

been seen before?

SRA Samples
(> 100K samples)

ML for sample discovery problem

91

The loss function is optimized for the edit distance between sequences

We are planning to use (Order Min Hash ISMB ‘19) a LSH for edit distance

CNN with
three layers

...ACACGTA...

…
.

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

ACTGAGTGA
ACGTTGTGC
GTGCGTGCG
TAAACGTGA
CGTCACGTA

Check if this new
transcript has

been seen before?

SRA Samples
(> 100K samples)

Collaborators: Nick Bhattacharya, Aydin Buluc, Kathy Yelick

Metagenomic reads classification

92

● Generate overlap graph: reads→nodes & overlap →edges
● Node features →Tetra nucleotide freq of reads
● Reference-based mapping as ground truth labels

Overlap graph with no labels Overlap graph with training labels Overlap graph with learned labels

● Assign ground truth labels to
training nodes

● Assign tetra-nucleotide
frequency as node vectors

Semi-supervised learning using
Graph Convolutional Network

(GCN)

Collaborators: Giulia Guidi, Alok Tripathi, Aydin Buluc, Kathy Yelick

Overlap graph + graph neural network (GNN)

93

Can achieve higher accuracy using graph-based learning

Collaborators: Giulia Guidi, Alok Tripathi, Aydin Buluc, Kathy Yelick

https://prashantpandey.github.io

● Scalability of data management
systems will be the biggest
challenge in future

● Changing hardware give rise
to new algorithmic paradigms

Conclusion

We need to redesign existing data structures to take full advantage of modern
hardware and rebuild data systems to efficiently support future data science.

Data Science at Scale

ML Genomics Cyber Sec. NLP

Data Systems

Scale down Scale to disk Scale out

Modern hardware
Vector inst. GPU NVM SSD

Data structures & Algorithms

94

https://prashantpandey.github.io

95

96

97

Backup slides

98

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract Representation

0 1 2 3 4 5 6 7

Quotient filter design

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract Representation

h(a)

0 1 2 3 4 5 6 7

1

1

t(a)

Quotient filter design

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract Representation

h(a)

h(b)

0 1 2 3 4 5 6 7

1

1

t(a) t(b)

Quotient filter design

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract Representation

h(d)h(a)

h(b)

0 1 2 3 4 5 6 7

1 1

1 1

t(a) t(b) t(d)

Quotient filter design

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract Representation

h(d)h(a)

h(b) h(e)

0 1 2 3 4 5 6 7

1 1

1 1

t(a) t(b) t(d) t(e)

Quotient filter design

Implementation:
2 Meta-bits per slot.

h(x) --> h0(x) || h1(x)

2q

occupieds

runends

2q
Abstract Representation

h(d)h(a)

h(b)

h(c)

0 1 2 3 4 5 6 7

1 1

1 1

t(a) t(b) t(c) t(d) t(e)

h(e)

Quotient filter design

Back

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Cascade filter: write-optimized quotient filter
[Bender et al. ‘12, Pandey et al. ‘17]

Mr1

MrL

Efficient merging

105

● The Cascade filter efficiently scales out-of-RAM
● It accelerates insertions at some cost to queries

L

0

1

RAM

FLASH

log(N/M)

Items are initially inserted in the RAM level

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]

106

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]

107

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items in level 0 to i-1

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]

108

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items in level 0 to i-1

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]

109

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items in level 0 to i-1

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]

110

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items in level 0 to i-1

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Mr1

MrL

Efficient merging

Cascade filter: flushing
[Bender et al. ‘12, Pandey et al. ‘17]

111

When RAM is full, items are flushed to the smallest level on
disk i with space to insert items in level 0 to i-1

L

0

1

RAM

FLASH

log(N/M)

N

Query (x)M

Mr1

MrL

Cascade filter: query
[Bender et al. ‘12, Pandey et al. ‘17]

112

A query operation requires a lookup in each non-empty level
Back

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Divide each level into 1+ 1/𝛼, equal-sized bins.

Mr1

MrL

113

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

When a bin is full, items move to the adjacent bin

Mr1

MrL

114

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

When a bin is full, items move to the adjacent bin

Mr1

MrL

115

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Last bin flushed to first bin of the next level

Mr1

MrL

116

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Last bin flushed to first bin of the next level

While flushing consolidate
counts; report if hits threshold

Mr1

MrL

117

Time-stretch LERT

L

0

1

RAM

FLASH

log(N/M)

N

Quotient filterM

Last bin flushed to first bin of the next level

While flushing consolidate
counts; report if hits threshold

Mr1

MrL

Main idea: item is not put on a deeper
level until it’s “aged sufficiently”

118

Time-stretch LERT I/O complexity

Optimal insert cost for
Write-optimized data

structure

119

Time-stretch LERT I/O complexity

Extra cost because we only
move one bin during a
flush. Constant loss for

constant 𝛼

Optimal insert cost for
Write-optimized data

structure

120Back

Bloom filter: ~1.44 log(1/ε) bits/element.
Quotient filter: ~2.125 + log(1/ε) bits/element.

Quotient filters use less space than Bloom filters
for all practical configurations

False-positive rate
< 1/64 (or 0.15).

121

Accuracy

Cyber monitoring → real-time data analysis

Defense systems for cyber security
monitor high-speed streams for
malicious traffic over large periods
of time

Malicious traffic forms a small
portion of the stream

Automated systems take defensive
actions for every reported event

122

● How computations work:
○ Data is transferred in blocks between RAM and disk.

○ The number of block transfers dominate the running time.

● Goal: Minimize number of block transfers
○ Performance bounds are parameterized by block size B, memory size M,

data size N.

RAM DISK

M

B

B

External memory model [Aggarwal+Vitter ‘08]

123

L

0

1

RAM

FLASH

log(N/M)

N

Counting QFM

Cascade filter: write-optimized quotient filter
[Bender et al. ‘12, Pandey et al. ‘17]

Mr1

MrL

● The Cascade filter efficiently scales out-of-RAM
● It accelerates insertions at some cost to queries

124More

Timely event detection problem

● Stream of elements arrive over time

S1

Time

S2 St

125

● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in

(s1,s2….st)

S1

Time

S2 St

t

Timely event detection problem

126

● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in

(s1,s2….st)

S1

Time

S2 St

t

Event!

Suppose T= 4

Timely event detection problem

127

● Stream of elements arrive over time
● An event occurs at time t if St occurs exactly T times in

(s1,s2….st)
● In timely event-detection problem (TED), we want to report

all events shortly after they occur.

S1

Time

S2 St

t

Event!

Suppose T= 4

Report

Timely event detection problem

128

16X
drop4X

drop

Performance suffers due to high-overhead of collision resolution

129

Trade-off: Insertion throughput degrades with
load factor

Trade-off: Insertion throughput degrades with
load factor

Insertion throughput vs load factor of state-of-the-art filters

Many update-intensive applications (e.g., network caches, data
analytics, etc.) maintain filters at high load factors

130

Performance
only matters at

high load factors

Combining techniques + new hardware

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVX512-BW)

131

Combining techniques + new hardware

Combining hashing techniques (Robin Hood + 2-choice hashing)
Using ultra-wide vector operations (AVX512-BW)

132

Constant high
performance from

empty to full

More

Pandey et al. SIGMOD ‘21

#

Future work: population-scale variant index

Goal: Build a population-scale index on
variation data to enable downstream apps

to gain quick insights into variants

133

Country-scale sequencing efforts produce huge
amounts of sequencing data

AAA
CG
CCCG
T
ACTT

AAA
CG
CCCG
T
ACTT
A

CGT
ACTT
A

AAA
CG
CCCG
TT

CCCG
T
ACTT
A

AAA
CG
CCCG
T
ACTT
A

AAA
CG
CCCG
T
ACTT

AAA
GT
ACTT
A

AAA
CG
CCCT
A

CCCG
T
ACTT
A

Assembled data

Individuals

Raw sequencing
data

Assembly
…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG

AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….

Variant
calling

Genomic variants
Variant call

Format (VCF)

Sequencing

● 1000 Genomes project [https://www.internationalgenome.org/]

● The Cancer Genome Atlas (TCGA) [https://portal.gdc.cancer.gov/]

● Genotype-Tissue Expression (GTEx) [https://gtexportal.org/home/]
134

Country-scale sequencing efforts produce huge
amounts of sequencing data

AAA
CG
CCCG
T
ACTT

AAA
CG
CCCG
T
ACTT
A

CGT
ACTT
A

AAA
CG
CCCG
TT

CCCG
T
ACTT
A

AAA
CG
CCCG
T
ACTT
A

AAA
CG
CCCG
T
ACTT

AAA
GT
ACTT
A

AAA
CG
CCCT
A

CCCG
T
ACTT
A

Assembled data

Individuals

Raw sequencing
data

Assembly
…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG

AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….…..ATGGAGATAGGATG
AGATAGATGATAGA….

Variant
calling

Genomic variants
Variant call

Format (VCF)

Sequencing

● 1000 Genomes project [https://www.internationalgenome.org/]

● The Cancer Genome Atlas (TCGA) [https://portal.gdc.cancer.gov/]

● Genotype-Tissue Expression (GTEx) [https://gtexportal.org/home/]
135

Squeakr, deBGR,
Rainbowfish, Mantis,

MST-Mantis, LSM-Mantis ??

Variation data analysis can improve downstream
applications
● Population-level disease analysis

● Genome-wide association studies

● Personalized medicine

● Cancer remission-rate prediction

● Colocalization analysis

● PCR primer design

● Genome assembly

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

AAAC
G
CCCG
T
ACTT
A

Sequencing &
assembly

Individuals
Population Genomes

Return all positions
with variants in a
gene

List all people, with
sequence S in a gene

Count the number of
variants in a gene

List all people, with
> N variants in a geneFor person P, return

the closest variant
from position X

136

Indexing in multiple coordinates is challenging
Reference-only indexes map positions only in the reference coordinate system

......

Pan-genome analysis involves queries based on sample coordinate systems

Num
Samples

Maintaining thousands of mappings increases computational complexity
and memory footprint
Limits scalability to population-scale data

137

Indexing in multiple coordinates is challenging
Reference-only indexes map positions only in the reference coordinate system

......

Pan-genome analysis involves queries based on sample coordinate systems

Num
Samples

Maintaining thousands of mappings increases computational complexity
and memory footprint
Limits scalability to population-scale data

Existing systems don’t support multiple coordinate
systems. The ones that do, don’t scale beyond a few

thousand samples.

138

An inverted index on the pan-genome graph

● Partition the variation graph
based on coordinate ranges

● Store partitions on disk

● Succinct index for reference
coordinate system

● Local-graph exploration to
map position from
reference to sample
coordinate

Position index

Variation
graph

Queries often require
loading 1-2 partitions

139

Collaborators: Yinjie Gao, Carl Kingsford

Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions

0 0 0 0 0 0 0
m

a
c b

d

S

140

Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k = 2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(a) = 1
h2(a) = 3

h1(c) = 5
h2(c) = 3

141

true
negative

Classic filter: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(b) = 2
h2(b) = 5 true

negative

142

Classic filters: The Bloom filter [Bloom ‘70]

Bloom filter: a bit array + k hash functions (here k=2)

0 1 0 1 0 1 0
m

a
c b

d

S

h1(d) = 1
h2(d) = 3 False

positive

143

Bloom filters are ubiquitous (> 4300 citations)

Storage systems

NetworkingStreaming applications

Computational biology

Databases

144

Metagenomic classification pipeline

145

Binning

Profiling

[Ye et al. 2019]

Classification is the critical first step in many metagenomic
analysis pipeline

Existing indexing techniques offer low accuracy

146

Indexing-based classification is done based only on the contents
on the input sequences

