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Metagenomics

Soil sample
Ocean sample

Human gut

The study of microbes that inhabit an environment,
such as soil, human gut, or ocean
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Why study microbes in an environment?
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_ . Industrial applications
Environmental science
Human health

Environment: elemental cycle, pollution control, cleanup, etc.
Human: protection from pathogens, immune systems regulation, etc.
Industrial: wastewater treatment, bioprospecting, fermentations, etc.
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Classification is the critical first step in

metagenomics

Metagenomic
sample
containing mix
of microbes

Simon H. Ye, Katherine J. Siddle, Daniel J. Park, and Pardis C. Sabeti Cell 2019
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Classification is the critical first step in

metagenomics

Extraction and
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Metagenomic Library

sample containing mix
containing mix of short DNA

of microbes fragments

Simon H. Ye, Katherine J. Siddle, Daniel J. Park, and Pardis C. Sabeti Cell 2019
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Classification is the critical first step in

metagenomics

ATACATGACA
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K Extraction and I Senuencing ACAATATGAC |

[ processing ‘ CATACCGATT

« 2 CAGATTATGA

€. CCTAATGGTAT
Metagenomic Library Unclassified
sample containing mix sequenced
containing mix of short DNA DNA reads

of microbes fragments

Simon H. Ye, Katherine J. Siddle, Daniel J. Park, and Pardis C. Sabeti Cell 2019
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Classification is the critical first step in

metagenomics
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Simon H. Ye, Katherine J. Siddle, Daniel J. Park, and Pardis C. Sabeti Cell 2019
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In this talk:

MetaGNN: uses graph neural networks (GNN) to perform metagenomic classification

o @Graph neural networks are employed in a semi-supervised manner

MetaGNN uses both the sequence contents and connectivity information

Works for both short- and long-reads metagenomic data

In our evaluation, compared to existing tools:

o Short reads: MetaGNN gets an order-of-magnitude higher accuracy

o Long reads: MetaGNN gets similar accuracy

Prashant Pandey, Giulia Guidi, Alok Tripathy, Aydin Buluc, and Katherine Yelick 2021
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Classification is computationally

challenging

e High throughput sequencing generates millions of short sequences
e Aligning sequences to a databases of known genomes is not feasible

e Exponential growth of sequencing data makes the problem even more challenging
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k-mer matching is the standard

classification technique

Query sequence

Classification

)
B K-mertoLCA mapping
‘ (pre-computed database)
tree and path

-

Examine hit taxa
and ancestors

Taxonomy tree

Sequence classified as belonging to leaf of
classification (highest-weighted RTL) path

Derrick E Wood and Steven L Salzberg Genome Biology 2014
Derrick E Wood, Jennifer Lu, and Ben Langmead Genome Biology 2019
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Using only nucleotide content is

suboptimal

e Short sequences do not offer enough abundance information

e [ow abundance species tend to be classified with similar species with high

abundance

e Hard to distinguish between closely related species
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Can we use connectivity information?

R,: GACCTACA
R,: ACCTACAA

R,:  CCTACAAG

R, CTACAAGT e e
A: TACAAGTT & ™ |
B: ACAAGTTA @ R, *@
C: CAAGTTAG
X TACAAGTC

Y: ACAAGTCC

7 CAAGTCCG

Overlap graph
Nodes: sequences, Edges: overlaps between sequences

Schatz MC, Delcher AL, Salzberg SL Genome Research 2010
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Applying GNN to overlap graphs

N

A GNN learns embeddings for each node in the graph using neighborhood aggregation

Node embeddings can be further used for node label prediction
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MetaGNN pipeline

Overlap graph with tetra-nucleotide content of sequences as
node embeddings
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MetaGNN pipeline

Overlap graph with ground-truth labels for training set nodes
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MetaGNN pipeline

Graph Dropout

convolution
/ / Graph -
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Labelled graph

T

Semi-labelled
graph

Semi-supervised node classification using a two-layer graph
convolution network and ReL.U
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Metagenomic datasets

Dataset Type #Species #Reads #Nodes #Edges #Clusters
CAMI low short 4 400,000 393,176 1,786,099 6,220
CAMI medium short 10 400,000 342,785 1,029,308 27,660
CAMI high short 15 400,000 157,481 116,666 58,888
CAMI 3-species long 3 69,259 69,259 6,184,854 18
CAMI 6-species long 6 113,218 113,218 8,120,523 18
CAMI 25-species  long 25 500,035 500,035 46,170,719 78
CAMI oral cavity long 25 100,000 54,706 93,077 4,519
CAMI airways long il 100,000 44,239 46,338 6,533

Short and long read datasets
CAMI datasets are sampled based on the species

Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software Nature Methods 2017
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CAMI low (short reads)

Dataset OGRE Kraken2 MetaGNN
CAMI low 1.67 6.09 97.95
CAMI medium  72.56 3.42 90.16
CAMI high 0.06 4.08 37.97

F1 score

MetaGNN improves the accuracy by an order-of-magnitude for short-read
data compared to state-of-the-art binning/classification tools
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CAMI airways (long reads)

Dataset MetaBCC-LR Kraken2 MetaCNN MetaGNN
CAMI 3-species 66.84 99.98 96.26 98.95
CAMI 6-species 74.54 81.22 67.61 98.36
CAMI 25-species 65.85 94.39 26.86 88.85
CAMI oral cavity 59.23 14.25 74.52 59.86
CAMI airways 59.00 8.94 52.59 56.46

F1 score

MetaGNN ofters similar accuracy compared to the best
binning/classification tools for long-read data
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Conclusion

e We used GNN in a semi-supervised setting where ground truth is known for a small
portion of reads
e MetaGNN shows that GNN can serve as a powerful classifier for metagenomic data
e Future directions
o Perform unsupervised clustering of metagenomic data using GNN
o Model a classifier for novel species found in real metagenomic data

o Scale MetaGNN to larger metagenomic datasets

https://prashantpandey.github.io
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https://prashantpandey.github.io
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MetaGNN pipeline

Overlap graph with no labels Overlap graph with training labels Overlap graph with learned labels
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Semi-supervised learning using

e  Assign ground truth labels to Graph Convolutional Network
training nodes (GCN)

e  Assign tetra-nucleotide
frequency as node vectors
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