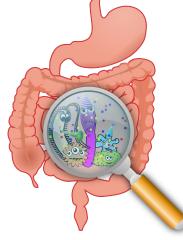
Applying Graph Neural Networks to Metagenomics


Prashant Pandey Performance and Algorithms Research Computational Research Division

2021 CS Postdoc Symposium Presentation

Metagenomics

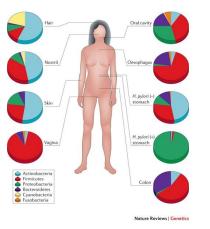
Soil sample

Human gut

Ocean sample

The *study of microbes* that inhabit an environment,

such as soil, human gut, or ocean



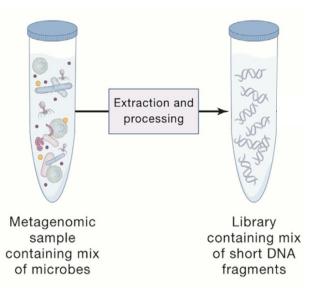
Why study microbes in an environment?

Environmental science

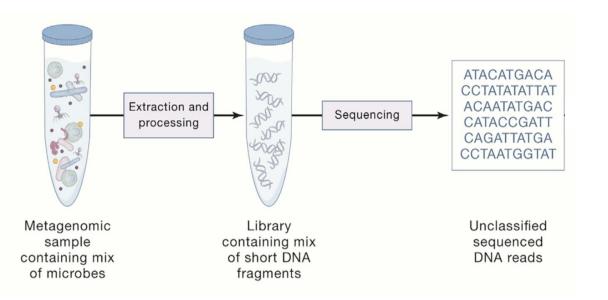
Human health

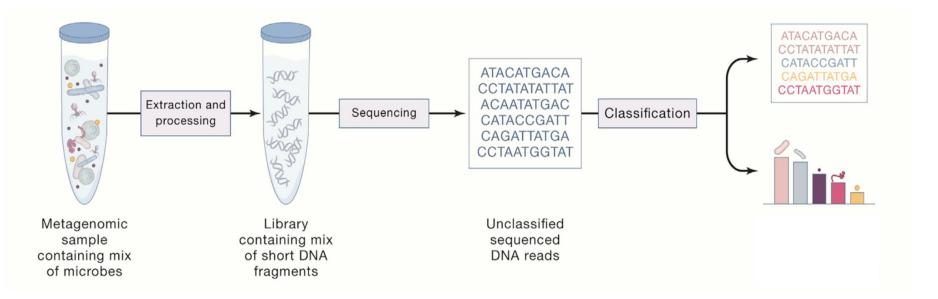
Industrial applications

Environment: elemental cycle, pollution control, cleanup, etc. **Human**: protection from pathogens, immune systems regulation, etc. **Industrial**: wastewater treatment, bioprospecting, fermentations, etc.



Metagenomic sample containing mix of microbes

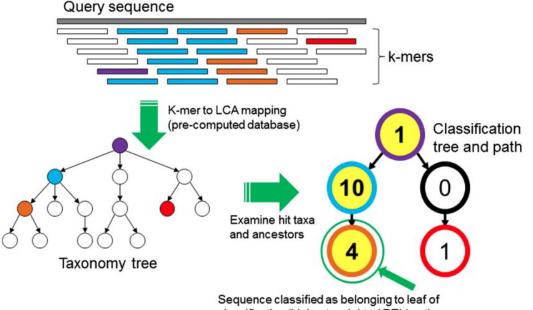




In this talk:

- MetaGNN: uses graph neural networks (GNN) to perform metagenomic classification
 - Graph neural networks are employed in a *semi-supervised* manner
- MetaGNN uses both the *sequence contents and connectivity information*
- Works for both *short- and long-reads* metagenomic data
- In our evaluation, compared to existing tools:
 - Short reads: MetaGNN gets an *order-of-magnitude higher* accuracy
 - Long reads: MetaGNN gets *similar* accuracy

Prashant Pandey, Giulia Guidi, Alok Tripathy, Aydın Buluc, and Katherine Yelick 2021

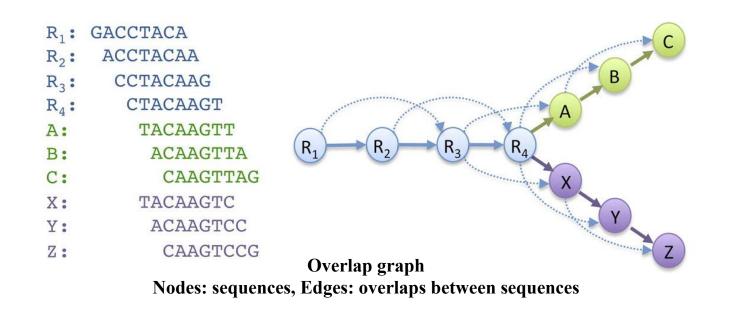

- High throughput sequencing generates millions of short sequences
- Aligning sequences to a databases of known genomes is not feasible
- Exponential growth of sequencing data makes the problem even more challenging

k-mer matching is the standard classification technique

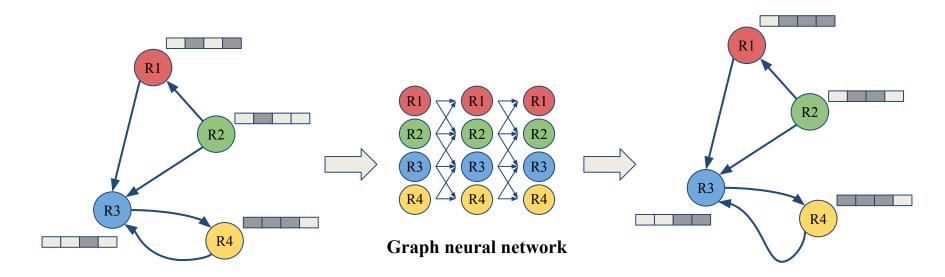
classification (highest-weighted RTL) path

Derrick E Wood and Steven L Salzberg Genome Biology 2014 Derrick E Wood, Jennifer Lu, and Ben Langmead Genome Biology 2019

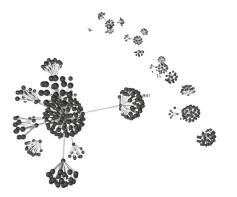
BERKELEY LAB


- Short sequences do not offer enough abundance information
- Low abundance species tend to be classified with similar species with high abundance
- Hard to distinguish between closely related species

Can we use connectivity information?

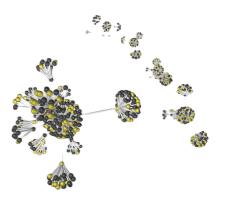


Schatz MC, Delcher AL, Salzberg SL Genome Research 2010

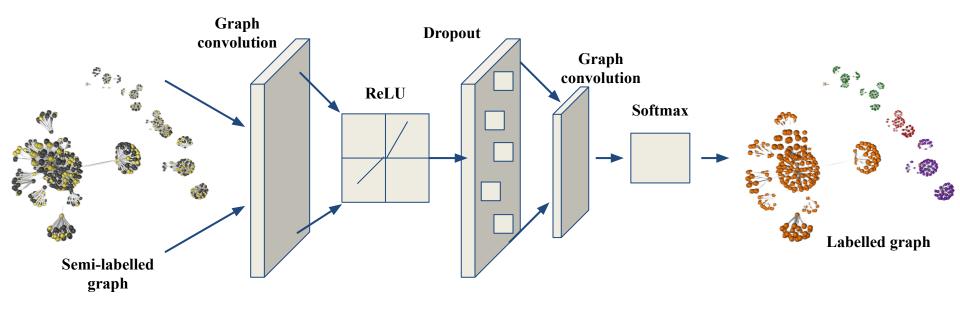

Applying GNN to overlap graphs

A GNN learns embeddings for each node in the graph using neighborhood aggregation Node embeddings can be further used for node label prediction

BERKELEY LAB



Overlap graph with *tetra-nucleotide content* of sequences as *node embeddings*



Overlap graph with ground-truth labels for training set nodes

Semi-supervised node classification using a two-layer graph convolution network and ReLU

Dataset	Type	#Species	#Reads	#Nodes	#Edges	#Clusters
CAMI low	short	4	400,000	$393,\!176$	1,786,099	6,220
CAMI medium	short	10	400,000	342,785	1,029,308	$27,\!660$
CAMI high	short	15	400,000	$157,\!481$	$116,\!666$	58,888
CAMI 3-species	long	3	69,259	69,259	6,184,854	18
CAMI 6-species	long	6	$113,\!218$	$113,\!218$	$8,\!120,\!523$	18
CAMI 25-species	long	25	500,035	500,035	46,170,719	78
CAMI oral cavity	long	25	100,000	54,706	$93,\!077$	4,519
CAMI airways	long	31	100,000	44,239	46,338	6,533

Short and long read datasets CAMI datasets are sampled based on the species

Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software Nature Methods 2017

Dataset	OGRE	Kraken2	MetaGNN				
CAMI low	1.67	6.09	97.95				
CAMI medium	72.56	3.42	90.16				
CAMI high	0.06	4.08	37.97				
F1 score							

MetaGNN *improves* the accuracy by an *order-of-magnitude* for short-read data compared to state-of-the-art binning/classification tools

Dataset	MetaBCC-LR	Kraken2	MetaCNN	MetaGNN
CAMI 3-species	66.84	99.98	96.26	98.95
CAMI 6-species	74.54	81.22	67.61	98.36
CAMI 25-species	65.85	94.39	26.86	88.85
CAMI oral cavity	59.23	14.25	74.52	59.86
CAMI airways	59.00	8.94	52.59	56.46

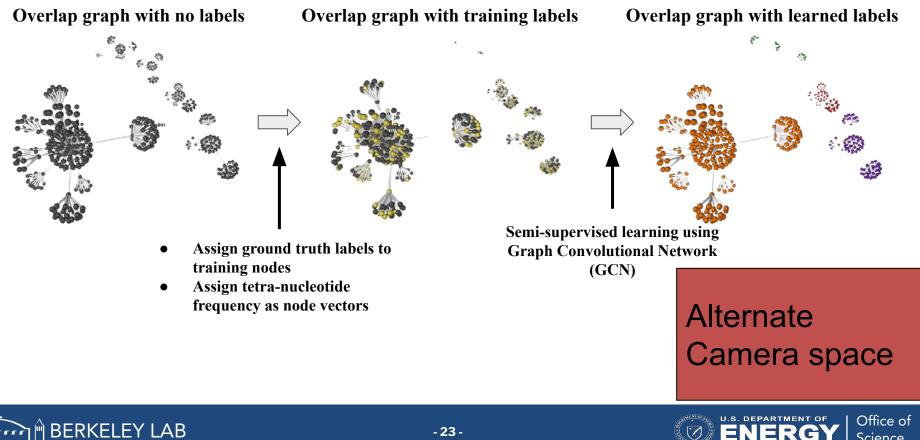
F1 score

MetaGNN offers *similar accuracy* compared to the best binning/classification tools for long-read data

Conclusion

- We used GNN in a semi-supervised setting where ground truth is known for a small portion of reads
- MetaGNN shows that GNN can serve as a powerful classifier for metagenomic data
- Future directions
 - Perform unsupervised clustering of metagenomic data using GNN
 - Model a classifier for novel species found in real metagenomic data
 - Scale MetaGNN to larger metagenomic datasets

https://prashantpandey.github.io



FR

Science