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Abstract
We introduce “asynchronized concurrency (ASCY),” a

paradigm consisting of four complementary programming

patterns. ASCY calls for the design of concurrent search

data structures (CSDSs) to resemble that of their sequen-

tial counterparts. We argue that ASCY leads to implemen-

tations which are portably scalable: they scale across differ-

ent types of hardware platforms, including single and multi-

socket ones, for various classes of workloads, such as read-

only and read-write, and according to different performance

metrics, including throughput, latency, and energy. We sub-

stantiate our thesis through the most exhaustive evaluation

of CSDSs to date, involving 6 platforms, 22 state-of-the-art

CSDS algorithms, 10 re-engineered state-of-the-art CSDS

algorithms following the ASCY patterns, and 2 new CSDS

algorithms designed with ASCY in mind. We observe up to

30% improvements in throughput in the re-engineered algo-

rithms, while our new algorithms out-perform the state-of-

the-art alternatives.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

Keywords Concurrent data structures, scalability, multi-

cores, portability

1. Introduction
A search data structure consists of a set of elements and

an interface for accessing and manipulating these elements.

The three main operations of this interface are a search op-

eration and two update operations (one to insert and one to

delete an element), as shown in Figure 1. Search data struc-

tures are said to be concurrent when they are shared by sev-

eral processes. Concurrent search data structures (CSDSs)

are commonplace in today’s software systems. For instance,

concurrent hash tables are crucial in the Linux kernel [40]
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Figure 1: Search data structure interface. Updates have two

phases: a parse phase, followed by a modification phase.

and in Memcached [42], while skip lists are the backbone

of key-value stores such as RocksDB [18]. As the tendency

is to place more and more workloads in the main memory

of multi-core machines, the need for CSDSs that effectively

accommodate the sharing of data is increasing.

Nevertheless, devising CSDSs that scale and leverage the

underlying number of cores is challenging [4, 5, 8, 19, 47].

Even the implementation of a specialized CSDS that would

scale on a specific platform, with a specific performance

metric in mind, is a daunting task. Optimizations that are

considered effective on a given architecture might not be

revealed as such on another [4, 12]. For example, NUMA-

aware techniques provide no benefits on uniform architec-

tures [12]. Similarly, if a CSDS is optimized for a spe-

cific type of workload, slightly different workloads can in-

stantly cause a bottleneck. For instance, read-copy update

(RCU) [41] is extensively used for designing CSDSs that are

suitable for read-dominated workloads. However, it could be

argued that this is achieved at the expense of scalability in

the presence of updates.

The motivation of this work is to ask whether we can de-

termine characteristics of CSDS algorithms that favor imple-

mentations which achieve what we call portable scalability,

namely that scale across various platforms, workloads, and

performance metrics. At first glance, this goal might look

fuzzy for it raises a fundamental question: what scalability

can we ideally expect from a given data structure, architec-

ture, performance metric, and workload combination?

In fact, we can provide a practical estimation of an up-

per bound for a data structure’s scalability, on a particular

hardware and workload combination. We step on the obser-

vation that the coherence traffic induced by stores on shared

data is the biggest impediment to the scalability of concur-

rent software. This is valid for practically any contempo-

rary multi-core. Yet, some stores cannot be removed because
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they are inherent to the semantics of the data structure; typ-

ically those stores are employed by any standard sequential

implementation of the same data structure (one that is not

supposed to be shared by several processes). Assume how-

ever that we deploy, as is, such a sequential implementa-

tion on a multi-core and have it shared by multiple threads.

Obviously, this deployment would result in incorrect (e.g.,

non-linearizable [31]) executions. The performance of these

asynchronized executions, however, constitutes a reasonable

indication of what can be ideally expected from a correct,

synchronized implementation of the same structure.

We thus consider that a CSDS achieves portable scal-
ability when its scalability closely matches that of asyn-

chronized executions (a) across different types of hardware,

including single and multi-sockets, (b) for various classes

of workloads, such as read-dominated and read-write, and

(c) according to different performance metrics. In the CSDS

context, aspect (c) means that as we increase the number

of threads, we want to remain as close as possible to the

asynchronized execution in terms of throughput and latency,

without sacrificing energy (i.e., without consuming more

power than implementations that do not scale as well in

terms of throughput or latency).

With this pragmatic objective in mind, we perform an ex-

haustive evaluation of CSDSs on six different processors: a

20-core and a 40-core Intel Xeon, a 48-core AMD Opteron,

a 32-core Oracle SPARC T4-4, a 36-core Tilera TILE-Gx36,

and a 4-core Intel Haswell. We measure four dimensions

of scalability: throughput, latency, latency distribution, and

power. We consider the state-of-the-art algorithms for linked

lists, hash tables, skip lists, and BSTs. To the best of our

knowledge, this is the most extensive CSDS evaluation to

date. We find that for each data structure, there are CSDS

algorithms whose performance is within 10% of the asyn-

chronized versions. We observe that in general, the algo-

rithms whose memory accesses to shared state best resem-

ble those of a sequential – asynchronized – algorithm tend

to achieve portable scalability. We further identify four pat-

terns through which this resemblance to sequential imple-

mentations is achieved:

ASCY1: The search operation should not involve any wait-

ing, retries, or stores.

ASCY2: The parse phase of an update operation should not

perform any stores other than for cleaning-up purposes

and should not involve any waiting, or retries.

ASCY3: An update operation whose parse is unsuccessful

(i.e., the element not found in case of a remove, the ele-

ment already present in case of an insert) should not per-

form any stores, besides those used for cleaning-up in the

parse phase.

ASCY4: The number and region of memory stores in a

successful update should be close to those of a standard

sequential implementation.

None of these patterns is fundamentally counter-intuitive

and each of them has already been identified as important in

some form or another. We find that the existing algorithms

that scale the best already apply some of these patterns.

To our knowledge however, they have never been put in a

coherent form and collectively applied and evaluated. We

refer to these patterns as asynchronized concurrency (ASCY),
for together they indeed call for the design of concurrent

algorithms to resemble that of their sequential counterparts

in terms of access to shared state.

We apply ASCY to several existing state-of-the-art algo-

rithms and obtain up to 30% improvements in throughput,

accompanied by reduced latencies. Interestingly, ASCY not

only leads to better throughput, but also results in CSDSs

that consume less power (by 1.4% in average), hence fur-

ther improving energy efficiency. We also present a hash ta-

ble (CLHT) and a BST (BST-TK), two new algorithms de-

signed and implemented from scratch with ASCY in mind.

CLHT (cache-line hash table) places each hash-table bucket

on a single cache line and performs in-place updates so that

operations complete with at most one cache-line transfer.

CLHT outperforms state-of-the-art hash tables in virtually

every scenario. BST-TK (BST Ticket) is a new concurrent

BST that significantly reduces the number of acquired locks

per update over existing algorithms. BST-TK is consistently

the best lock-based BST, compared to the state of the art.

Our evaluation also highlights a number of other interest-

ing observations. We show, for instance, that the fact that an

algorithm is lock-based or lock-free does not have a major

effect on the scalability of CSDSs. Similarly, we show that

the use of hardware transactional memory also makes lit-

tle difference. We highlight however a number of hardware-

related bottlenecks that should be taken into consideration

by system designers.

In summary, the main contributions of this paper are:
• The analysis and comparison of a large number of state-

of-the-art CSDS algorithms in a wide range of settings

(i.e., platforms, workloads, and metrics), representing the

most extensive evaluation to date. This evaluation helps

identify characteristics of portably scalable algorithms

and revisit some beliefs regarding CSDSs.
• Asynchronized Concurrency: A design paradigm which

yields portably scalable CSDSs. When ASCY is applied,

increasing throughput, reducing latency, and reducing

power consumption go hand in hand.
• ASCYLIB: a CSDS library, including 34 highly optimized

and portable implementations of linked lists, hash tables,

skip lists, and BSTs, together with a companion memory

allocator with garbage collection. ASCYLIB includes two

novel CSDS algorithms designed from scratch, namely

CLHT and BST-TK, and re-engineered versions of ten

state-of-the-art CSDS algorithms. ASCYLIB is available

at http://lpd.epfl.ch/site/ascylib.
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Our patterns are not very precise guidelines and cannot

be used to automatically generate the implementation of a

CSDS from its sequential counterpart. They cannot be used

to derive any theoretical lower bound either. Yet, as we show

in the paper, they provide very useful hints both for optimiz-

ing existing CSDSs and for designing new algorithms.

The rest of the paper is organized as follows. We provide

in Section 2 some background related to search data struc-

tures. We present ASCYLIB in Section 3. In Section 4, we

provide our evaluation of CSDS algorithms. In Section 5 we

identify and illustrate the benefits of ASCY. We describe in

Section 6 the use of ASCY in the design of CLHT and BST-

TK. We present related work in Section 7. We discuss the

limitations of ASCY, and conclude the paper in Section 8.

2. Search Data Structures
Basic interface. A search data structure consists of a set

of elements and three main operations: search, insert, and

remove. An element consists of a key and a value. The key

uniquely identifies the element in the set. The value is often

a pointer to a structure that contains the actual data.

The three main operations have the following semantics:
• search(key) looks for an element with the given key; if it is

found, returns the value of the element, otherwise returns

NULL.
• insert(key, val) attempts to insert a new element in the

data structure; the insertion is successful iff there is no

other element with the same key.
• remove(key) attempts to remove the element with the

given key; it is successful iff such an element exists.

A common attribute of search data structures is that the

updates (insertions and removals) comprise two distinct

phases. First, they parse the structure until the update point

is reached. Then the actual modification is attempted.

Concurrent search data structures. We study the most

basic and commonly-used CSDSs: linked lists, hash tables,
skip lists, and binary search trees (BSTs). We are interested

in linearizable [31] implementations of the aforementioned

data structures.

It is common to classify linearizable implementations

based on whether and how they make use of locks [29].

One can distinguish fully lock-based, hybrid lock-based, and

lock-free [20] algorithms. Fully lock-based algorithms use

locks to protect all three operations and are blocking [29],

in the sense that a thread might have to wait for a lock

to be released. Hybrid lock-based (henceforth called “lock-

based”) algorithms use locks to protect the actual updates to

the structure. They are otherwise lock-free. For instance, a

removal might parse the list (in a lock-free manner) until the

target node is found, get the lock, and then do the actual dele-

tion. Hybrid algorithms are also blocking. Finally, lock-free

algorithms do not use locks and are non-blocking [20, 27].

They typically use the underlying atomic operations, such as

compare-and-swap (CAS), provided by the hardware.

3. The ASCYLIB Library
ASCYLIB contains 32 fully/hybrid lock-based and lock-free

CSDSs, as well as 5 sequential implementations.1 These in-

clude existing state-of-the art designs, and optimized ver-

sions, which we adapt in order to enable one, or more, ASCY

patterns. In addition, ASCYLIB contains two novel CSDS

algorithms built from scratch based on ASCY. Some im-

plementations in ASCYLIB were initially based on the Syn-

chrobench benchmark suite [22].

Algorithms. Table 1 contains a short description of the ex-

isting algorithms we implement.2 ASCYLIB further contains

10 re-engineered (using ASCY) state-of-the-art CSDS de-

signs. In particular, we apply ASCY1−2 on harris linked list

and fraser skip list. We also apply ASCY3 on pugh, lazy, and

copy linked lists/hash tables, on java hash table, on pugh and

herlihy skip lists, and on drachsler BST. Finally, we create a

urcu hash-table variant that uses SSMEM (see below) instead

of RCU for memory management and is closer to ASCY4. In

all our experiments, these optimizations result in better per-

formance (see §4 and §5). We then use ASCY as the base to

design two new CSDS algorithms, a lock-based and a lock-

free variants of a hash table and a BST (see §6).

Memory management. We develop SSMEM, a memory

allocator with epoch-based garbage collection (GC) [20].

SSMEM uses ideas similar to the RCU [41] mechanism: freed

memory can only be reused once it is certain that no other

thread holds a reference to this location. When some mem-

ory is freed, it does not become available until a GC pass

decides that it is safe to be reused. The amount of garbage

SSMEM allows before performing GC is configurable. Fur-

thermore, SSMEM is non-blocking: it is based on per-thread

counters that are incremented to indicate activity.

4. Evaluating the State of the Art CSDSs
In this section, we present a cross-platform evaluation of the

state-of-the-art CSDS implementations and compare them

with their asynchronized counterparts. We observe that re-

gardless of the platform, the asynchronized executions per-

form the best. We further note that the algorithms with mem-

ory accesses to shared state that best resemble the asynchro-

nized implementations are also the closest to these asynchro-

nized upper bounds. Our evaluation also enables us to quan-

tify the impact that various hardware features have on CSDS

algorithms.

We start by describing the platforms and experimen-

tal settings used throughout this paper. We consider four

multi-processors (with multiple sockets) and a chip multi-

processor (with one socket). We also briefly experiment

with an Intel Haswell desktop processor with hardware

transactional-memory support.

1 We use these as incorrect asynchronized CSDSs.
2 The urcu and the tbb hash tables belong to the corresponding libraries and

are not our own implementations.
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Name Type Short description

lin
ke

d
lis

t

async seq A sequential linked list. We use it as an incorrect asynchronized concurrent set for performance upper bounds.
coupling [29] flb All operations use hand-over-hand locking (grab next lock and release the previous) while parsing the list.
pugh [49] lb Operations search/parse the list optimistically. Updates lock and then validate the target node. Removals employ pointer reversal

so that a search/parse always finds a correct path.
lazy [25] lb Nodes are deleted in two steps: marking and physical deletion. Searching/Parsing the list simply ignores marked nodes. Updates

parse the list, grab the locks, validate the locked nodes, and perform the update.
copy [48] lb Similar to Java’s CopyOnWriteArrayList. Updates create new copies of the list and are protected by a global lock.
harris [23] lf Nodes are deleted in two steps: mark with CAS and delete with a second CAS. Operations remove the logically deleted nodes while

searching/parsing the list. If cleaning-up fails, searching/parsing is restarted.
michael [44] lf A refactored implementation of harris for easier memory management.

ha
sh

ta
bl

e

async seq A sequential hash table. We use it as an incorrect asynchronized concurrent set for performance upper bounds.
coupling [29] flb Uses one coupling list per bucket, with a single per-bucket lock.
pugh [49] lb Uses one pugh list per bucket, with a single per-bucket lock.
lazy [25] lb Uses one lazy list per bucket, with a single per-bucket lock.
copy [48] lb Uses one copy list per bucket, with a single per-bucket lock.
urcu [13] lb Part of the URCU (User-space RCU) (version 0.8) library. After each successful removal, it waits for all ongoing operations to

complete before freeing the memory. Supports resizing.
java [37] lb Similar to Java’s ConcurrentHashMap. Protects the hash table with a fixed number of locks (we use 512 locks). Supports resizing.
tbb [36] flb Part of Intel’s Thread Building Blocks (version 4.2) library. Uses reader-writer locks. Supports resizing.
harris [23] lf Uses one harris-opt list per bucket.

sk
ip

lis
t

async seq A sequential skip list. We use it as an incorrect asynchronized concurrent set for performance upper bounds.
pugh [49] lb Maintains several levels of pugh lists. Parses towards the target node without locking.
herlihy [26] lb Update operations optimistically find the node to update and then acquire the locks at all levels, validate the nodes, and perform the

update. Searches simply traverse the multiple levels of lists.
fraser [20] lf Optimistically searches/parses the list and then does CAS at each level (for updates). A search/parse restarts if a marked element is

met when switching levels. The same applies if a CAS fails.

bs
t

async-int seq A sequential internal BST. We use it as an incorrect asynchronized concurrent set for performance upper bounds.
async-ext seq A sequential external BST. We use it as an incorrect asynchronized concurrent set for performance upper bounds.
bronson [7] lb Partially external. A search/parse can block waiting for a concurrent update to complete.
drachsler [15] lb Internal tree. Uses logical ordering to allow sequential read operations. Acquires ≥ 3 locks for removals.
ellen [17] lf External tree. Updates help outstanding operations on the nodes that they intend to modify.
howley [32] lf Internal tree. All three operations perform helping and might need to restart.
natarajan [46] lf External tree. Minimizes the number of atomic operations and optimistically searches/parses the tree.

Table 1: A short description of the existing CSDS algorithms we consider. “seq” stands for sequential, “flb” for fully lock-based,

“lb” for (hybrid) lock-based, and “lf” for lock-free.

Opteron. The 48-core AMD Opteron contains four Opteron

6172 [10] multi-chip modules (MCMs). Each MCM has

two 6-core dies. It operates at 2.1 GHz and has 64 KB,

512 KB, and 5 MB (per die) L1, L2, and LLC data caches

respectively.

Xeon20. The 20-core Intel Xeon consists of two sockets of

Xeon E5-2680 v2 Ivy-Bridge 10-core (20 hyper-threads). It

runs at 2.8 GHz and includes 32 KB, 256 KB, and 25 MB

(per die) L1, L2, and LLC, respectively.

Xeon40. The 40-core Intel Xeon consists of four sockets of

Xeon E7-8867L Westmere-EX 10-core (20 hyper-threads).

It clocks at 2.13 GHz and offers 32 KB L1, 256 KB L2, and

30 MB (per die) LLC, respectively.

Tilera. The Tilera TILE-Gx36 [51] is a 36-core chip multi-

processor. It clocks at 1.2 GHz and has 32 KB, 256 KB, and

9 MB3 L1, L2, and L3 data caches, respectively.

T4-4. The Oracle SPARC T4-4 is a four-socket multi-

processor with 8 cores per socket and a total of 256 hardware

threads (chip multi-threading). It operates at 2.85/3 GHz and

has 16 KB, 256 KB, and 4 MB (per die) L1, L2, and LLC

data caches, respectively.

Experimental settings. Each of our measurements repre-

sents the median value of 11 repetitions of 5 seconds each.

3 The 36 L2 caches are utilized as a distributed LLC.

We manually pin threads on cores in order to take advan-

tage of the locality within sockets. Each operation is either a

search, or an update, based on the update percentage we se-

lect. In general, we initialize the structure with a number of

elements (N ). The operations choose a key at random in the

[1 . . . 2N ] range. This provides the guarantee that on aver-

age, half of the operations are successful and that the struc-

ture size remains close to N (the update percentage is split to

half insertions and half removals). On all architectures, ex-

cept Tilera, we set SSMEM to trigger GC when 512 memory

locations have been freed. On Tilera, we set this value to 128

in order to optimize for the smaller TLBs of 32 entries. On

the asynchronized implementations, we disable GC to avoid

data corruption. Finally, we use 64-bit long keys and values.

It is straightforward to replace both with larger structures.

Cross-Platform evaluation. We now look at the behavior

of a large sample of the state-of-the-art CSDS algorithms, as

presented in Table 1. Figure 2 shows cross-platform results

on various workloads, spanning low, average, and high de-

grees of contention. The histograms plot the throughput and

the scalability ratio compared to the single-threaded execu-

tion (on top of each bar) on 20 threads.

On average and low-contention levels, algorithms ex-

hibit good scalability in terms of throughput: in the exper-

iments with 20 threads, the average scalability of the best
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Figure 2: Cross-platform results of the data structures in ASCYLIB on average (top graphs – 4096 elements, 10% updates), high

(20 threads, 512 elements, 25% updates), and low contention (20 threads, 16384 elements, 10% updates).
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performing CSDS algorithm (per data structure) is 16.2 in

the low contention case, whereas for the average and high-

contention levels, this value is 14.1 and 9.8, respectively.

While trends are generally valid across platforms, we do

notice a certain variability: for each workload, the standard

deviation of the average scalability values of different plat-

forms is ∼2. In some cases, scalability trends differ signif-

icantly between platforms. For instance, on the Opteron the

hash tables do not scale beyond 32 threads (including async),

due to bandwidth limitations. In short, the main hash table

structure is initialized from a single memory node, thus all

requests are directed to that node. This problem does not

emerge on java, because of the fine-grained resizing (per one

of the 512 regions) that spreads the hash table on multiple

nodes.

In addition, we observe that there are various algorithms

per data structure that are the “best”. On linked lists (Fig-

ure 2a), pugh is consistently competitive across workloads

and platforms, but lazy is close in throughput. On hash tables

(Figure 2b), several algorithms perform close to each other

(e.g., pugh, lazy, copy, harris). On skip lists (Figure 2c),

herlihy and pugh perform similarly. Finally, on BSTs (Fig-

ure 2d), natarajan is generally the best. Overall, we see that,

per data structure, both lock-based and lock-free algorithms

are close in terms of performance. Lock-freedom is more

important when we employ more threads than hardware con-

texts (not shown in the graphs). In these deployments, lock-

freedom provides better scalability than lock-based designs.

It is worth noting that the workloads we evaluate are uni-

form: the frequency and the distribution of updates are con-

stant. We briefly experiment with non-uniform workloads

(not shown in the graphs), such as those with update spikes

and continuously increasing structure size. We notice that

our observations are valid in these scenarios as well.

Dissecting asynchronized executions. In Figure 2, we also

depict the behavior of the asynchronized implementations

for each data structure. We notice that except for some corner

cases, the asynchronized implementations outperform alter-

natives on all the platforms. The reason for the rare corner

cases in which some concurrent implementations can per-

form better than async is that asynchronized structures can

become malformed in concurrent scenarios. For instance, an

update operation on a skip list could update several pointer

fields. We observe that these pointers are sometimes not

properly set due to concurrency, leading to longer average

path lengths.

For each data structure and regardless of the platform and

workload, there is at least one concurrent algorithm that per-

forms and scales close to the asynchronized implementation

(async) of the data structure. On average, the best concur-

rent implementations are 10% slower than their asynchro-

nized counterparts and exhibit similar scalability trends. The

next section explores methods in which the portable scala-

bility of these algorithms can be improved even further. Our
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Figure 3: Cache misses per operation and scalability for

various linked-list algorithms.

empirical results thus confirm our intuition: asynchronized

executions represent good approximations for the ideal be-

havior of CSDSs.

Intuitively, the asynchronized implementations perform

and scale better than the concurrent alternatives because they

trigger cache coherence less (i.e., fewer cache-line trans-

fers): they modify only the data that is semantically neces-

sary, as they do not employ synchronization, thus leading

to a smaller number of memory stores. Cache coherence is

the source of the most significant scalability bottleneck for

concurrent algorithms on multi-cores, because the number

of cache-line transfers tends to increase with the number of

threads. Hence, it is essential for a CSDS algorithm to limit

the amount of cache traffic it performs during each oper-

ation, which is directly linked to the number of stores on

shared data. Stores cause cache-line invalidations, which in

turn generate cache misses of future accesses.

We confirm this line of reasoning by showing a practi-

cal correspondence between the number of cache misses and

the performance of an algorithm. In doing so, we use linked-

list algorithms as an example. Figure 3 shows the number of

cache misses per operation generated by various linked-list

algorithms, as well as their scalability compared to single-

thread throughput. We use a workload where the list has

4096 elements on average, 10% of the operations are up-

dates, and 20 threads concurrently access the data structure.

Clearly, the asynchronized execution has the fewest number

of cache misses. It is also interesting to note that the num-

ber of cache misses per operation is directly correlated to

the scalability and performance of the algorithms: the fewer

cache misses an algorithm generates, the better it scales. This

correlation pertains to the other data structures as well.

We also take a closer look at how the “best” concurrent al-

gorithms access memory. We look at the memory access pat-

tern of a CSDS algorithm by studying the number of loads

and stores (often performed through read-modify-write in-

structions), as well as the branches in each operation and

phase of the algorithm. We notice that the CSDS algorithms

that tend to scale and perform the best also tend to have an

average number of loads, stores, and branches closer to the

asynchronized implementations than the alternatives. This is

generally valid for all the operations and phases. Thus, we

make the observation that the more an algorithm’s memory

access pattern resembles that of the asynchronized execu-
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Figure 4: Linked list with 1024 elements and 5% updates (2.5% successful).

tion, the better it scales regardless of the platform and work-

load. In the next section, we look at ways in which this sim-

ilarity can be achieved and validate this observation.

Hardware considerations. Our evaluation has revealed a

number of other hardware-related observations.

We fine-tune several algorithms in ASCYLIB using Intel’s

TSX [34] hardware transactional memory (HTM), in order

to assess whether HTM can be used to optimize CSDSs. Ba-

sically, in 60% of the scenarios, HTM improves throughput

with up to 5%. In the remaining 40%, the results are either

unaffected, or the throughput decreases (up to 5% as well).

We use a 4-core desktop processor (8 hyper-threads) with

the first iteration of Intel’s TSX. As larger machines become

available and the technology matures,4 HTM might become

even more helpful.

We also encounter a number of hardware-related bottle-

necks, not specific to CSDSs. For example, the small TLBs

on the Tilera (32 entries) require feeding SSMEM with small

chunks of memory and keeping the amount of garbage low.

Otherwise, if the threads use largely fragmented memory,

the TLB misses become a bottleneck. Similarly, on Xeon40,

large chunks of memory with a lot of garbage can lead to

an excessive number of hardware prefetches that decrease

performance up to an order of magnitude. On the Opteron,

the interconnect bandwidth becomes a bottleneck when the

structure is allocated on a single memory node. If a structure

fits on one memory page, there is no straightforward solution

to this problem, other than restructuring the data structure.

System designers should be aware of the aforementioned is-

sues as they can emerge in all types of software.

5. The ASCY Patterns
Having observed that CSDSs that resemble sequential algo-

rithms scale and perform best, we now look at how this sim-

ilarity can be achieved. We identify four patterns which are

applicable to a broad class of CSDS algorithms and we show

that when they are applied, the performance and scalability

of CSDSs is systematically improved. These patterns collec-

tively represent asynchronized concurrency (ASCY).
For brevity, we select Xeon20 as the platform in our

experiments. This is the most modern processor within our

4 A recent announcement by Intel [35] suggests that this might take a while.

platform set. Also for brevity, we break down the results

for each pattern using one of the four data structures. Note

that we get similar results on any platform and data-structure

combination: the patterns are globally beneficial.

ASCY1. We first examine the search operation of CSDSs

and use linked lists as a case study. Figure 4 depicts the

behavior of the various linked lists of ASCYLIB on a search-

dominated workload (only 2.5% successful updates).

Out of the existing algorithms, the async, lazy and pugh
lists deliver the highest total throughput. Both lazy and pugh
linked lists have a search that is identical to the sequential

algorithm. Essentially, no stores, waiting, or restarting is

involved. These algorithms perform within 10% of async. In

comparison, the lock-free lists (harris and michael) diverge

from the sequential code as they try to physically remove

logically-deleted nodes using CAS. If a physical removal

fails, the operation is restarted. Additionally, they also need

to unmark5 every pointer while traversing the list.

Overall, the results can be largely explained by the aver-

age search latencies (Figure 4(c)): the closer to the sequential

an implementation is, the lower the latency is. On more than

20 threads, the search latencies decrease due to the effects of

hyper-threading; the two hyper-threads of a core help each

other by keeping the list nodes warm in the shared L1 cache.

We thus identify ASCY1 as a generic pattern: The search
operation should not involve any stores, waiting, or retries.

We apply this pattern to the search operation of existing

algorithms: in the case of linked lists, we apply it to the

harris lock-free list by removing the physical removal of

logically deleted elements from the search operation. We

refer to the resulting algorithm as harris-opt.
If we now look at the three lock-free algorithms, namely

harris, michael, and harris-opt, the effects of applying

ASCY1 become evident. In both harris and michael, the

search tries to unlink logically deleted nodes and restarts if

it fails, hence violating ASCY1. In contrast, harris-opt ig-

nores the deleted nodes while searching. The latency im-

provements due to ASCY1 are approximately 10-30% as we

can observe on the latency graphs (Figure 4(c) & (d)). Ad-

ditionally, harris-opt has a tighter latency distribution (Fig-

ure 4(d)) than the other two. harris-opt provides more stable

5 Clear the least significant bit that indicates a logically deleted element.
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Figure 5: Skip list with 1024 elements and 20% updates (10% successful).

executions because it never restarts or invokes work that is

unnecessary to the search. Furthermore, Figure 4(b) plots the

power consumption relative to async. We observe that har-
ris and michael, which do not follow ASCY1, deliver lower

performance while consuming more power than the rest.

Additionally, the behavior of the copy list is worth ana-

lyzing. It is apparent from the latency graphs that structuring

the data as an array can bring tremendous benefits on se-

rial data accesses. However, copy has two major limitations:

(i) high memory overhead, as every update creates a new list

copy, and (ii) synchronization of updates with a global lock,

which easily becomes a bottleneck. In §6.1, we use the idea

of array-based structures in the design of a hash table.

Finally, we apply ASCY1 to the fraser skip list (not

shown in the graphs) and observe performance improve-

ments. In most cases, applying ASCY1 means deferring

cleaning-up and helping to the update methods. ASCY1 also

requires that updates always leave the data structure in a state

that allows any existing node to be found. In addition, when

removing nodes, their memory should not be freed while

there is the possibility of an ongoing search accessing it.

Memory reclaimation is handled by SSMEM in ASCYLIB.

ASCY2. We now focus on the parse phase of the update

operations. In a sequential algorithm, this phase is basically

identical to the search operation. In CSDSs however, parsing

might involve helping, cleaning-up the data structure, or re-

starting the operation (e.g., due to a failed clean-up attempt).

We study this phase more closely using skip-list algorithms.

Figure 5 depicts the behavior of the five skip lists in

ASCYLIB on a workload with 10% successful updates. The

best performing pre-existing algorithms are pugh and her-
lihy, which are within 22% of the asynchronized version.

Looking closer at their parse phase, we note that the only

stores that are performed are for cleaning-up purposes and

that the parse is never restarted. In contrast, a parse in fraser
might have to restart due to a failed clean-up attempt, or ac-

cessing a logically deleted node when changing levels.

Taking these results into account, we establish ASCY2:

The parse phase of an update operation should not perform
any stores other than for cleaning-up purposes and should
not involve waiting, or retries.

We apply this pattern in conjunction with ASCY1 (based

on [30]) to the fraser skip list and refer to the resulting

algorithm as fraser-opt. fraser-opt delivers up to 8% better

throughput than fraser and has a 5% lower average update

latency (Figure 5(c)). Furthermore, Figure 5(d) plots the

latency distribution of the parsing phase only. The behavior

of both fraser and fraser-opt is similar. However, the latter

eliminates the overhead of useless parses that have to be

restarted. fraser performs 0.38%, 1.07%, and 1.82% more

parses than updates on 10, 20, and 40 threads, respectively.

fraser-opt has lower overheads: 0.03%, 0.09%, and 0.17%,

respectively.

In terms of power consumption (Figure 5(b)), there are

two main observations. First, ASCY not only improves the

throughput of fraser, but also leads to an algorithm that

consumes slightly less power than the initial design. Second,

in the case of skip lists, the lock-based algorithms seem to

consume more power than their lock-free counterparts.

Finally, we also apply ASCY2 to the harris linked list.

In practice, applying ASCY2 means (i) not helping other

threads while parsing the data structure and (ii) avoiding

restarting if cleaning-up fails. Similar to ASCY1, for ASCY2

to work, concurrent updates should not render portions of the

data structure unreachable.

ASCY3. Another characteristic of sequential algorithms

is that if an update operation cannot be completed (i.e.,

the parse does not find the node in case of a remove, or

it finds the node in case of an insert), no additional stores

are performed and the update method simply returns “false”.

This is not always the case in existing CSDS algorithms.

We quantify the impact of this issue by looking at hash-

table algorithms. Figure 6 depicts the performance of various

hash tables with and without (suffixed with “-no”) the “read-

only fail” of the sequential algorithms. In terms of through-

put, algorithms doing no additional stores after unsuccessful

parses perform up to 12.5% better than their counterparts do-

ing stores. Additionally, they are within 19-30% of the async
version. Although this change alters the behavior of only

5% of all operations in this workload, we observe through-

put benefits up to 12.5% on java. This difference can be at-

tributed to (i) the increased number of cache misses caused

by unnecessary synchronization, and (ii) the increase of con-
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Figure 6: Hash table with 8192 elements, 8192 (initial) buckets, and 10% updates (5% successful).

tention on locks. Basically, (i) manifests as a 2.8% increase

in the cache-miss ratio on 40 threads, and (ii) as a 14% in-

creased chance to find a lock occupied.

Given the apparent benefits, we model the behavior of the

sequential algorithms through ASCY3: An update operation
whose parse phase is unsuccessful should not perform any
stores, besides those used for cleaning-up in the parse phase.

Figure 6(c) details the benefits of ASCY3 on the average

latency of unsuccessful updates. It is clear that turning a

failed update into a read-only operation yields a significant

(1.5-4x) decrease in latencies. Nevertheless, depending on

the algorithm, applying ASCY3 can incur some overhead

on successful updates, as we notice on the graph (d). For

instance, enabling ASCY3 on java requires an additional

search to either decide that the update cannot succeed, or

proceed to the actual update. In general ASCY3 also reduces

the power consumption of the CSDSs. This is achieved by

decreasing the number of cache-line transfers.

Finally, we apply this pattern to multiple other existing

algorithms: the pugh, lazy, and copy linked lists, the pugh
and herlihy skip lists, and the drachsler BST. In many cases,

applying ASCY3 simply means checking the outcome of the

parse and returning “false” without locking. The algorithms

to which we apply ASCY3 trivially maintain correctness, as

unsuccessful updates can be seen as search operations.

ASCY4. We now focus on the modification phase of the up-

date operation. We use BSTs as an example for this scenario.

Figure 7 includes the corresponding results.

Aside from the asynchronized algorithms, the best per-

forming concurrent implementation is natarajan. We argue

that the other four concurrent trees synchronize more than

the minimum. Indeed, we measure the ratio of atomic opera-

tions to the number of successful updates on the same work-

load as Figure 7. natarajan uses two atomic operations per

update on average, which is close to the asynchronized ver-

sions, whereas the other concurrent trees require more than

three. In fact, natarajan is also the closest to async in terms

of the number of stores and the number of affected cache

lines. This major difference, together with the differences in

the first three ASCY patterns, is reflected in the results, in

terms of throughput, latency, and power consumption.

More precisely, howley employs helping even while

searching or parsing the tree. ellen uses helping only on el-

ements that the current operation wants to update. Helping

is generally expensive, as it requires additional synchroniza-

tion in order to be implemented. bronson is a complex al-

gorithm that can block waiting for an update to complete.

Finally, drachsler acquires a large number of locks (3.15 on

average) for each successful update.

Figure 7(d) depicts the latency distribution of successful-

only operations, isolating the effects of the modification

phases. Clearly, the natarajan tree has lower latencies and

a tighter distribution than the rest. Interestingly, natarajan
consumes less power than two of the other four concur-

rent trees, similar power to drachsler, and more power than

howley. natarajan simply performs at speeds different than

the rest: on 40 threads, it issues 797M memory accesses

per second with 13.4% cache-miss ratio, compared to the

578M/23.8% of drachsler and the 395M/18.7% of howley.
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Figure 7: BST with 2048 elements and 20% updates (10% successful).
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Still, drachsler and howley consume 41% and 49% more en-

ergy per operation than natarajan, respectively.

We can thus identify ASCY4: The number and region
of memory stores in a successful update should be close to
those of a standard sequential implementation.

Essentially, ASCY4 means that updates should not block

each other or write to the same memory addresses unless

they operate on semantically related elements, such as adja-

cent nodes in the data structure.

Discussion. It is worth noting that while each pattern can

be identified in some of the existing algorithms, we have

shown that CSDS algorithms can be improved even further

when the ASCY patterns are applied collectively. Moreover,

as seen in §4, for each data structure and platform combina-

tion, there is an algorithm that is reasonably close in perfor-

mance to the asynchronized executions, in general a CSDS

that resembles the sequential algorithm. In this section, by

applying ASCY and bringing these algorithms even closer

to their sequential counterparts, we have further improved

their performance and scalability. We can therefore conclude

that ASCY can help reach implementations that are portably

scalable.

6. Designing with ASCY from Scratch
We illustrate the use of ASCY on the design of two new

search data structure algorithms: (i) a hash table (CLHT), and

(ii) a binary search tree (BST-TK). Due to the limited space,

we only present the high-level ideas of the algorithms and

refer the reader to [11] for further details.

6.1 Cache-Line Hash Table (CLHT)
CLHT captures the basic idea behind ASCY: avoid cache-line

transfers. To this end, CLHT uses cache-line-sized buckets

and, of course, follows the four ASCY patterns. As a cache-

line block is the granularity of the cache-coherence proto-

cols, CLHT ensures that most operations are completed with

at most one cache-line transfer.

CLHT uses the 8 words of a cache line as:

concurrency k1 k2 k3 v1 v2 v3 next

The first word is used for concurrency-control; the next

six are the key/value pairs; the last is a pointer that can

be used to link buckets. Updates synchronize based on the

concurrency word and do in-place modifications of the

key/value pairs of the bucket. To support in-place updates,

the basic idea behind CLHT is that a search/parse does not

simply traverse the keys, but obtains an atomic snapshot of

each key/value pair6:

val_t val = bucket ->val[i];
if (bucket ->key[i] == key && bucket ->val[i] == val)

/* atomic snapshot of key/value */

6 For an atomic snapshot to be possible, the memory allocator of the values

must guarantee that the same address cannot appear twice during the lifes-

pan of an operation. Additionally, the implementation has to handle possible

compiler and CPU re-orderings (not shown in the pseudo-code)

We design and implement two variants of CLHT, lock-based

(CLHT-LB) and lock-free (CLHT-LF).

CLHT-LB. The lock-based variant of CLHT uses the

concurrency word as a lock. Search operations traverse the

key/value pairs and return the value if a match is found. Up-

dates first perform a search to check whether the operation is

at all feasible (recall ASCY3) and if so, they grab the lock,

apply the update, and release the lock. If there is not enough

space for an insertion, the operation either links a new bucket

by using the next pointer, or resizes the hash table.

CLHT-LF. The lock-free variant of CLHT is more elaborate

than the lock-based. This is due to the fact that the key/value-

pair insertions have to appear atomic. With locks, we imple-

ment atomicity by allowing for a single concurrent writer per

bucket. However, without locks, several updates can concur-

rently alter the same key or value. Even worse, if concurrent

insertions on the same bucket do not synchronize, there is no

way to avoid duplicate keys on different slots.

In order to solve these complications, we devise the

snapshot t object. snapshot t handles a word (8 bytes)

as an array of bytes (map) with a version number:

struct snapshot_t {
uint32_t version; /* a 4-bytes integer */
uint8_t map [4]; /* an array of 4 bytes */

};

Naturally, snapshot t occupies the concurrency word of

a bucket. snapshot t provides an interface to atomically

get or set the value of an index in the map. The version

number is used to enable sets/gets to do atomic changes with

respect to the other spots in the map. In short, atomicity is

implemented by reading the value of the snapshot t object

before the atomic section and by using the version number

to get/set the target index in the map using a CAS on the

whole object. For instance, if a another concurrent insertion

has already been completed, the current operation will fail

the CAS, because the version number will be different. We

then use the fields of the map as flags that indicate whether

a given key/value pair is valid, invalid, or is being inserted.

Evaluation. We compare CLHT to pugh, one of the best

performing hash tables in §4. In contrast to the linked-based

hash tables, CLHT performs in-place updates, thus avoid-

ing memory allocation and garbage collection of hash-table

nodes. Nevertheless, we use the SSMEM allocator for values.

Figure 8 includes the results. Noticeably, clht-lb and clht-
lf outperform pugh by 23% and 13% on average, respec-

tively. CLHT’s design significantly reduces the number of

cache-line transfers. For example, on the Opteron for 20%

updates, clht-lb requires 4.06 cycles per instruction, clht-
lf 4.24, and pugh operates with 6.57. Interestingly, clht-lb
is consistently better than clht-lf on 20 threads. On more

threads (e.g., 40), however, clht-lf often outperforms clht-lb.

Discussion. CLHT supports operations with keys up to 64-

bits. To support longer keys, the 64-bit keys in CLHT can be

used as a first filter. The operation has to compare the full

key, that is stored separately, only if there is a match with
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Figure 8: CLHT with 4096 elements on 20 threads for various update rates.

the 64-bit filter. This technique has already been shown to

work well in practice [19].

6.2 BST Ticket (BST-TK)
BST-TK reduces the number of cache-line transfers by ac-

quiring less locks than existing BSTs. Intuitively, on any

lock-based BST an update operation parses to the node to

modify and, if possible, acquires a number of locks and per-

forms the update. This is precisely how BST-TK proceeds.

More specifically, BST-TK is an external tree, where ev-

ery internal, router node is protected by a lock and contains a

version number. The version numbers are used in order to be

able to optimistically parse the tree and later detect concur-

rency. Update operations proceed as described in Figure 10.

We are able to simplify the design of BST-TK by making the

simple observation that a ticket lock already contains a ver-

sion field. Accordingly, we consolidate steps 3 and 6, with

steps 4 and 7 respectively. We do this by modifying the in-

terface of the ticket lock in order to try to acquire a specific

version of the lock (i.e., the one that the parsing phase has

observed). If the lock acquisition fails, the version of the lock

has been incremented by a concurrent update, hence the op-

eration has to be restarted. We further optimize the tree by

assigning two smaller (32-bits) ticket locks to each node, so

that the left and the right pointers of the tree can be locked

separately. Overall, BST-TK acquires one lock for successful

insertions and two locks for successful removals.

Evaluation. We compare BST-TK to natarajan, the best per-

forming BST in §4. Figure 9 depicts the results. In general,

bst-tk behaves very similarly to natarajan (within 1% on av-

erage). It might have been expected that bst-tk would outper-

form the latter, because it uses less atomic operations per up-

date. Although this is true, bst-tk has slightly increased pars-

ing overhead compared to natarajan (0.045% vs. 0.032%

with 20% updates on the Opteron). For simplicity, we did not

implement certain optimizations that could prove beneficial

update ()
1. parse() /* keeps track of the versions numbers */
2. if (! can_update ()) { return false; } /* ASCY3 */
3. lock() /* 1 node for insert , 2 nodes for remove */
4. if (! validate_version ()) { goto 1; }
5. apply_update ()
6. increase_version ()
7. unlock ()

Figure 10: Update operations in BST-TK.

under high contention. For instance, an insertion does not

have to be restarted if the router node is locked by another

insertion. Instead, it can be blocked and wait for the ongoing

insertion to finish and then proceed almost normally.

7. Related Work
CSDS design. A large body of work has been dedicated

to the design of efficient CSDSs [7, 15, 17, 20, 25, 29,

32, 41, 43, 44, 46, 49, 50, 52, 53]. These efforts usually

aim at optimizing a specific CSDS (e.g., BST) in terms of

throughput, for a specific set of workloads and platforms.

In contrast, ASCY is a paradigm that targets the scalability

of various CSDSs across different platforms, for various

workloads, and according to several performance metrics.

Memory reclamation is of key importance in CSDSs [6,

14, 16, 28, 45]. Various techniques have been proposed, such

as quiescent state [13, 23, 24], epochs [20], reference coun-
ters [14, 21, 53], pointers [6, 28, 45], and, recently, hardware

transactional memory [1, 16]. ASCYLIB uses an epoch-based

allocator that reduces the performance overheads.

Read-copy update (RCU) [41] is a concurrent program-

ming technique that is heavily used in the Linux Kernel [3].

In short, RCU guarantees that readers always find a con-

sistent view of the data structure. Writers perform atomic

updates, after which, in the case of removals, they wait for

all concurrent readers to finish in order to perform memory

reclamation. Relativistic programming [52] is a technique
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that is related to RCU and maintains efficient reads even with

large updates to the data structure (e.g., a resize). Arbel and

Attiya [2] present an RCU-like search tree which allows con-

current updates. While out-performing classic RCU-based

structures, the design is still shown to lag behind other state-

of-the-art CSDSs that are closer to ASCY, in particular in

write-intensive scenarios. In general, RCU-like approaches

purposefully optimize the performance of search operations

at the possible expense of updates. Our ASCY1 pattern is

similar in the sense that it dictates that readers must be un-

aware of concurrency. However, our three remaining patterns

achieve the benefits of sequential reads without sacrificing

the performance of updates.

Hunt et al. [33] study the energy efficiency of lock-free

and lock-based concurrent data structures (queues and linked

lists). They find that lock-free algorithms tend to be more en-

ergy efficient than their lock-based counterparts. We observe

that in the context of CSDSs, as long as the algorithms apply

ASCY, there is no inherent difference between lock-free and

lock-based algorithms. Essentially, this is because the ASCY

patterns help reduce the number and the granularity of locks.

Scalability. Recent work [12] has argued that scalability

of synchronization is mainly a property of the hardware. In

particular, synchronization primitives are shown to be inher-

ently non-scalable on NUMA architectures due to expensive

cache-line transfers. To bypass these problems, ASCY re-

duces the amount of synchronization on CSDSs, leading to

designs that scale even in the presence of non-uniformity.

Clements et al. [9] link commutative interfaces to the

existence of scalable implementations. In essence, they ar-

gue that commutative operations can lead to cache conflict-

free implementations, that are inherently scalable from the

memory-system point of view. Although basic CSDS inter-

faces commute, as defined by Clements et al., certain struc-

tures such as lists and trees do not allow for conflict-free im-

plementations. We show, however, that even in these cases,

scalable algorithms can be devised following ASCY.

Data structures in systems. Boyd-Wickizer et al. [5] per-

formed a scalability study of the Linux kernel. They iden-

tify several bottlenecks, among which, one in the direc-

tory entry lookup operation (even though it is optimized

using RCU). In general, numerous key-value stores, such

as Memcached [42], SILT [38] or Masstree [39] are based

on a CSDS. In some cases, these structures have been

shown to be scalability bottlenecks, as for example in Mem-

cached [5, 19, 47]. Fan et al. [19] achieve a 3-fold perfor-

mance increase over the traditional Memcached, mainly by

optimizing its hash table. ASCY can be used to recognize

possible optimizations in systems such as Memcached and

develop scalable CSDS implementations.

Baumann et al. [4] argue that in principle, non-portable,

hardware-specific optimizations in the OS kernel should be

removed. They attribute the existence of such optimizations

to “the basic structure of a shared-memory kernel with data

structures protected by locks” and propose to rethink the

OS structure. We show that, by applying ASCY, we reach

portably-scalable implementations. We believe that ASCY

can help alleviate the difficult problem of CSDSs in OSes.

8. Concluding Remarks
This paper introduced asynchronized concurrency (ASCY):
a paradigm consisting of four complementary programming

patterns to govern the design of portably scalable con-

current search data structures (CSDSs). We showed that

ASCY can be used both to optimize existing algorithms

and to assist in the design of new ones. In particular, us-

ing ASCY, we have optimized 10 state-of-the-art algorithms

and designed 2 new algorithms from scratch, a hash table

(CLHT) and a binary search tree (BST-TK). These are part

of ASCYLIB, a new CSDS library that contains 34 highly-

optimized cross-platform implementations of linked lists,

hash tables, skip lists, and BSTs. ASCYLIB is available at

http://lpd.epfl.ch/site/ascylib.

It is important to note that it is not always straightforward

to apply some of the ASCY patterns. For instance, internal

BSTs require either helping (e.g., ellen) or additional struc-

tures (e.g., drachsler) to implement ASCY1−2. Similarly, in

order to apply ASCY3 on some lock-based hash tables, such

as java and CLHT, we have to add a complete search opera-

tion before starting with the code of the update. As conveyed

by our results, doing so is beneficial overall, because it re-

duces the coherence traffic. Enabling ASCY in these cases,

however, results in overhead in successful updates.

Clearly, we expect ASCY to be applicable to other search
data structures, such as prefix-trees, or B-trees. However,

given that the ASCY patterns are based on the breakdown

of operations to search and to parse-then-modify updates,

some of the patterns might be meaningless for other abstrac-

tions such as queues and stacks. Still, we argue that the basic

principle of ASCY (i.e., bring the concurrent-software de-

sign close to the asynchronized one) is generally beneficial.

Finally, it is important to note that we have focused this

work on the basic CSDS interface, which is the common de-

nominator for all search data structures. We did not consider

data-structure-specific operations, such as iterations, move,

or max. It is not clear whether it is easy, or possible, to im-

plement these on top of ASCY-compliant CSDSs.
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