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Abstract

We present a graph processing benchmark suite with the goal of helping to standardize
graph processing evaluations. Fewer differences between graph processing evaluations will make
it easier to compare different research efforts and quantify improvements. The benchmark not
only specifies graph kernels, input graphs, and evaluation methodologies, but it also provides
optimized reference implementations. These reference implementations are representative of
state-of-the-art performance, and thus new contributions should outperform them to demon-
strate an improvement.

The input graphs are sized appropriately for shared memory platforms, but any implemen-
tation on any platform that conforms to the benchmark’s specifications could be compared.
This benchmark suite can be used in a variety of settings. Graph framework developers can
demonstrate the generality of their programming model by implementing all of the benchmark’s
kernels and delivering competitive performance on all of the benchmark’s graphs. Algorithm
designers can use the input graphs and the reference implementations to demonstrate their
contribution. Hardware platform designers and performance analysts can use the suite as a
workload representative of graph processing.
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1 Introduction

Graph algorithms and their application are currently gaining renewed interest. Although the graph
abstraction has been around centuries, it has become increasingly relevant, especially as social
networks and their analysis grow in importance. Additionally, graph algorithms have found new
applications in science and recognition. The result has been renewed interest in supporting graph
processing well and for many sizes of graphs. Research is ongoing at all levels, including: applica-
tions, algorithms, implementations, frameworks, and even hardware platforms.

A lack of a standard for evaluations has clouded the results from the growing body of graph
processing research. To compare a new result to prior work, ideally everything other than the new
contribution should be the same. Unfortunately, there is often insufficient overlap between different
published results to make such meaningful comparisons. Simple methodology differences (e.g.,
treating input edges as directed or undirected) can impact performance by more than the claimed
improvement. Even for a particular well-known graph problem, there are often many variations
(e.g., tracking parent vertices or vertex depths for breadth-first search) that alter what optimizations
are possible. The input graphs themselves can be misleading, as similar or identical names can refer
to significantly different graph datasets. A standard for graph processing evaluations could combat
these problems.

Other graph processing evaluation mistakes would be harder to make if there is a well-known
evaluation standard. With a standard set of diverse input graphs, if an optimization is only
compatible with certain topologies, this weakness could be exposed. A standard set of input
graphs could also prevent the use of graphs that are trivially small or unrealistically synthetically
generated. A standard high-quality reference implementation could help discourage the use of
low-performance baselines.

The Graph 500 [14] competition has been a great success for the graph community, so we use
its strengths and expand upon them. Graph 500 has strong community adoption that has led to
innovation in both algorithms and implementations. For example, the top finisher from the first
competition in November 2010 is 5450× slower than the most recent top finisher (November 2016),
and it would place no higher than 120th in the current rankings. The biggest shortcomings of Graph
500 are its focus on one kernel (breadth-first search) and only one synthetic input graph topology
(Kronecker). Although there are efforts to add additional kernels to Graph 500, they are still under
review [15]. The Problem-based benchmark suite [30] is another noteworthy effort, but we intend
to improve upon it by providing substantially higher performance reference code, using real-world
graphs, and focussing on graph algorithms alone.

We present the GAP Benchmark Suite to ameliorate these evaluation concerns. The bench-
mark specifies graph kernels, input graphs, and measurement methodologies. The benchmark also
includes an optimized reference implementation that is representative of state-of-the-art perfor-
mance [12]. To create our benchmark, we learned from the best practices of the community, and we
co-developed this benchmark with our graph workload characterization [5]. An important lesson
from our characterization is the importance of putting together a diverse workload consisting of
multiple kernels and input graphs.

A key aspect of our benchmark suite is specifying the benchmark itself (this document). Other
research efforts have released their code [22, 26, 29, 31], which eases comparisons to themselves, but
the evaluator is still responsible for creating a workload and an evaluation methodology. Further-
more, since these frameworks were developed independently, they may require some modification
to ensure the implementations are computing the same thing and using the same timing practices.
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The benchmark specification and the reference implementation are two separate artifacts that
can be used independently. By specifying the benchmark explicitly, any implementation on any
platform that conforms to the benchmark’s specifications can be compared. Consequently, these
benchmark-compliant comparisons do not require the use of our reference implementation. Addi-
tionally, the reference implementation can be used to execute workloads other than the benchmark.

This benchmark suite can be used in a variety of settings. Graph framework developers can
demonstrate the generality of their programming model by implementing all of the benchmark’s
kernels and delivering competitive performance on all of the benchmark’s graphs. Algorithm de-
signers can use the input graphs as a workload and the reference implementation as a baseline to
demonstrate their contribution. Hardware platform designers and performance analysts can use
the suite as a workload representative of graph processing.

Our reference implementation targets shared memory multiprocessor systems, but that platform
is not required to use this benchmark. Our benchmark focuses on the execution of the graph
kernels and does not consider the time required to load the graph data or to build the graph itself.
Different platforms might load the graphs in different manners, but the input graphs, kernels,
and methodologies are all platform-agnostic. Semi-external memory approaches could demonstrate
their competitiveness with shared memory baselines. A distributed graph framework should prove
itself worthy of cluster resources by substantially outperforming an optimized baseline running on
a single node instead of only comparing against itself running on a single node [22].

Note: This benchmark incorporates feedback from the community and has undergone several
revisions. Both this document as well as the reference implementations are versioned so future
improvements will be clearly labelled.
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2 Benchmark Specification

This work is motivated by the evaluation shortcomings we observe in prior work. We created
this benchmark based on our experiences competing in Graph500 [3, 14], performing our workload
characterization [5], and analyzing prior work [2]. We designed this benchmark with the following
goals in mind, each intended to solve existing evaluation problems:

• Explicit benchmark specifications to standardize evaluations in order to improve comparabil-
ity and reduce confusion

• Diverse representative workload to ensure evaluations have relevant target

• High-quality reference implementation to ground evaluations with strong baseline perfor-
mance

For clarity, we also include a brief summary of the notation we use. A graph G(V,E) is made
up by the set of its vertices V and the set of its edges E. For conciseness, n and m are used to refer
to the number of vertices (|V |) and the number of edges (|E|). The set of vertices with an edge
from vertex v (outgoing neighborhood) is N+(v) and the set of vertices with an edge to vertex v

(incoming neighborhood) is N−(v). If the graph is undirected, both neighborhoods are the same
N+(v) = N−(v).

We specify the benchmark by describing the graph kernels and input graphs. We also describe
the required evaluation methodologies and provide rationale for our decisions.

2.1 Graph Kernels

We select six kernels based on how commonly they are used [2]. These kernels are representative
of many applications within social network analysis, engineering, and science. This set of kernels is
computationally diverse, as it includes both traversal-centric and compute-centric kernels. Across
the suite, different kernels will consider or ignore different properties of the graph including edge
weights and edge directions. To remove ambiguity, we describe which variant of each graph problem
we require and what constitutes a correct solution.

• Breadth-First Search (BFS) is a traversal order starting from a source vertex. BFS
traverses all vertices at the current depth (distance from the source vertex) before moving
onto the next depth. BFS is so fundamental, it is often implicit in other graph algorithms.
We make BFS into a kernel by tracking the parent vertices during the traversal, akin to
Graph 500 [14]. For any reached vertex, there is often more than one possible parent vertex,
as any incoming neighbor with a depth one less than the reached vertex could be its parent.
Multiple legal parent vertices cause there to be more than one correct solution to BFS from
a given source vertex. For this reason, we define the correct solution to BFS starting from a
source vertex to be a parent array that satisfies the following:

– parent[source] = source

– parent[v] = -1 if v is unreachable from source

– if v is reachable and parent[v] = u, there exists an edge from u to v

– if v is reachable and parent[v] = u, depth[v] = depth[u] + 1
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Some uses of BFS only track reachability or depth, but we choose to track the parent since it
is the most helpful to the community. If we instead chose to track reachability, there would be
no way to verify the traversal was performed in a breadth-first manner, because reachability
only returns a boolean value for each vertex. Tracking depth would be a better choice than
reachability since it allows for verifying the traversal, but BFS implementations that track
depth can perform optimizations not possible in the more challenging applications of BFS
that track parents [23].

• Single-Source Shortest Paths (SSSP) computes the distances of the shortest paths from
a given source vertex to every other reachable vertex. The distance between two vertices
is the minimum sum of edge weights along a path connecting the two vertices. We do not
request the parent vertices, since BFS already provides this. There is a unique solution to
our variant of SSSP, since the solution is the distances and not the shortest paths themselves.
Although there may be more than one shortest path between two vertices, all shortest paths
will have the same distance. All of our benchmark graphs have positive edge weights. We
define the correct solution of SSSP to be the distance array from a source vertex such that:

– distance[source] = 0

– distance[v] = ∞ (or some known sentinel value) if v is unreachable from source

– if v is reachable from source, there is a path of combined weight distance[v] from the
source to v

– if v is reachable from source, there is no path of combined weight less than distance[v]
from the source to v

• PageRank (PR) computes the PageRank score for all vertices in the graph. The score (PR)
for a vertex v with a damping factor d (0.85) is:

PR(v) =
1− d

|V |
+ d

∑

u∈N−(v)

PR(u)

|N+(u)|

For PR, we require the PageRank scores for all of the vertices such that a single additional
iteration will change all of the scores by a sum of less than 10−4. More formally, if the
benchmark kernel returns scores PRk and a classical implementation generates PRk+1 in one
iteration from PRk, a solution is correct if it obeys the tolerance:

∑

v∈V

|PRk(v)− PRk+1(v)| < 10−4

Selecting the required tolerance is a tradeoff between score convergence and execution time.
We pragmatically select 10−4 since the scores will have mostly converged and it results in a
reasonable number of iterations (5 - 20) for most graphs. Our tolerance bound also implicitly
allows for a little numerical noise due to differences in accumulation order. We allow for more
advanced implementations as long as they meet this bound and any changes to the graph or
preprocessing optimizations are included in the trial time.

• Connected Components (CC) labels all vertices by their connected component and each
connected component is assigned its own unique label. If the graph is directed, we only require
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weakly connected components, so if two vertices are in the same connected component, it is
equivalent to there being a path between the two vertices if the graph’s edges are interpreted
as undirected. Vertices of zero degree (disconnected) should each get their own label. To
define correctness, we require the following equivalence relation:

– vertices u and v have the same component label if and only if there exists an undirected
path between u and v

• Betweenness Centrality (BC) approximates the betweenness centrality score for all ver-
tices in the graph by only computing the shortest paths from a subset of the vertices. The
betweenness centrality of a vertex v is defined to be the fraction of shortest paths that pass
through it. If σst is the number of shortest paths between vertices s and t and σst(v) is the
number of those shortest paths that pass through v, the betweenness centrality score for v is:

BC(v) =
∑

s,t∈V,s 6=v 6=t

σst(v)

σst

For the approximation, the BC scores should be computed by considering the shortest paths
from 4 different sources. These centrality scores should be normalized to one. We expect most
implementations to utilize Brandes algorithm [7] and perform 4 BFS traversals, but the use
of Brandes algorithm is not required. The BC implementation should treat all input graphs
as unweighted.

For correctness, we recommend comparing the output to the output from a simple correct
implementation of an alternate algorithm using the same source vertices. In this case, the
verifier may need to allow for a little numerical noise since the accumulations can happen in
different orders.

• Triangle Counting (TC) computes the total number of triangles in a graph. We define a
triangle to be three vertices that are directly connected to each other (clique of size 3). A
triangle is invariant to permutation, so the same three vertices should be counted as only
one triangle no matter the order in which they are listed. Additionally, for our definition of
a triangle, we ignore the directions of the edges, so the input graph can be interpreted as
undirected. For TC, the solution is unique, so comparing the result is trivial. Unfortunately,
there is no easy way to verify the total number of triangles without actually computing it.
For verification, we recommend comparing the result from the benchmark implementation
with the result from an alternate implementation.

2.2 Input Graphs

We select five input graphs for our benchmark and they are diverse in both topology and origin
(synthetic versus real-world). Our real-world data models the connections between people, websites,
and roads. The graph sizes are selected to be small enough to fit comfortably in most servers’
memory yet large enough to be orders of magnitude bigger than the processors’ caches. When
selecting real-world benchmark graphs, we considered the ease of users acquiring the graph data
and the graphs selected are amongst the easiest to obtain both in terms of licensing requirements
and bandwidth availability.
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• Twitter (|V |=61.6M, |E|=1,468.4M, directed) is an example of a social network topol-
ogy [18]. This particular crawl of Twitter has been commonly used by researchers and thus
eases comparisons with prior work. By virtue of it coming from real-world data, it has in-
teresting irregularities and the skew in its degree distribution can be a challenge for some
implementations.

• Web (|V |=50.6M, |E|=1,949.4M, directed) is a web-crawl of the .sk domain (sk-2005) [9].
Despite its large size, it exhibits substantial locality due to its topology and high average
degree.

• Road (|V |=23.9M, |E|=58.3M, directed) is the distances of all of the roads in the USA [10].
Although it is substantially smaller than the rest of the graphs, it has a high diameter which
can cause some synchronous implementations to have long runtimes.

• Kron (|V |=134.2M, |E|=2,111.6M, undirected) uses the Kronecker synthetic graph genera-
tor [19] with the same parameters as Graph 500 (A=0.57, B=C=0.19, D=0.05) [14]. It has
been used frequently in research due to Graph 500, so it also provides continuity with prior
work.

• Urand (|V |=134.2M, |E|=2,147.4M, undirected) is synthetically generated by the Erdős–
Réyni model (Uniform Random) [11]. With respect to locality, it represents the worst case as
every vertex has equal probability of being a neighbor of every other vertex. When contrasted
with the similarly sized kron graph, it demonstrates the impact of kron’s scale-free property.

All of the graphs except road are unweighted, so weights must be added to the graphs before
executing SSSP. To generate weights for the other graphs, we adopt the practice from Graph 500’s
SSSP proposal of using uniformly distributed integers from 1 through 255 [15]. We recommend
using our reference code for generating these weights as it is deterministic.

2.3 Measurement Methodologies

Given the input graphs and kernels, we now specify the measurement methodologies. Building on
the success of Graph 500 [14], we reuse many of its best practices.

Executing only a subset of the benchmark kernels is allowed, as some users of this suite may
only be investigating a single graph problem. However, it is highly recommended to always use
all of the input graphs as they are selected to be diverse. A new innovation may not work well
for all input graphs, so it is important to understand the topologies for which the innovation is
advantageous.

Since our benchmark does not focus on graph loading or graph building, each trial can assume
the graph is already loaded. For example, on a shared-memory multiprocessor, a loaded graph might
reside completely in memory in the CSR format. There are no restrictions on the layout of the
graph in memory, however, the same graph layout must be used for all kernels. Any optimizations
done to the graph layout must not be beneficial for only one algorithm. It is legal to remove
duplicate edges and self-loops from the graph. It is also legal to reorder the neighbors of a vertex.
If the graph is anyhow transformed or converted from the format used for the other kernels, the
graph conversion time must be included in the trial time. If the graph is relabelled, outputs of
the graph kernel must use the original vertex labels and this label conversion time should also be
included in the trial time.
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Kernel Trials Output per Trial

BFS 64 trials from 64 sources |V |-sized array of 32-bit integers (vertex identifiers)
SSSP 64 trials from 64 sources |V |-sized array of 32-bit integers (distances)
PR 16 trials |V |-sized array of 32-bit floating point numbers
CC 16 trials |V |-sized array of 32-bit integers (component labels)
BC 16 trials each from 4 sources |V |-sized array of 32-bit floating point numbers
TC 3 trials 64-bit integer (number of triangles)

Table 1: Trial counts and output formats for benchmark kernels

We select the number of trials each kernel should run with the goal of minimizing evaluation
time while capturing enough samples to return significant results. In general, the kernels can be
grouped into two classes: “single-source” kernels take a source vertex to start from and “whole-
graph” kernels process the entire graph every time in the same way. For single-source kernels
(BFS, SSSP, and BC), there is naturally substantial variation in execution time so we execute 64
trials from different source vertices. The source vertices are randomly selected non-zero degree
vertices from the graph, and we recommend the vertex selector from the reference code as it is
deterministic. For the whole-graph kernels (PR, CC, and TC), we execute just enough trials to
capture any performance non-determinism. We reduce the number of trials for TC since most
implementations typically have little variance in execution time and the execution time for TC is
typically orders of magnitude longer than the rest of the suite. The trial counts are summarized in
Table 1.

Each trial of a kernel should be timed individually and it should include every aspect of its
execution. Each trial can assume the graph is already loaded. Any time to construct data struc-
tures other than the graph used by the kernel, including memory allocated for the solution, must
be included in the trial time. Additionally, the graph is the only data structure that can be reused
between trials, as the purpose of repeated trials is to measure variance, not to amortize optimiza-
tions.

For each kernel, there must be only one implementation used for all input graphs. If different
approaches will be better for different graph topologies, they should be combined into a hybrid
implementation that includes a runtime heuristic (included in kernel time) to decide which approach
to use. The same restriction applies to tuning parameters. None of the kernels may take parameters
specific to the input graph with the exception of a ∆ parameter for SSSP. We allow ∆ because it is
difficult to achieve high-performance on SSSP without it [27]. Fortunately, when SSSP is used in
practice, ∆ is available since its determining factors (graph diameter and edge weight distribution)
are known within an application domain. A kernel can take tuning parameters specific to the
hardware platform that are the same for all input graphs.

The particular output formats are summarized in Table 1. Our benchmark allows for the use
of 32-bit vertex identifiers, which is in contrast to Graph 500 which requires at least 48-bit vertex
identifiers. Unlike Graph500, for our benchmark, the graphs are of a known size and 32 bits
comfortably accommodates them. Using larger identifiers unnecessarily penalizes the performance
of cache-based systems, as none of the graphs will utilize more than 28 bits per identifier. However,
benchmark implementations must support graphs with more than 232 edges, and this is typically
accomplished with 64-bit pointers. This mix of 32-bit and 64-bit types may seem inconsistent,
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but this is common practice due to the size of graphs that can fit within the memory of today’s
multiprocessor platforms. When the memory capacity of systems increases substantially, the input
graphs will need to be expanded and this requirement may be increased.
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3 Reference Code

In addition to the benchmark specification, we also provide a reference implementation that includes
all six benchmark kernels. This implementation serves multiple purposes. At a minimum, the im-
plementation is compliant with the benchmark specifications and can serve as a high-performance
baseline for evaluations. The implementation implements state-of-the-art algorithms that provide
it with competitive performance that is the best for some of the kernels. Additionally, the im-
plementation serves an educational purpose, as it clearly demonstrates how to implement some
leading algorithms that may not be clearly described by their original algorithmic descriptions.
Furthermore, the implementation can help researchers, as much of the infrastructure can be reused
as a starting point for high-performance graph algorithm implementations.

To serve all of these purposes, extra effort has been taken to improve code quality. Doing
so not only helps those that read it, but it also makes it easier to modify and more portable.
Our code follows Google’s C++ style guide [13] and uses many best practices for C++ software
engineering [16, 25]. Our code leverages many of the features of C++11 that allow us to program
safely without any loss of performance. For example, the kernel implementations and most of
the core infrastructure do not perform manual memory management or even use pointers. For
parallelism, we leverage OpenMP (version 2.5 or later) and restrict ourselves to its simpler features
in order to keep our code portable. We have successfully built and run our code on the x86, ARM,
SPARC, and RISC-V ISA’s using the gcc, clang, icc, and suncc compilers.

The core infrastructure for our reference code includes support for loading graphs from files,
synthetically generating graphs, and building graphs in memory. We support multiple file formats,
including the popular METIS [17] and Matrix Market formats [6]. As a fallback method for
importing graphs into our infrastructure, we also support an extremely simple plain text format
that is easy to convert to. Once our infrastructure has built a graph, it can serialize it to a file so later
invocations can simply load the serialized graph directly into memory to skip building the graph.
Loading the serialized graph saves time and reduces peak memory consumption. We also provide
synthetic graph generators for urand and kron. The synthetic graph generators take advantage of
seeding and C++11’s strict random number generator specifications to deterministically produce
the same graph in parallel even on different platforms or with different numbers of threads.

Our reference code includes testing throughout. In addition to testing the code for loading
a graph from a file, generating a graph synthetically, or building a graph in memory, our kernel
implementations can verify the correctness of their outputs. When there is more than one correct
output (BFS, PR, and CC), our verifiers test the output for the properties of a correct solution.
For the other kernels (SSSP, BC, and TC), we compare the output from the benchmark implemen-
tation to the output of a simple serial implementation that implements the kernel with a different
algorithm.

Our reference code also provides scripts to automate the process of executing the benchmark
suite. These scripts can build the benchmark’s graphs which includes downloading the needed real-
world data (twitter, web, and road). To execute the benchmark suite, the scripts run the reference
implementations with the correct parameters for a benchmark-compliant execution. Furthermore,
these scripts instructively demonstrate how to collect the input graphs and execute the kernels.

Here we describe some of the most noteworthy or novel optimizations employed by our kernel
implementations, but we of course recommend examining the code itself [12] to answer detailed
questions.
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• Breadth-First Search (BFS) implements the current state-of-the-art direction-optimizing
algorithm [4]. We perform an additional optimization to reduce the amount of time spent
calculating how many edges exit the current frontier. Calculating the number of edges in the
frontier is done during the top-down steps to determine if the frontier is large enough to justify
switching to the bottom-up approach. Computing this total can have many irregular memory
accesses, as it is summing the degrees of an unordered list of vertices. Our optimization is
to add a step before the search that stores the degree of each vertex in the parent array as a
negative number and this takes little time as the vertices can be done in order (great spatial
locality). The previous convention of -1 representing an unvisited vertex is now revised to
be any negative number represents an unvisited vertex. With this new encoding, during the
top-down steps, the degree of a newly reached vertex is already known because the parent
array was just checked to see if that vertex was unvisited. This optimization cuts out totaling
the degrees of the frontier because it can now be done during the search. For low-diameter
graphs, this yields a modest performance improvement, but for high-diameter graphs that will
only use the top-down approach, this can yield a speedup of nearly 2×. Our implementation
does a final pass at the end to hide this optimization, and it sets any negative parent array
value to -1.

To verify the output of our BFS implementation, we test for the properties this benchmark
specifies for BFS. We check that the parent of the source is the source. We check that there
is an edge from the parent of v to v. Finally, we use a trivial serial BFS implementation
to obtain the depths of all vertices from the source, and we use those depths to check that
parents have depth one less than their children.

• Single-Source Shortest Paths (SSSP) implements the ∆-stepping algorithm [24] with
some implementation optimizations from Madduri et al. [20]. A common challenge for imple-
menting delta-stepping is implementing the bins used to radix sort the vertices by distance.
These bins are challenging to implement correctly because they need to be high-performance
and support concurrent insertions. This task is further complicated by determining the sizes
of these shared bins. If the bins are allowed to grow, they must be able to grow concurrently.
If the bins are sized sufficiently large to not need to grow, there is the possibility of substantial
wasted memory capacity.

We sidestep the challenge of implementing high-performance, concurrent, resizable bins by
using thread local bins. Since the bins are thread local, there are no atomicity concerns
and we can use existing serial resizable containers. To allow for work-sharing across threads,
we use a single shared bin. This shared bin holds the vertices within the current minimum
distance range. The shared bin is easy to implement since the threads only need read-only
access. Every iteration, we copy all of contents of the thread-local bins for the minimum
distance range into the shared bin. Since these aggregations are done in bulk, there is much
less contention, which improves performance. Since there is only a single shared bin, it can
be over-allocated such that it does not need to grow. Our design decision to use thread-local
bins greatly simplifies our implementation as there are no longer parameters to tune for bin
size or the number of bins to pre-allocate.

To verify the output of our SSSP implementation, we compare the distances to the output of
a simple serial implementation of Dijkstra’s algorithm. If the edge weights and distances are
floating point, there are fortunately no concerns about numerical reproducibility. All known
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practical SSSP implementations add the edge weights in the same order, starting from the
source vertex continuing along the shortest path.

• PageRank (PR) uses the naive iterative approach that is quite similar to sparse matrix
vector multiplication (SpMV). To avoid the use of atomic memory operations, we perform
all updates in the pull direction. Unlike the rest of our implementations in this suite, for PR
we deliberately choose to not implement the most sophisticated state-of-the-art algorithm in
order to be easily comparable. PR is the most commonly used benchmark, and most often it
is implemented in this same classical way. By using the classic approach, our implementation
can be directly compared to many implementations since they will both perform the same
amount of algorithmic work. Furthermore, many optimized implementations not only change
the amount of algorithmic work, but in actuality do not obtain the tolerance bounds they
advertise. Our benchmark specification allows for optimized PageRank implementations, but
they must meet the tolerance bounds. Our implementation computes the tolerance every
iteration and can be sure it is met when it decides to terminate.

We verify the output of our PR implementation by performing an additional iteration and
computing the sum of the scores’ changes. To contrast from our reference implementation,
our verifier’s implementation is serial and performs updates in the push direction.

• Connected Components (CC) implements the Shiloach-Vishkin [28] algorithm with par-
allelization techniques from Bader et al. [1].

We verify the result of our CC implementation by checking for the equivalence stated in the
CC specification. We accomplish this by performing a single traversal for each label. During
each traversal, we check that a different label is not encountered. After all of these traversals,
we assert that every vertex has been reached by a traversal. If two components share the
same label, they will have unreached vertices because there is only a single traversal per label.
Vertices of zero degree have their own label so they will each be traversed trivially.

• Betweenness Centrality (BC) implements the Brandes [7] algorithm with the lock-free
improvements from Madduri et al. [21]. To obtain a slight speedup and a large memory
savings, we record the successors identified during the BFS pass in a bitmap rather than
many lists whose total capacity is O(|E|).

We verify the output of our BC implementation by comparing it to the output from a simple
serial implementation. Our verifier implementation also uses Brandes algorithm, however, it
is implemented in a different way and it does not record the successors during the BFS pass.

• Triangle Counting (TC) implements two well-known optimizations [8]. To count triangles,
we sum the sizes of the overlap between a vertex’s neighbor list and its neighbors’ neighbor
lists. Our first optimization leverages our neighbor lists being sorted and terminates these
intersection computations once the triangles found will not obey the invariant of u > v > w.
Terminating these intersection computations early prevents each triangle from being counted
six times. Our second optimization relabels the graph by degree, so when the first order-
ing optimization is applied, we get additional algorithmic savings. Relabelling the graph is
compute-intensive, but counting triangles exactly is also compute-intensive so the relabelling
optimization is often worthwhile even for a single execution. We find relabelling the graph is
typically beneficial for scale-free graphs, and we use a heuristic to decide when to do it. Our
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heuristic samples the degrees of vertices and decides if the degree distribution is sufficiently
skewed by comparing the sample’s median degree with the graph’s average degree.

We verify the total from our TC implementation by comparing it the total returned by a
trivial serial implementation that uses a standard library implementation of set intersection.
Our simple verifier implementation counts each triangle six times so we divide its initial total
by six.
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A Change Log

• Changes since v3

– Introduction: clarified possible use cases for suite

– Benchmark Specification: clarified requirements for correct solutions

– Reference Code: move to version v1.0 in GitHub repo

– Reference Code: includes automation for executing benchmark

– Reference Code: support for more input file formats

– Wording improved throughout with content from dissertation

• Changes since v2

– Re-uploaded, build didn’t include spec.tex

• Changes since v1

– Benchmark Specification: converted trials and output into table format

– Reference Code: description of testing and verifier implementations

– Reference Code: move to version v0.7 in GitHub repo

– Acknowledgements: added section

– General wording and grammar fixes throughout
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[5] Scott Beamer, Krste Asanović, and David A. Patterson. Locality exists in graph processing:
Workload characterization on an Ivy Bridge server. International Symposium on Workload
Characterization (IISWC), 2015.

[6] Ronald F Boisvert, Roldan Pozo, and Karin A Remington. The matrix market exchange for-
mats: Initial design. National Institute of Standards and Technology Internal Report, NISTIR,
5935, 1996.

[7] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociol-
ogy, 25(2):163–177, 2001.

[8] Shumo Chu and James Cheng. Triangle listing in massive networks and its applications.
Conference on Knowledge Discovery and Data Mining (KDD), Jun 2011.

[9] Timothy Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software, 38:1:1 – 1:25, 2011.

[10] 9th DIMACS implementation challenge - shortest paths.
http://www.dis.uniroma1.it/challenge9/, 2006.
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