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ABSTRACT

Locality-sensitive hashing (LSH) is a basic primitive in several
large-scale data processing applications, including nearest-neighbor
search, de-duplication, clustering, etc. In this paper we propose a
new and simple method to speed up the widely-used Euclidean re-
alization of LSH. At the heart of our method is a fast way to es-
timate the Euclidean distance between two d-dimensional vectors;
this is achieved by the use of randomized Hadamard transforms in
a non-linear setting. This decreases the running time of a (k, L)-
parameterized LSH from O(dkL) to O(d log d + kL). Our exper-
iments show that using the new LSH in nearest-neighbor applica-
tions can improve their running times by significant amounts. To
the best of our knowledge, this is the first running time improve-
ment to LSH that is both provable and practical.

Categories and Subject Descriptors. H.3.3 [Information Stor-

age and Retrieval]: Information Search and Retrieval; H.4.m [In-

formation Systems Applications]: Miscellaneous; G.3 [Mathe-

matics of Computing]: Probability and Statistics—Probabilistic

algorithms

General Terms. Algorithms, Experimentation, Performance, The-
ory

Keywords. Nearest neighbor search, Locality-sensitive hashing,
Hadamard transform, Dimension reduction

1. INTRODUCTION
Locality sensitive hashing (LSH) is a basic primitive in large-

scale data processing algorithms that are designed to operate on
objects (with features) in high dimensions. The idea behind LSH
[23, 22] is the following: construct a family of functions that hash
objects into buckets such that objects that are similar will be hashed
to the same bucket with high probability. Here, the type of the ob-
jects and the notion of similarity between them determine the par-
ticular hash function family. Typical instances include the Jaccard
coefficient as similarity when the underlying objects are sets and
the ℓ2 norm as distance (i.e., dissimilarity) or the cosine/angle as
similarity when the underlying objects are vectors.
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With such a powerful primitive, many large-scale data process-
ing problems that previously suffered from the “curse of dimen-
sionality" suddenly become tractable. For instance, in conjunction
with standard indexing techniques, it becomes possible to search
for nearest-neighbors efficiently [16]: given a query, hash the query
into a bucket, use the objects in the bucket as candidates for near
neighbors, and rank them according to their similarity to the query.
Likewise, popular operations such as near-duplicate detection [7,
28, 19], all-pairs similarity [6], similarity join/record-linkage [25],
temporal correlation [10], are made easier.

In this paper objects are vectors and the distance between vec-
tors is the Euclidean (ℓ2) norm. This choice is motivated by many
applications in text processing, image/video indexing/retrieval, nat-
ural language processing, etc. When the similarity measure be-
tween vectors is their angle, Charikar [9] gave a very simple LSH
called SIMHASH: the hash of an input vector is the sign of its in-
ner product with a random unit vector. It can be shown that the
probability that the hashes of two vectors agree is a function of
the angle between the underlying vectors [17]. Datar et al. [12]
present constructions based on stable distributions for the ℓp norm;
their construct is almost identical to Charikar’s in the ℓ2 case. Since
then, there have been efforts to make these LSH constructions more
efficient and practical [27, 13, 5]. Each of these LSH construc-
tions works by first using a randomized estimator of the similar-
ity measure, pasting multiple such constructions to create one hash
function with an appropriately small collision rate, and then using
multiple such hash functions to get the right tradeoff between the
collision rate and recall.

Main results. In this paper we obtain algorithmic improvements
to the query time of the basic LSH in the ℓ2 setting. At a high
level, we improve the query time of the LSH for estimating ℓ2 for
d-dimensional vectors from O(dkL) to O(d log d + kL), where
roughly, each hash function maps into a vector of k bits and L dif-
ferent hash functions are used. Experiments on different, large, and
high-dimensional datasets show that these theoretical gains trans-
late to a typical improvement of 20% or more in the LSH query
time. We also extend our results to the angle-based similarity,
where we improve the query-time to ǫ-approximate the angle be-
tween two d-dimensional vectors from O(d/ǫ2) to O(d log 1/ǫ +
1/ǫ2); we postpone the details of this result to the full version of
the paper. To the best of our knowledge, this is the first query-time
improvement to LSH that is both provable and practical.

Our improvement consists of two new algorithms. The first al-
gorithm, called ACHash, works by computing the following se-
quence applied to the input vector: randomly flip the signs of each
coordinate of the vector, apply the Hadamard transform, and com-
pute the inner product with a sparse Gaussian vector. This particu-
lar sequence of operations is directly inspired by the fast Johnson–
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Lindenstrauss transform proposed by Ailon and Chazelle [1] for di-
mension reduction. The second algorithm, called DHHash, works
by computing the following sequence applied to the input vector:
randomly flip the signs of each coordinate of the vector, apply the
Hadamard transform, multiply each coordinate by independent unit
Gaussians, and apply another Hadamard transform. DHHash, even
though it has only comparable theoretical guarantees to ACHash,
performs much better in practice. The use of a Gaussian operator
sandwiched by Hadamard transforms is a novel step in DHHash.

Clearly, both the algorithms exploit the computational advan-
tages of the Hadamard transform and that is where we gain the
improved query time. The space requirements of naive LSH lie be-
tween ACHash and DHHash whereas, the latter has a better query
time than the former. Notice that our algorithms are extremely sim-
ple in practice; they have been implemented on top of a publicly
available LSH package. A bulk of our contribution lies in proving
that these algorithms do not compromise the basic LSH guaran-
tees. The main technical difficulty we encounter is in the non-linear
but inevitable operation of bucketizing the projection (or taking the
sign). The proof of ACHash is relatively simple and relies on an
application of the Bernstein’s concentration bound. The proof of
DHHash is intricate, since in addition we need to deal with depen-
dent Gaussian random variables; it uses a novel analysis method
based on matrix perturbation. The techniques we develop for the
analysis may be of independent interest.

2. RELATED WORK
The related work falls into three main categories: the vast liter-

ature on data structures and indexing for similarity search, the ex-
tensive work on LSH and related methods, and the use of FFT-like
methods in dimension reduction.

There have been several indexing data structures proposed for
nearest-neighbor search and approximate nearest-neighbor search,
such as the R-tree, the K-D tree, the SR-tree, etc. Unfortunately,
these index structures do not scale well with the dimension of the
data [32] and this is precisely where LSH-like techniques kick in.
We do not delve into the myriad of searching and indexing tech-
niques for similarity joins: the readers can refer to the survey [15]
and the tutorial [25].

LSH was first articulated in a series of papers by Indyk et al.
[23] and Indyk and Motwani [22]. Since then, it has become the
state-of-the-art technique for similarity search in high dimensions.
Charikar [9] developed an LSH for angles (called SIMHASH) and
thus cosine similarities in Euclidean space. Datar et al. [12] pre-
sented LSH schemes based on stable distribution for ℓp norms.

Panigrahy [30] proposed the entropy-based LSH to (provably)
reduce the space requirements of SIMHASH. In this scheme, in ad-
dition to considering the bucket corresponding to the query, buckets
corresponding to perturbed versions of the query also considered.
Unfortunately, while the space requirements are reduced, the query
time is considerably increased. Lv et al. [27] designed a careful
probing heuristic to look up multiple buckets that have a high prob-
ability of containing the nearest neighbors of a query. They obtain
both space and query time improvements, but are not able to offer
any provable guarantees of performance. Broder et al. [8] devel-
oped an LSH based on min-wise independent permutations for the
Jaccard similarity for sets. There have been several followup work
to LSH, improving its performance both theoretically (e.g., [30])
and practically (e.g., [27, 18]). Our results are mostly complemen-
tary and can be combined with these variants. We refer to the re-
cent thesis of Andoni [3] and the survey by Andoni and Indyk [4]
for further background.

Ailon and Chazelle [1] pioneered the use of FFT in dimension-

ality reduction; their main application was to obtain a fast ver-
sion of the Johnson–Lindenstrauss transform. Our first algorithm
is directly inspired by their work. Eshghi and Rajaram [13] pro-
posed a class of LSH for angles based on the theory of concomi-
tants from statistics; they use DFT as a heuristic to speed up their
computations and do not offer any theoretical guarantees of cor-
rectness. Concurrently and independently of our work, Vybiral
[31] obtained a version of the Johnson–Lindenstrauss theorem us-
ing circulant matrices and Gaussian random variables. His proof
uses the fact that circulant matrices can be diagonalized using the
discrete Fourier transform. Even though this appears syntactically
close to our use of the double Hadamard transform, it is unclear
if his analysis can be adapted either to the Hadamard transform
setting or to the angle setting (as opposed to the distance setting
in Johnson–Lindenstrauss theorem). Recently, Bachrach and Porat
[5] and Feigenblat et al. [14] presented constructions that speed up
the computation of the LSH for Jaccard similarity, namely, min-
wise independent fingerprints, by an exponential factor.

3. BACKGROUND
First, we set up some notation that will be used throughout the

paper. Let X denote the set of input vectors in ℜd and let |X| = n.
Let x ∈ X denote an input vector and let y ∈ ℜd denote the
query vector. Let ‖x‖ = ‖x‖2 denote the Euclidean norm of vector
x unless otherwise noted and let ‖A‖F be the Frobenius norm of
matrix A. Let [k] denote the set {1, . . . , k}.

Let N(0, σ) be the zero-mean Gaussian distribution with vari-
ance σ2 and let N(0, C) be the zero-mean multidimensional Gaus-
sian distribution with covariance C. Let G be a d × d diagonal
matrix where each diagonal entry is independently N(0, 1). Let D
be a d × d diagonal matrix where each diagonal entry is an inde-
pendent Bernoulli random variable, i.e., Dii is ±1 equiprobably.
Let M be a random permutation matrix of order d.

Hadamard matrices. We will use the following family of Hadamard
matrices in our algorithms. Let Hd ∈ ℜd×d denote the Hadamard

matrix of order d, defined as follows: H2 =

„

1 1
1 −1

«

and

H2k = H2 ⊗ H2k−1 , where ⊗ denotes the tensor product. For
Hadamard matrices of order d, using an FFT-like algorithm, matrix-
vector multiplication can be done in O(d log d) time; this fact will
be important for our running time analysis. Since it will be clear
from the context, we will drop the subscript d from Hd. Let DHi

denote a d × d diagonal matrix such that (DHi)jj = Hij . (For
more background on Hadamard matrices and their properties, the
readers are referred to standard CS undergraduate textbooks.)

An overview of LSH. We give a brief description of a basic LSH
for ℓ2 [12, 3]; we refer to this as the naive LSH. Let X ⊆ ℜd be
the set of input points and let q be a query point. Given a distance
parameter R and a recall parameter δ, our aim is to create a data
structure to efficiently return at least 1− δ fraction of the neighbors
of each query point that are at most a distance R (in ℓ2 norm) from
it. Let k, L, and w be parameters that we will choose later. Let
A be a k × d random matrix where each Aij is a random variable
drawn independently from N(0, 1) and let Ai denote the ith row
of A. Let b ∈ ℜd be a random vector such that each bi is chosen
uniformly in [w]. For each i ∈ [k], define hi(x) = ⌊Ai·x+bi

w
⌋

to be the ith hash value for x. For u = ‖x − y‖, let p(u) be the
(collision) probability that hi(x) = hi(y) for any i. If f(·) denotes
the density function of N(0, 1), a simple argument in [12] shows
that

p(u) =

Z w

0

1

u
f

„

t

u

«„

1 − t

w

«

dt,
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which monotonically decreases with u.
Define g(x) = (h1(x), . . . , hk(x)), i.e., a concatenation of the

k hash values. The probability that g(x) = g(y) is then pk(u).
We then create L independent copies of g(·) as g1(x), . . . , gL(x).
At preprocessing time, each point in the database is stored in each
of the hash buckets g1(x), . . . , gL(x). During query time, for a
given query point y, we compute g1(y), . . . , gL(y), and search all
these L buckets to get a set of candidates. This candidate set may
then be pruned based on whether we desire only the exact R-near
neighbors. Following our previous calculation, the expected frac-
tion of R-neighbors of the query point y that we get as candidates
is at least 1 − (1 − pk(R))L. We thus want this quantity to be at
least 1 − δ, the targeted recall. This theoretically determines the
values of the parameters k and L. In practice, as well as in our ex-
periments, these parameters are determined by doing a grid search
over the nearby k and L values using a sample of input points. The
value of w is chosen to be 4, as suggested in [12]. The space used
by the LSH data structure scales with L, the number of hash tables
constructed. The time needed to find out the exact R-near neigh-
bors of a query point consists of both the projection time and the
time taken to prune the candidate set.

4. ALGORITHM ACHash
In this section we present the first LSH algorithm that we call

ACHash. This algorithm is essentially a modification of the fast
Johnson–Lindenstrauss transform (FJLT) of Ailon and Chazelle [1],
with suitable rounding and thresholding steps for obtaining the hash-
ing buckets. We first present ACHash and then argue that the col-
lision probabilities of ACHash are very close to that of the naive
LSH scheme.

We first recap FJLT whose goal is to obtain a faster version of the
celebrated Johnson–Lindenstrauss transform. Given an input vec-
tor, FJLT first pre-conditions the vector so that it becomes dense
while its length is unchanged. This is accomplished by using a ran-
dom diagonal matrix and a Hadamard transform; this amounts to a
random length-preserving rotation of the vector. As we mentioned
earlier, the Hadamard transform can be computed in O(d log d)
time. Once the input vector is densified, FJLT then projects the
vector to a smaller dimension. The key observation is that given
that the input vector has been densified, a very sparse Gaussian
matrix is sufficient.

In ACHash, the steps are similar. We first pre-condition the in-
put vector using a random diagonal matrix and a Hadamard trans-
form, then apply a sparse Gaussian matrix followed by a round-
ing. We now proceed to a more formal description of ACHash
(Algorithm 1). Let k and L be the parameters of LSH. Let q =

min
“

Θ
“

log 1/δ

ǫ2
log(d/δ)

d

”

, 1
”

and let P be a k × d matrix where

Pij = 0 with probability 1 − q and is N(0, 1/q) with probability
q. Note that the pre-conditioning needs to be computed only once.
The time necessary to compute all the LSH buckets for one query
point is thus O(d log d + kL log2 d).

We now proceed with the proof that the above method works. We
first state the following key property of the pre-conditioning step
shown in [1], which says that the vector x̂ (Step 1) is sufficiently
dense.

LEMMA 1 ([1]). Let x ∈ ℜd be such that ‖x‖ = 1. Then,

‖HDx‖∞ = O(
q

log(d/δ)
d

), with probability at least 1 − δ.

Next we show a technical statement that guarantees that the sub-
sampling using the matrix P preserves the Euclidean distances. For
each i ∈ [k], let Si denote the set of coordinates such Pij was cho-

Algorithm 1 ACHash(x)

1: Compute x̂ = HDx.
2: for i = 1, . . . , L do

3: Generate P ∈ ℜk×d where each Pij is independently
N(0, 1/q) with probability q and 0 otherwise.

4: Generate b ∈ ℜk where each bi is independently and uni-
formly in [w].

5: Store

ACHashi(x) =

—

P x̂ + b

w

�

as the ith hash of x.

sen to be sampled from N(0, 1/q). For a vector z, let zSi denote
its restriction to the coordinate set Si.

LEMMA 2. Let v ∈ ℜd be such that ‖v‖∞ = O(
q

log(d/δ)
d

)

and ‖v‖ = 1. For all ǫ, δ ∈ (0, 1), if q = Ω
“

log(1/δ)

ǫ2
log(d/δ)

d

”

,

then

Pr

2

4

˛

˛

˛

˛

˛

˛

X

j∈Si

v2
j − q

˛

˛

˛

˛

˛

˛

> ǫq

3

5 ≤ δ.

PROOF. Let us define random variables δj = 1 if j ∈ Si, and
apply Bernstein’s inequality [29, Theorem 2.7] to the random vari-
ables wj = δjv

2
j . Note that

X

j

E[w2
j ] =

X

j

qv4
j ≤ q‖v‖2

∞‖v‖2 = q‖v‖2
∞ = O

„

q log(d/δ)

d

«

.

Therefore we have that

Pr

"

|
X

j

wj − q | > t

#

≤ exp

 

− t2/2
P

j E[w2
j ] + ‖w‖∞t/3

!

≤ exp

„

− t2/2

O(q log(d/δ)/d + tlog(d/δ)/(3d))

«

≤ δ,

for t = ǫq and q = Ω
“

2
ǫ2

log( 1
δ
)
`

1 + ǫ
3

´

log(d/δ)
d

”

.

The next theorem shows that the collision probabilities of ACHash
are very similar to that of the naive LSH. Let u = ‖x − y‖ and let

pAC(u) = Pr[ACHashi(x) = ACHashi(y)]

denote the probability that all k hash values of ACHash agree for
a generic i ∈ [L].

THEOREM 3. For all ǫ, δ ∈ (0, 1), we have

−(k +1)δ + pk((1+ ǫ)u) ≤ pAC(u) ≤ pk((1− ǫ)u)+ (k +1)δ.

PROOF. Let x̂ = HDx, ŷ = HDy, and z = x̂− ŷ. Since HD
is a unitary transformation, we have ‖z‖ = u. Using Lemma 1 we

have that ‖x̂‖∞, ‖ŷ‖∞ = O(
q

log(d/δ)
d

). By Lemma 2, we have

that for all i ∈ [k], with probability at least 1 − kδ,

(1 − ǫ)u ≤
X

j∈Si

z2
j /q ≤ (1 + ǫ)u.

Thus each zSi preserves the distance u to within a factor of 1 ± ǫ.
Multiplying x̂Si by the Gaussian random variables (from P ) and
the bucketization performed in steps 4 and 5 corresponds to doing
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a naive LSH on each of x̂Si and ŷSi vectors. Since the random
variables are all independent, we get the corresponding guarantees
from the naive LSH and the proof is complete by taking a union
bound over all the bad events.

5. ALGORITHM DHHash
In this section we present an improved hashing algorithm. While

this algorithm is somewhat motivated by ACHash, it has two appli-
cations of the Hadamard transform and hence we call it DHHash.
As before, we present the steps involved in computing the hash and
then argue that the collision probabilities of DHHash are very close
to that of the naive LSH scheme.

The first step is to pre-condition the input vector by applying a
random diagonal matrix followed by a Hadamard transform. While
this is the same as before, the rest of the steps are different. The
next step is to apply a random permutation, followed by a ran-
dom diagonal Gaussian matrix, and an another Hadamard trans-
form. This will give us a vector from which k entries are sampled
without replacement to give a particular hash bucket; the sampling
step is then repeated L times independently. The formal descrip-
tion is given below (Algorithm 2). The time taken by DHHash to
compute the buckets for a given query is thus O(d log d + kL),
which is an improvement over ACHash.

The intuition behind the sequence of transformations used in
DHHash is as follows.The first random diagonal matrix-Hadamard
transform combination smoothens the input vectors so that the max-
imum coordinate is bounded w.h.p. For such smoothened vectors,
the subsequent combination of the random Gaussian diagonal ma-
trix and Hadamard transform simulates the multiplication of the in-
put vectors by an i.i.d. Gaussian matrix – this is the key novelty in
designing this transform. The final sampling then gives the indices
of the hash buckets.

The crucial point to note in DHHash is that the vector itself is
computed only once and kL indices are sampled with replacement
from the resulting vector. This introduces dependence among the
L hash buckets, but as our experiments will show, this dependence
does not adversely affect the LSH performance. Note that it is pos-
sible to get a set of L independent buckets in O(Ld log k) time by
repeatedly invoking a O(d log k) subroutine [2, 26] for computing
k elements out of the randomized Hadamard transform. Recall the
definitions of G, M and b from Section 3.

Algorithm 2 DHHash(x)

1: Compute

ζ =

—

HGMHDx + b

w

�

.

2: for i = 1, . . . , L do

3: Store k entries sampled without replacement from ζ as
DHHashi(x), the ith hash of x.

For ease of notation, let us recall the steps of the hashing oper-
ation as follows. For input vectors x and y, let x̂ and ŷ be their
pre-conditioned and permuted versions, i.e., x̂ = MHDx, ŷ =
MHDy. Let g = diag(G) and let gi = (DHi) g. Observe that

ζi(x) =

—

gT
i x̂ + bi

w

�

is precisely the ith coordinate of vector ζ computed in Step 1 of
Algorithm 2.

In what follows, we will show a bound on the collision probabil-
ity of DHHash. Our guarantees will only be for a set of k indices

sampled without replacement from ζ. Note that in the actual al-
gorithm, we repeat this construction L times; while this seems to
work well in practice, we do not have any theoretical guarantees on
the joint distribution of the L choices.

Let S be a subset of k coordinates chosen at random without
replacement, and without loss of generality we can assume S =
[k]. Let pS(u) denote the probability that the hash bucket generated
using these coordinates are the same for both x and y, where u =
‖x̂ − ŷ‖ = ‖x − y‖. Since the bi are i.i.d. uniform, observe that
pS(u) can be written as

pS(u) =

Z ti=w

∀i,ti=0

f (t1, . . . , tk)
Y

i

„

1 − ti

w

«

dt1 . . . dtk, (1)

where f(·) denotes the joint pdf of the random variables τi where
τi = gT

i (x̂ − ŷ).
Note that the distribution of (τ1, . . . , τk) is a multidimensional

Gaussian since each of τi = gT DHi(x̂ − ŷ) is a linear transfor-
mation of the Gaussian random variable g. If the Gaussian ran-
dom vectors gi were all independent, then we would have pS(u) =
pk(u). In our case the gi = DHig are not independent. Neverthe-
less, we show strong lower and upper bounds on pS(u).

At a high level, our proof consists of two key steps. First we ob-
serve that the covariance of (τ1, . . . , τk) depends on the “smooth-
ness” of the vector x̂ − ŷ; ensuring this smoothness is precisely
the role of the pre-conditioner. Second, we show that if the τi’s
are nearly uncorrelated, then pS(u) is close to pk(u). Let c =

O
`

log d
d

´

and γ =
p

2c log(d/δ) for the remainder of the proof.

LEMMA 4. Let x̂ and ŷ be vectors in ℜd such that ‖x̂‖ =
‖ŷ‖ = 1 and ‖x̂‖∞ ≤ √

c and ‖ŷ‖∞ ≤ √
c. Also, assume that

d > log(d/δ) log(d) holds for a small fixed constant δ ∈ (0, 1).

Then with probability 1 − δ, it holds that for all i 6= j ∈ [d]
˛

˛〈DHi x̂, DHj ŷ〉
˛

˛ < γ.

PROOF. Consider a fixed i and j and let T be the set of coordi-
nates t where Hit = Hjt. Since M is a random permutation, we
can consider T as a random set of d/2 coordinates. Let δt = 1 if
t ∈ T and 0 otherwise. Then,

〈DHi x̂, DHj ŷ〉 =
X

t∈T

x̂tŷt −
X

t 6∈T

x̂tŷt = 2
X

t∈T

x̂tŷt − x̂T ŷ.

Over the random choice of T , we have that

E

"

X

t∈T

x̂tŷt

#

= x̂T ŷ/2.

For t ∈ [d] let Xt = δtx̂tŷt − x̂tŷt/2. Note that the events t ∈
T are not independent. However, since we can regard T as a set
of d/2 coordinates sampled without replacement, we can employ
the same form of Bernstein’s inequality that is applicable to the
independent case [20]. Note that

E[X2
t ] ≤ x̂2

t ŷ
2
t /4 ≤ cx̂2

t/4,

and thus
P

t E[X2
t ] ≤ c/4. Also observe that |Xt| ≤ c. There-

fore, from Bernstein’s inequality it follows that

Pr

"
˛

˛

˛

˛

˛

X

t∈T

x̂tŷt − x̂T ŷ

2

˛

˛

˛

˛

˛

> u

#

≤ 2 exp

„

− u2

P

t EX2
t + cu/3

«

≤ 2 exp

„

− u2

c/4 + cu/3

«

.
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By choosing u = γ, we have that u < 1 and c/4 + cu/3 < 2c/3.
Thus it holds with probability 1 − 2(δ/d)3 that

˛

˛

˛

˛

˛

X

t∈T

x̂tŷt − x̂T ŷ

2

˛

˛

˛

˛

˛

≤ γ,

which means that for this i, j pair,

˛

˛

˛

˛

〈DHi x̂, DHj ŷ〉 − x̂T ŷ

2

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

2
X

t∈T

x̂tŷt − x̂T ŷ

˛

˛

˛

˛

˛

= γ.

Taking a union bound over all i 6= j pairs, the statement of the
lemma holds with probability at least 1 − O(δ3/d).

We are now ready to state our main technical theorem. Ob-
serve that for a small enough γ, i.e., a large enough input dimen-
sion d, and for k ≪ d in Theorem 5, we have u′, u′′ ≈ u and
Ak,γ , Bk,γ ≈ 1 and therefore pS(u) ≈ pk(u).

THEOREM 5. Assume that γ = o(k−2). Let u′ = u
q

1−kγ
1−2kγ

,

u′′ = u(1 − kγ)1/2, and Ak,γ = 1 + O(k2γ) and Bk,γ = 1 −
Θ(k2γ) be constants depending on k and γ. Then,

−2δ + Bk,γpk(u′′) ≤ pS(u) ≤ Ak,γpk(u′) + 2δ.

PROOF. We give lower and upper bounds for the probability
density function of the projections f(τ1, . . . , τk) defined in (1).

Define the covariance matrix C ∈ ℜk×k as Cij = E[τiτj ].
Thus, for all i, j ∈ [1, k] we have that

Cij = (x̂ − ŷ)T DHiE[ggT ]DHj (x̂ − ŷ)

= (x̂ − ŷ)T DHiDHj (x̂ − ŷ).

It follows that Cii = u2. Using Lemma 1 with the vector z =
(1/u)(x̂ − ŷ), we have that ‖z‖∞ ≤ ‖x‖∞ + ‖y‖∞ ≤ 2

√
c

with probability at least 1 − δ. Conditioning on this event, from
Lemma 4 it follows that with probability at least 1−δ, |Cij | ≤ γu2

for all i 6= j. Let Σ = u2Ik. Therefore C can be written as
C = Σ + u2E = u2(I + E), where |Eij | ≤ γ and Eii = 0 and
hence

‖E‖ ≤ ‖E‖F ≤ kγ. (2)

Now let

fV (v) =
1

(2π)k/2
√

det V
exp

„

−1

2
vT V −1v

«

denote the pdf of the k-dimensional Gaussian N(0, V ).
Using the perturbation result about the determinant [24, Corol-

lary 2.14], we have that

| det I − det C
u2 |

det I
≤
„

1 +

‚

‚

‚

‚

I − C

u2

‚

‚

‚

‚

«k

− 1 ≤ (1 + kγ)k − 1,

and therefore

2 − (1 + kγ)k ≤ det
C

u2
≤ (1 + kγ)k.

Also, for any vector v,

−vT C−1v + vT Σ−1v = vT (−(I + E)−1 + I)v/u2. (3)

Using the standard matrix inverse perturbation bound [21, Section
5.8], we have that

‖(I + E)−1 − I‖ ≤ ‖E‖
1 − ‖E‖ .

Therefore from (in)equalities (2) and (3),

vT (−(I + E)−1 + I)v ≤ vT v‖(I + E)−1 − I‖

≤ vT v
‖E‖

1 − ‖E‖ ≤ vT v
kγ

1 − kγ
.

Thus,

−vT C−1v = −vT Σ−1v + vT (Σ−1 − C−1)v

≤ −u−2vT v + u−2 vT vkγ

1 − kγ

= −vT vu′−2 = −vT Σ′−1v,

where u′ = u/
q

1 − kγ
1−kγ

= u
q

1−kγ
1−2kγ

and Σ′ = u′2I . Simi-

larly,

−vT C−1v ≥ −u−2vT v − u−2 vT vkγ

1 − kγ

≥ −u−2vT v(1 − kγ)−1 = −vT vu′′−2 = −vT Σ′′−1v,

where u′′ = u(1 − kγ)1/2 and Σ′′ = u′′2I .
Now,

f(v) =
exp(−vT C−1v/2)

(2π)k/2
√

det C

≤ exp(−vT Σ′−1v/2)

(2π)k/2
√

det Σ′

√
det Σ′

√
det C

≤ fΣ′(v)
(1 − kγ)k/2

(1 − 2kγ)k/2
p

2 − (1 + kγ)k
= fΣ′(v)Ak,γ ,

where Ak,γ := (1−kγ)k/2

(1−2kγ)k/2

√
2−(1+kγ)k

. Similarly, using the lower

bounds,

f(v) ≥ exp(−vT Σ′′−1v/2)

(2π)k/2
√

det Σ′′

√
detΣ′′

√
detC

≥ fΣ′′ (v)

s

(1 − kγ)k

(1 + kγ)k
= fΣ′′(v)Bk,γ ,

where we set Bk,γ :=
q

(1−kγ)k

(1+kγ)k .

Using the above bounds for f(·) in (1), we have the main claim
of the theorem. Observe that for γ = o(k−2), we have (1 +

kγ)−k/2 = 1 − Θ(k2γ), (1 − kγ)k/2 = 1 − Θ(k2γ), and (1 −
2kγ)−k/2 = 1 + O(k2γ). Substituting these into the definitions
of Ak,γ and Bk,γ above, we obtain Ak,γ = 1 + O(k2γ) and
Bk,γ = 1 − Θ(k2γ).

6. EXTENSIONS TO ANGLE SIMILARITY
In this section we sketch how to apply our methods to the setting

when the similarity of two vectors is given by the angle between
them. Along with the fast projection techniques of Sections 4 and
5, the idea is to use the signs of the projections [9]. Due to lack of
space, we only provide a high-level description and omit the proofs.

To extend ACHash to the angle setting, we set the ith hash of the
input vector x to be sgn(PHDx). Provided that the angles are not
very close to zero, we can show that the above hashing method has
low bias in estimating the actual angle and that the estimates are
correct with high probability. The mild technical condition of the
angles not being to close to zero is easy to satisfy, say, by randomly
perturbing all input vectors.

1077



Name # points dimensions # queries

FLICKR 1 million 1024 10k
QUERIES 1 million 376 10k
MNIST 60k 784 10k

P53 14.6k 5408 2k

Figure 1: Description of datasets.

To extend DHHash to the angle setting, we now compute ζ =
sgn(HGMHDx+b

w
) instead; the rest of the steps are as before. Once

again, we can show that this yields an LSH for the angle-based
similarity of the input vectors.

7. EXPERIMENTS
In this section we describe the experimental results obtained by

running our algorithms, compared against a standard LSH imple-
mentation as the baseline. We start by describing the datasets, at
least two of which are publicly available for repeatability purposes.

We performed experiments in the R-near-neighbor setting. Given
an input dataset and a query point, the goal is to return the set of
points that lie within distance R of the query point.

7.1 Datasets
The experiments were performed on the following four datasets:

FLICKR, QUERIES, MNIST, and P53. The basic statistics of the
datasets are summarized in Figure 7.1.

The FLICKR dataset consists of images represented as dense vec-
tors of dimension 1024 computed by a convolutional neural net-
work. Out of these images, we sampled one million images in or-
der to create the input dataset, and another 10,000 images to cre-
ate the query set. When creating the query set, we ensured that
the same image (according to the identifier present in the dataset)
does not belong to both the input dataset and the query set. The
QUERIES dataset was created by following the description given
in [10], where the authors use an analogous dataset to demonstrate
how temporal correlation of search queries is indicative of seman-
tic similarity. In creating the QUERIES dataset, we calculated the
frequencies of queries submitted to a major search-engine for 376
consecutive days. Each query q is then represented as a vector Xq

of length 376, where the entry Xqi is the frequency of query q on
the ith day. We kept only the 1.01 million most frequent queries,
and again partitioned and sampled the set to obtain 1 million input
vectors and 10,000 query vectors. Each of the input vectors and
query vectors were also normalized using the mean and standard
deviation as X̃qi = (Xqi − µ(Xq))/σ(Xq), as described in [10].

For the sake of repeatability, we also perform the experiments
on two smaller, publicly available datasets, namely, MNIST1 and
P53 [11]2. The MNIST dataset consists of byte representations
of images of handwritten digits that have been size normalized and
pre-partitioned into training and test sets. We used this data set as-
is, the 60k training images as the input points and 10k test images
as query points. The P53 dataset consists of feature vectors that are
each of size 5409, where each dimension indicates a feature value
extracted from a biophysical model of the P53 protein. For this
dataset, we removed all the data points that have missing entries,
reducing the size of the dataset from 16.7k to 16.6k. These points
were then partitioned randomly into 2k query points and 14.6k in-
put points.

1
yann.lecun.com/exdb/mnist/

2
archive.ics.uci.edu/ml/datasets/p53+Mutants

7.2 Experimental method
We based our LSH implementation on the Exact Euclidean LSH

(E2LSH) implementation of Andoni et al.3 E2LSH implements
R-near neighbor by first constructing a set of candidates using the
LSH hash-buckets that the query point falls into, and then pruning
the set of candidate by comparing each of them to the query point.
The total query time is thus dependent on both the time taken to
compute the LSH buckets and on the number of candidates returned
by the LSH buckets.

E2LSH also applies a pairing “trick” to speed up the LSH com-
putation.3 This reduces the time to compute all the probe locations
in the LSH tables from O(dkL) to O(dk

√
L). For any even k, L is

set to m(m− 1). For a data point x, first it computes the k/2-wide

LSH values {u(i)(x) : i = 1, . . . , m} and then obtains L LSH

values from these as h(i,j)(x) = (u(i)(x), u(j)(x)), where i 6= j.
Although the h values are not independent any more, the resulting
scheme is still provably correct if L is set to slightly higher than in
the fully independent case.

We compared four different algorithms, namely, DHHash, naive
LSH (Naive), and two variants ACHash50 and ACHash25, where
the sparsity parameter q of Algorithm 1 is set to 0.5 and 0.25 re-
spectively. We ran E2LSH with the pairing trick and modified
the code to use each of these algorithms to compute the above de-
scribed u(i) functions.

7.3 Metrics
For each dataset, we chose four different radii R, and these were

chosen such that the average numbers of R-near neighbors are ap-
proximately 10, 25, 50, and 100. We present four different metrics
for each dataset, for each radius:

• the average recall, i.e., fraction of R-near neighbors that are
actually returned,

• the average query time per query measured in seconds elapsed,

• the time taken to compute the LSH indices,

• the space usage as measured by the number of hash tables
constructed, L,

• the average number of nearest neighbor candidates that the
E2LSH algorithm had to sift through.

Note that E2LSH filters set of candidates by computing the exact
distances, it never reports false R-neighbors, i.e., its precision is
always 1 irrespective of the LSH function used.

In order to be able to compare the query times of the different
LSH for various algorithms, we fixed the targeted recall at 0.9.
Since the performance of LSH schemes is sensitive to the parame-
ters k and L = m(m − 1), we iterated over a range of parameters
k and m and selected the parameter tuple that had the minimum
average query time while having a macro-averaged recall over 0.9.
Ideally, we would like to fix the recall of all the candidates exactly
at 0.9 to be able to compare the query times. However, because of
the small discrete jumps in the average recall in each of the LSH
techniques, we were able to only approximately align the recall
numbers of different algorithms. E2LSH provides a functionality
to estimate the optimal parameter set for a given recall and a given
radius. We used this initial estimation to guide the construction of
the grid of parameters that we searched over for each method.

7.4 Results
We demonstrate the efficiency of our algorithms by carefully

studying multiple metrics and datasets.

3
www.mit.edu/~andoni/LSH/
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(a) Recall, LSH query time, and LSH computation time for FLICKR.
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(b) Recall, LSH query time, and LSH computation time for QUERIES.
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(c) Recall, LSH query time, and LSH computation time for MNIST.
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(d) Recall, LSH query time, and LSH computation time for P53.

Figure 2: Recall, query times and LSH computation time for all four datasets

Recall. The first column in Figure 2 shows the recall levels achieved
at the chosen parameter tuples for each of the radius values. As dis-
cussed above, the recall values are very close to each other, but are
not aligned perfectly. The differences are at most a few percentage

points. We observe that the recall for DHHash is almost always
more than that of Naive at the chosen parameter tuple, thus mak-
ing our claims of query time improvements justified.
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(a) FLICKR LSH candidates.
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(b) FLICKR space usage.
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(c) QUERIES LSH candidates.
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(d) QUERIES space usage.
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(e) MNIST LSH candidates.

800 900 1000 1100
0

200

400

600

800

1000

1200

L
 (

#
 r

e
p

lic
a

ti
o

n
s
 u

s
e

d
)

Space Comparisons

DHHash

ACHash10

ACHash25

ACHash50

Naive

(f) MNIST space usage.
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(g) P53 LSH candidates.
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(h) P53 space usage.

Figure 3: Number of LSH candidates and space usage for all four datasets.

Query time. The middle column in Figure 2 depicts the average
query times obtained with the parameters that gave the aforemen-
tioned recalls. Overall, we see about a 15-20% improvement in
most cases (and up to 50% maximum) by using DHHash over
Naive. Using the two different variants of ACHash, however,
does not always provide a uniform improvement in query time over
Naive. Even at comparable (or lesser) recalls, we see ACHash
variants performing slightly worse than Naive. We however, have
not experimented with the sparsity settings of ACHash exhaus-
tively. Overall this underlines the benefits of DHHash being pa-
rameter free.

LSH computation. The last column in Figure 2 shows the time
taken in the computation of the LSH index for the average query
point. As predicted by theory, DHHash is always an order of mag-
nitude faster than Naive. ACHash, however, is not always faster
than Naive, which is a result of two effects: at the sparsity setting
we used, it still needs to compute an almost dense matrix-vector

product, and the number of replications L needed for ACHash (and
for DHHash) is typically more than that required for Naive.

Candidate set size. Figures 3(a), 3(c), 3(e), 3(g) illustrate the num-
ber of candidates that the LSH index returned as hits and the actual
pairwise distance computed for by E2LSH. The results are mostly
correlated with the respective query times, except for the rare cases
where in spite of having generated more candidates, DHHash runs
faster as an effect of having computed the LSH functions much
more efficiently.

Space usage. Finally, figures 3(b), 3(d), 3(f) and 3(h) show the
space used by the chosen parameter settings, measured by the value
of L, the number of replications performed. Except for FLICKR,
DHHash has been able to improve runtime only at the expense of
using more space than Naive.

Overall, we observe that due to the pairing “trick” described ear-
lier, Naive spends the majority of time in filtering the candidates.
Compared to Naive, DHHash achieves greater improvements in
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query time than those possible by speeding up the LSH compu-
tation only for the same L and k. Its optimal k and L are larger,
resulting in an increase in the number of cheap LSH operations per-
formed and a decrease in the more expensive distance computations
during filtering.

8. CONCLUSIONS
In this paper we proposed two new algorithms to speed up LSH

for the Euclidean distance. Our algorithms exploit the property of
being able to compute Hadamard transforms fast and consequently
are able to reduce the hash index construction time to O(d log d +
kL). While our algorithms are simple and easy to implement in
practice, most of the difficulty is in showing provable guarantees
on their performance. We develop novel analysis methods to this
end. Our extensive experiments on four large datasets show that
our algorithms achieve more than 20% improvement in query time
over standard DHHash implementations.

Since LSH is so fundamental, our algorithms open up a wide
possibility for their use in diverse settings. Interesting future di-
rections include using our algorithms for applications such as de-
duplication, clustering, similarity joins, all-pair similarity search,
etc.
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