
Science of Computer Programming 2 (1982) 143-152

North-Holland Publishing Company

143

FINDING REPEATED ELEMENTS*

J. MISRA
Department of Computer Science, University of Texas at Austin, Austin, TX78712, U.S.A.

David GRIES
Department of Computer Science, Cornell University, Ithaca, NY14853, U.S.A.

Communicated by J. Nievergelt
Received May 1982

Revised November 1982

Abstract. Two algorithms are presented for finding the values that occur more than n + k times

in an array 6[0 : n - 11. The second one requires time proportional to n * log(k) and extra space

proportional to k. A theorem suggests that this algorithm is optimal among algorithms that are

based on comparing array elements. Thus, finding the element that occurs more than n + 2 times

requires linear time, while determining whether there is a duplicate -the case k = n - requires

time proportional to n * log n.

The algorithms may be interesting from a standpoint of programming methodology; each was

developed as an extension of the algorithm for the simple case k = 2.

1. Introduction

We begin by introducing an algorithm that, given an array 6[0: n - 11, 1 c n,
determines whether there is a majority value -whether any value occurs more than
n + 2 times in b. The algorithm works in two passes. First, it finds a single likely
candidate ZI for the majority element; second, it scans b again to count the number
of occurrences of u to see whether u occurs more than n 12 times. The second
pass is simple and clearly takes time O(n), and we shall not concern ourselves with
it further.

The following algorithm for the first pass, which is clearly linear in IZ, appears
in [l]. We present it in Dijkstra’s guarded command notation [2,3], along with
the multiple assignment [3]. A multiple assignment x1, . . . , x,:= el, . . . , e, can be
executed by determining the variables xi being assigned, evaluating the expressions
ei, and then assigning the values to the variables in left-to-right order:

(1) i,c:=O,O;

doi#n+
if zI =b[i] +c,i:=c+2,i+l

*This work was supported under Air Force grant AFOSR81-0205 A at Austin and NSF grant

MCS81-03605 at Cornell.

0167-6423/82/0000-0000/$02.75 0 1982 North-Holland

144 J. Misra, D. Grim

Oc=i +c,i,u:=c+2,i+l,b[i]

Oc#ir\u#b[i]+i:=i+l

fi

: only ZJ may occur more than n + 2 times in b[O : n- 11)

Termination is obvious, using the bound function n-i. But how can one under-

stand that R is true upon termination? The easiest way is to introduce the following

invariant:

P: OGiGn

Avoccursatmostc+2timesinf7[0:i-1]~i~c~ even(c)

A each other value occurs at most i - c + 2 times in b [0 : i - l]

P is true after the initialization i, c := 0, 0, no matter what value is initially in U,

because b [0 : i - l] is empty. And, from the truth of P and the falsity of the loop

guard i #II upon termination, we conclude that result R holds. The following

arguments show that P is indeed an invariant, so that the loop is correct.

Consider the first alternative of the loop body. If guard u = b[i] is true, then v

occurs one more time in b [0 : i] than it does in b [0 : i - 11. Hence, increasing i by

1 requires increasing c by 2 so that the upper bound c +2 on occurrences of u

increases by 1. Note that execution of the command leaves the upper bound i - c + 2

of the number of occurrences of each other value the same.

Consider the second alternative. If c = i then i is even and i -c + 2 = i + 2. Hence,

no value occurs more than i + 2 times in b[O : i - 11. Therefore, the only value that

might possibly (it need not) occur more than i -+ 2 times in b[O: i] is b[i]. From

this, it follows that execution of the second guarded command maintains the truth

of P.

Finally, it is easily seen that execution of the third command, i := i + 1, when

guard c # i A v # b[i] is true maintains P. Hence, P is indeed a loop invariant.

This algorithm and its invariant led us to develop two different algorithms for

detecting values that could possibly occur more than n + k times in b[O : n - 11, for

a given k, 2 s k s II. Both algorithms work in two passes: the first pass determines

a set t of values that may occur more than rr + k times in b ; the second pass scans

b to determine how many times each value in t actually occurs. The second pass

can be performed in time O(n log()tl)), and we are interested only in describing

the first pass.

2. The first algorithm

We want to generalize the above problem and algorithm. Given k and n, 2 s k s n,

and array b [0 : n - 11, we want to find values that may occur more than it + k times

in 6. For the case k = 2, we were able to identify a single possible value; for the

more general case, where 2 s k s n, up to k - 1 distinct values may occur more

Finding repeated elements 145

than n + k times in b. The simplest extension of R for the case k = 2 is the following.

Execution is to store in a set variable l a set of pairs (u, c) such that

R: (Vv,c:(u,c)~t:~~occursatmostc+ktimesinb[O:n-l]

~c>n Ak dividesc)

A each other value occurs at most n t k times in b[O : n - l]

To develop the algorithm, we choose an invariant P that weakens R in a useful

manner, using the solution for the case k = 2 for insight:

~(Vu,~:(~,~)~t:~occursatmostcsktimesinb[O:i-l]

Ac >i Ak dividesc)

A any value not the first component of a pair in t

occurs at most s + k times in 6[0 : i - l]

hO<sciAkdividess

P was developed after several different trials. The part concerning set t was fairly

easy. The difficulty was in discovering a suitable upper bound s + k on the number

of occurrences of other values. A straightforward extension of the case k = 2 gave

i -(C U, c: (v, c) E t: c) for this upper bound; this at first seemed reasonable, since

each distinct value u in t could occur up to c + k times. However, adding a new

pair (u, c) to t would cause this upper bound to decrease far too much. Variable s

was introduced simply in the hope that a better upper bound could be computed

at each iteration, and trial and error led to its definition as given in P. Algorithm

(2) was developed hand-in-hand with P:

(2) i, s, t := 0, 0, { };

do ifn+

Let j be the index of a pair q, cj in t satisfying uj = b[i]

- if no such pair exists let j = 0;

ifj=Ohs+kGi+I +i,s:=i+l,s+k

0 j=OAs+k>i+l +i,t:=i+l,tu{(b[i],s+k)}

0 j#O +i,cj:=i+l,ci+k

fi;

Delete all pairs (vi, cj) from t for which

cj = i and, if any are deleted, set s to i

od {RI

It is clear that the initialization establishes P, that the algorithm terminates, and

that upon termination the result holds (if P is true). It remains to show the invariance

of P under execution of the loop body.

Consider the first alternative of the alternative command. Condition j = 0 means

that b[i] is not the first component of a pair in c. Hence, there is no need to change

the counts cj of components in t when i is increased by 1. However, s must be

146 J. Misra, D. Gries

decreased by k so that s + k remains an upper bound on the number of occurrences

of values not in t. The conjunct s + k s i + 1 ensures that execution maintains s G i.
Consider the second alternative. Again, j = 0 means there is no need to change

the counts ci of components in t. However, s cannot be changed as i is increased

because s s i would be violated. In this case, the component b[i] might occur

(s + k) + k times in b [0 : i], and so b [i] must be placed in t along with the maximum

number of times it might occur.

In the case of the third alternative, b[i] is the first component of a pair (vi, cj) in

t. Hence, Zlj occurs one more time in b[O : i] than it does in b[O : i - 11, and cj is

increased accordingly.

The third statement of the loop body deletes certain members from set t so that

pairs (vi, cj) of t satisfy cj > i. In this case, however, the upper bound on the number

of occurrences of values not in t must be changed. Hence the change in s.

This ends the discussion of the invariance of P.

The execution speed of algorithm (2) depends on the size and implementation

of set t. Unfortunately, we have been unable to determine a useful upper bound

on the size of t. We conjecture that it is a function of k, and not i. We also conjecture

that t may become its largest if b has roughly the following form: it ends with k
distinct values, preceded by k + 2 values, each occurring twice, preceded by k + 3

values, each occurring thrice, etc. Hence, ItI could possibly become as large as

O(k * log(k)).

3. The second algorithm

The second algorithm rests on some extremely simple theory. Consider a bag - i.e.

a collection of elements, with duplicates possible’ - and consider the operation of

deleting k distinct elements from it. This operation may be performed several times.

A k-reduced bag for bag B is a bag derived from B by repeating this operation

until no longer possible. Note that the k-reduced bag is not unique. For example,

for bag {1,1,2,3,3}, one can arrive at three different 2-reduced bags using 5 different

deletion sequences. We show these sequences below; in each bag the elements to

be deleted next are barred.

{i, 1,2,3,3}, then {i, %3}, then {3},

(7, 1,2,% 3}, then {i, 2,3}, then {3},

{i, 1,2,3,3}, then {i,2, g}, then {2},

(1, 1,2,3,3}, then {1,2, J}, then {l}, and

(1, 1, 2,% 3}, then {i, 1, j}, then (1)

1 We use set notation for bags, e.g. b u {u} denotes the bag consisting of the elements of bag b together
with the element v.

Finding repeated elements 147

Suppose bag B has N elements. The operation of deleting k distinct elements

can be performed at most N + k times, for after that the set will contain fewer than

k elements. Only values that occur in a k-reduced bag for B can occur more than

N + k times in B ; the other values have been deleted at most N + k times each

and don’t appear any more, so they could have appeared at most N + k times in

B. This proves the following theorem:

Theorem 1. Let bag B contain N items. The only values that may occur more than

N + k times in B are the values in a k-reduced bag for B.

Considering b[O : n - l] to be a bag, we use Theorem 1 to develop an algorithm

as follows. The result assertion is

R: t isa k-reducedbagfor b[O:n-1]

A loop invariant is found by replacing constant n by a variable i and introducing

a second variable d for efficiency purposes:

P: OSiCn
A t is a k-reduced bag for b [0 : i - l]
A d is the number of distinct elements of t

The algorithm is then written as follows: it should be compared to algorithm (2),

and it should need no further explanation:

(3) i, d, t := 0, 0, { };
do i#n+

if b[i]Ettt,d:=tu{b[i]},d+l;
if d = k +Delete k distinct values

from t and update d
Od<k+skip
fi

Ub[i]Et+t:=tu{b[i])

fi;
i:=i+l

od

In algorithm (2), we were not able to determine the size of set t. In algorithm (3),

t has at most k distinct elements, and it has at most k - 1 distinct elements before

and after each iteration. We will show later how to implement t so that algorithm

(3) runs in time O(n * log(k)).

Both algorithms use a bag t of elements. It is only in the definition of t that they

differ. Both were developed by trying to extend the algorithm for the case k = 2

given in the Introduction.

148 J. Misra, D. Gries

4. Implementing bag t of algorithm (3)

Bag t of algorithm (3) has at most n elements and d distinct elements, d s k.
The operations performed on t and d are:

1. t := { }. Performed once.

2. Search t for an element b[i]. Performed 12 times.

3. Insert an element into t. Performed at most n times.

4. Delete k distinct elements from t and update d. Performed at most it + k
times and only when t has exactly k distinct elements.

We implement t using an AVL tree T with d nodes; each node is a pair (0, ci),

where Uj is one of the distinct elements of t and cj is the number of times Vj occurs

in t. This requires O(k) space.

Operation 1 calls for initializing T to an empty tree - a constant-time operation.

Operation 2, searching for an element in t, requires time O(log(k)), since T has

at most k nodes. In total, operation 2 contributes time O(n *log(k)). Operation

3, inserting an element into t, calls for finding a value in a node j of T and adding

1 to cj, or, if the element is not in t, adding it with count 1. In any case, the time

is no worse than O(log(k)), and operation 3 contributes time O(n * log(k)).

Operation 4, deleting k distinct elements from t when t has exactly k distinct

elements, calls for subtracting 1 from count cj for each node j of AVL tree T and,

if cj becomes 0, deleting node j from T. This takes time at most O(k *log(k)).
Since operation 4 is performed at most n + k times, the total time spent in it is

O((n t k) * k * log(k)), which is O(n * log(k)).

Hence, the total time spent in operations dealing with bag t is O(n * log(k)).

5. On the complexity of detecting repeated elements

We introduce a decision-tree algorithm (see e.g. [4]) for the problem of determin-

ing whether any value occurs more than n + k times in 6[0 : n - 11. We show that

the algorithm takes time O(n * log(k)) (all times given are worst-case times). All

algorithms for the problem that are based on comparing elements of b can be

thought of as decision-tree algorithms, which leads to the suggestion that algorithm

(3) has optimal execution time.

A decision-tree algorithm for the problem is a decision tree D together with

algorithm (4), given below; the decision tree D is a finite tree with the following

characteristics:

1. Every nonterminal node of D has a label (i, j), where 0 G i, j < n. i and i are

used to refer to elements b[i] and b[j].
2. Every nonterminal node has three branches, with labels < , = and > .

3. Every terminal node has a label YES or NO.

Finding repeated elements 149

4. Given b[O: n - l] and k, execution of algorithm (4) begins with x as the root

of the tree and terminates with x being a terminal node; the label of x is

YES if some value occurs more than n + k times and NO otherwise.

(4) x :=root of D;

do x is a nonterminal node with label (i, i) +

b[i] op b[j] must hold, where op is either <, =, or >. Let y be the

son of node x that is reached via a branch labelled op. Follow the

branch from x to this son y, i.e. execute x := y

od

Execution of algorithm (4) begins at the root of the decision tree and proceeds

along some path to a terminal node, and the label at the terminal node indicates

whether a value occurs more than n + k times in b. All algorithms for solving the

problem that are based on comparing elements of b can be thought of as decision-

tree algorithms, for they proceed by comparing array elements in some order that

can be given by a decision tree. Further, decision trees enjoy the advantage that

the next action following a comparison can depend on afl previous comparisons,

without incurring the attendant cost.

As defined, tree D allows the comparisons < , > and = . The same results follow

if one allows instead only binary trees with labels = and f .

We now proceed as follows. Let r = n + k. Hence, n + (r + 1) <k c n fr. We

introduce a set of lists, called r-lists, each with n elements. Each r-list contains a

list of values that could appear in array b[O : II - l] upon which our algorithms can

be run. We show (Lemma 1) that there are at least (k/e)” different r-lists.’ Next,

we show (Lemma 3) that execution of the decision-tree algorithm (with a given

decision tree) terminates at a distinct terminal node for each assignment of an r-list

to b. Hence, a decision tree has at least as many terminal nodes as there are r-lists,

so that the longest path length in a decision tree is at least

CI(log((k/e)“) = O(n * log(k)-n *log(e))

= O(n * log(k)).

This proves

Theorem 2. For a given k, Z<k Sn, any algorithm based on comparing array
elements requires at least O(n *log(k)) comparisons to determine whether some
value(s) occurs more than n + k times in b[O: n - lJ!

Definition 1. An r-list is a list of n elements in which each of the values 0,

1 ,a.., n + r - 1 occurs r times and the value n + r occurs n mod r times.

’ e is the base of natural logarithms.

150 J. Misra, D. Gries

Lemma 1. There are at least (k/e) n different r-lists.

Proof. An r-list can be constructed as follows. Choose any r indices out of II and

store the value 0 there; choose any r indices out of the remaining rr -r possible

indices and store the value 1 there; . . . ; after r * (n + r)yalues have been stored,

store the value n + r in the remaining n mod r positions. The number of different

r-lists corresponds to the number of different possible choices in this procedure,

which is

“5:’ (
n-i*r

r) =rjnt’ * (:!mod r)!’

Letx=nmodr.Thenntr=(n-x)/r.So

rlnir * (a mod r)! = r!(“-x)‘r * x!

= (/.yx * x ql’r

s (r jn-* * r !*)l’r (Lemma 2)
= r!n’r

< (rr)“lr
” =r.

Hence, the number of different r-lists is bounded below by

n! n!

r!“-’ * (n mod r)!
a--

r”

(n/e)”
3 -

rn
(using Stirling’s formula)

z(k/e)“. q

Lemma 2. If r>p then r!Pap!‘.

Proof. Let r = p + q. Then

r!=p!*(p+l)*
z-p! *pq.

tp + 2) * * * * * (P +4)

Therefore, r!P 2 (p! * pq)’
=p!P *(p”)’

z-p!P * p!4

=p.. ” 0

Lemma 3. Consider a fixed decision tree. Execution of the decision-tree algorithm
for different r-lists terminates at different nodes.

Proof. No value occurs more than r times in an r-list; hence, execution of the

decision-tree algorithm with an r-list terminates at a node labelled NO. Next, define

Finding repeated elements 151

a new list L = Ll * L2 from two different r-lists Ll and L2 as follows:

L[j] = min(L1 [j), LZ[j]) for 0 G j <n.

It is obvious that L satisfies the following, for any indices i and j:

Ll[i]<Ll[j]hL2[i]<L2[j]*L[il<L[jl,
Ll[i]=Ll[j]hLZ[i]=LZ[j]*L[i]=L[j], (1)

Ll[i]>Ll[j]hLZ[i]>LZ[j]*L[i]>L[jl.

Further, we show in Lemma 4 that if Ll and L2 are different then some value

occurs more than r times in L, so that execution of the decision-tree algorithm

with input L terminates on a node with label YES.

Now assume the contrary of the lemma: execution of the decision-tree algorithm

terminates at the same node x for both Ll and L2. Hence, the executions for Ll

and L2 follow the same path in the decision tree. By property (l), execution of

the decision-tree algorithm on list L must follow that same path, and hence must

end in a terminal node with label NO. Since some value occurs more than r times

in L, this is a contradiction. Hence, the assumption that Ll and L2 land on the

same node must be false, and the lemma is proved. 0

Lemma 4. If r-lists Ll and L2 are different, then a value occurs more than r times
in L=Ll *L2.

Proof. Let sl (v) and sZ(v) be the set of indices (positions) in Ll and L2, respec-

tively, where a value that is at most v appears:

sl(v)={jlLl[j]Sv}, sZ(v)={jlLZ[j]Gv}

Since Ll # L2, there is some v satisfying sl (v) # sZ(v). For v an +r, sl (v) =

sZ(v)= {1,2,..., n}. Hence, for some W, w < rr + r, sl (w) # sZ(w) holds.

Suppose iEsl(w)usZ(w). Then either Ll[i]Cw or LZ[i]Sw, so that L[i]=
min(L1 [i], LZ[i]) s w. From the definition of r-list and the fact that w < rz +r,

Is1 (w)l = (sZ(w)l = (w + 1) * r holds. Since sl (w) # sZ(w), Is1 (w)(u]sZ(w)] >

(w + 1) * r. By the pigeon-hole principle, some value that is at most w must appear

more than r times in L. 0

6. Finding whether values occur more than r times

Consider finding values that occur more than r times in b[O: n - 11, where

1 G r =C n. This problem can be solved in terms of the original problem by taking k

as the smallest integer satisfying n + k cr.Thus,ifn=lOandr=4,takek=3and

find a set of values that may occur more than 3, instead of 4, times. Then count

the number of occurrences in b of each of these values to solve the original problem.

152 J. Misra, D. Gries

If n is not known - e.g. b is implemented as a linked list-then one can first

search b to determine its length. This takes linear time, so that the algorithm

remains O(n * log(k)).

Acknowledgment

We wish to thank the referees for quickly providing many constructive criticisms.

References

[l] B. Boyer and J. Moore, MJRTY: A fast majority-vote algorithm, submitted for publication.

[2] E.W. Dijkstra, A Discipline ofProgramming (Prentice-Hall, Englewood Cliffs, NJ, 1976).

[3] D. Gries, The Science ofProgramming (Springer, New York, 1981).
[4] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms

(Addison-Wesley, Menlo Park, 1974).

