
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220618405

Membership in Constant Time and Almost-Minimum Space

Article in SIAM Journal on Computing · January 1999

DOI: 10.1007/BFb0049398 · Source: DBLP

CITATIONS

133
READS

972

2 authors:

Some of the authors of this publication are also working on these related projects:

Integrated Care - eCare View project

CaReWood View project

Andrej Brodnik

University of Ljubljana

117 PUBLICATIONS 1,636 CITATIONS

SEE PROFILE

J. Ian Munro

University of Waterloo

302 PUBLICATIONS 8,237 CITATIONS

SEE PROFILE

All content following this page was uploaded by Andrej Brodnik on 26 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220618405_Membership_in_Constant_Time_and_Almost-Minimum_Space?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220618405_Membership_in_Constant_Time_and_Almost-Minimum_Space?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Integrated-Care-eCare?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CaReWood?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrej-Brodnik?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrej-Brodnik?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Ljubljana?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrej-Brodnik?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J-Munro?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J-Munro?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Waterloo?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J-Munro?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrej-Brodnik?enrichId=rgreq-e0241f75762cc7f4ee00a10572cfb195-XXX&enrichSource=Y292ZXJQYWdlOzIyMDYxODQwNTtBUzoxMDExNzgwNTQ1NDU0MjZAMTQwMTEzNDEzNjUwMA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

MEMBERSHIP IN CONSTANT TIME
AND ALMOST-MINIMUM SPACE∗

ANDREJ BRODNIK† AND J. IAN MUNRO‡

SIAM J. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 28, No. 5, pp. 1627–1640

Abstract. This paper deals with the problem of storing a subset of elements from the bounded
universeM = {0, . . . ,M−1} so that membership queries can be performed efficiently. In particular,
we introduce a data structure to represent a subset of N elements of M in a number of bits close

to the information-theoretic minimum, B =
⌈

lg
(
M
N

)⌉
, and use the structure to answer membership

queries in constant time.

Key words. information retrieval, search strategy, data structures, minimum space, dictionary
problem, efficient algorithms hashing, lower bound

AMS subject classifications. 68P05, 68P10, 68Q20

PII. S0097539795294165

1. Introduction. A basic problem in computing is to store a finite set of ele-
ments so that one can quickly determine whether or not a query element is a member
of this set. In this paper we study a version of the problem in which elements are
drawn from the bounded universe M = {0, . . . ,M − 1} using an extended random
access machine (RAM) model that permits constant-time arithmetic and Boolean bit-
wise operations on these elements. Such a very realistic model enables us to decrease
the space needed to store a set of N elements almost to the information-theoretic
minimum of B = dlg (MN)e bits, while answering queries in constant time.

Fich and Miltersen [12] have shown that, under a RAM model whose instruction
set does not include division, Ω(logN) operations are necessary to answer a member-
ship query if the size of a data structure is at most M/N ε words of dlgMe bits each.
Thus a sorted array is optimal in that context. Our model includes integer division
along with the other standard operations in its instruction set. This permits us to
use perfect hash tables (functions) and bitmaps, both of which have constant-time
worst-case behavior. However, hash tables generally require that key values be stored
explicitly, and so are succinct only when relatively few elements are present. On the
other hand, a bitmap is succinct only if about half of the elements are present. In
this paper we focus primarily on the range in which N is at least M ε, but still o(M),
with the goal of introducing a data structure whose size is within a lower-order term
of the minimum.

In general terms, our basic approach is to use either perfect hashing or a bitmap
whenever one of them achieves the optimum space bound; otherwise we split the

∗Received by the editors November 5, 1995; accepted for publication (in revised form) April 10,
1998; published electronically May 6, 1999. This work was supported in part by the Natural Science
and Engineering Research Council of Canada under grant A-8237 and the Information Technology
Research Centre of Ontario and was done while the first author was a graduate student at the
University of Waterloo. Some of the results of this work were announced in preliminary form, in
Membership in constant time and minimum space, in Proceedings, 2nd European Symposium on
Algorithms, Lecture Notes in Comput. Sci. 855, Springer-Verlag, Berlin, New York, 1994, pp. 72–81.

http://www.siam.org/journals/sicomp/28-5/29416.html
†Department of Theoretical Computer Science, Institute of Mathematics, Physics, and Mechan-

ics, University of Ljubljana, Jadranska 11, 1111 Ljubljana, Slovenia, and Department of Computer
Science, Lule̊a Technical University, SE-971 87 Lule̊a, Sweden (andrej.Brodnik@IMFM.Uni-Lj.SI).
‡Department of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

(imunro@uwaterloo.ca).

1627

1628 ANDREJ BRODNIK AND J. IAN MUNRO

universe into subranges of equal size. We discover that, after a couple of careful
iterations of this splitting, the subranges are small enough so that succinct indices
into a single table of all possible configurations of these subranges (table of small
ranges) permit the encoding in the minimal space bound. This is an example of what
we call word-size truncated recursion (cf. [15, 16]). That is, the recursion continues
only to a level of “small enough” subproblems, at which point indexing into a table of
all solutions suffices. We can do this because at this level a single word in the machine
model is large enough to encode a complete solution to each of these small problems.

We proceed with definitions, notation, and background literature. In section 3 we
present a constant-time solution with space bound within a small constant factor of
the minimum required. The solution has the merit of providing a reasonably practical
implementation, and can be tuned to specific problem sizes as is illustrated in giving
the space requirements for two specific examples. In section 4 the solution is further
tuned to achieve the asymptotic space bound of B + o(B). The results of sections 3
and 4 are extended in section 5 to the dynamic case.

2. Notation, definitions, and background.

2.1. The problem. We use lg to denote the logarithm base 2 and ln to denote
the natural logarithm. lg(i) indicates lg applied i times and lg∗ indicates the number
of times lg can be applied before reducing the parameter to at most 1.

Definition 2.1. Given a universe M = {0, 1, . . . ,M − 1} with an arbitrary
subset N = {e0, e1, . . . , eN−1}, where N and M are known, the static membership
problem is to determine whether a query value x ∈M is in N .

This problem has an obvious dynamic extension leading to the following definition.
Definition 2.2. The dynamic membership problem is the static membership

problem extended by two operations: insertion of an element x ∈ M into N (if it is
not already in N) and deletion of x from a set N (if it is in N).

Since solving either problem for N trivially gives a solution for N , we assume
0 ≤ N ≤M/2.

Our model of computation is an extended version of the RAM machine model
(cf. [1]; see also MBRAM in [9]). Memory consists of words of m = dlgMe bits, which
means that one memory register (word) can be used to represent a single element of
M, specify an arbitrary subset of a set of m elements, refer to some portion of the data
structure, or have some other role that is an m-bit blend of these. For convenience, we
measure space in bits rather than in words. Our word size, then, matches the problem
size, and so the model is transdichotomous in the sense of Fredman and Willard [14].
The usual operations, including integer multiplication, division, and bitwise Boolean
operations, are performed in unit time.

We take as parameters of our problem M and N . Hence,

B =

⌈
lg

(
M

N

)⌉
(2.1)

is an information-theoretic lower bound on the number of bits required to describe
any possible subset of N elements chosen from M elements. Since we are interested
only in solutions that use O(B) or B + o(B) bits for a data structure, there is no
need to pay attention to rounding errors, and so we can omit the ceiling and floor
functions.

Using Stirling’s approximation for the factorial function and Robbins’ refinement
for its error term (cf. [20, p. 184]), we compute from (2.1) a lower bound on the

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1629

number of bits required,

B = lg

(
M

N

)
= lgM !− lgN !− lg(M −N)!

≈M lgM −N lgN − (M −N) lg(M −N) error ≤ lgN + O(1)

= M lgM −N lgN

−(M −N)(lgM + lg(1−N/M))

= N lg(M/N)− (M −N) lg(1−N/M).(2.2)

Defining the relative sparseness of the set N as

r = M/N(2.3)

and observing that 2 ≤ r ≤ ∞, we rewrite the second term of (2.2) as

N ≤ −N((r − 1) lg(1− r−1)) ≤ N/ ln 2 ≈ 1.4427. . . N.(2.4)

Thus, for the purposes of much of this work, we can use

B ≈ N lg(M/N) ≡ N lg r(2.5)

with an error bounded of Θ(N) bits as given in (2.4). Note that the error term is
positive and hence (2.5) is an underestimate.

An intuitive explanation of (2.5) is that N is fully described when each element
in N “knows” its successor. Since there are N elements in N , the average distance
between them is r = M/N ; to encode this distance we need lg r bits. Moreover, it
is not hard to argue that the worst case, and indeed the average one, occurs when
elements are fairly equally spaced. This is exactly what (2.5) says.

2.2. Some background literature. This paper deals with one of the most
heavily studied problems in computing, in a context in which the exact model of
computation is critical. Therefore, we suggest [9] and [18] as general background and
focus on those papers that most heavily shaped the authors’ approach. We address
three aspects of the problem: the static and dynamic cases of storing a table with
little auxiliary data and the information-theoretic trade-offs. In the first two cases,
it is usually assumed that there is enough space to list those keys that are present
(in a hash table or similar structure) or to list the answers to all queries (by using a
bitmap). Here we deal with the situation in which we cannot always afford the space
needed to use either structure directly. Nonetheless, we start with the idea of storing
keys and little else.

Yao [24] extended the notion of an implicit data structure [21] to the domain
of the bounded universe and addressed the problem of storing the value N and an
array of N words, each containing a lgM bit data item. He showed that if no more
information is stored, then there always exists some value of N and subset of size N
that requires at least logarithmic search time. Adding almost any storage, however,
changes the situation. For example, with one more register (lgM bits) Yao [24]
showed that there exists a constant-time solution for N ≈M or N ≤ 1

4

√
lgM , while

Tarjan and Yao [23] presented a more general O(lgM/ lgN) time, O(N lgM) bit
solution. Fredman, Komlós, and Szemerédi [13, sec. 4] developed a constant-time
algorithm with a data structure of N lgM bits for the portion of the data, plus an
additional O(N

√
lgN + lg(2)M) bits. Fiat et al. [11] decreased the extra bits to

1630 ANDREJ BRODNIK AND J. IAN MUNRO

6 lgN + 3dlg(2)Me + O(1). Moreover, combining their result with Fiat and Naor’s
[10] construction of an implicit search scheme for N = Ω((lgM)p), they produced a

scheme using fewer than (1 + p)dlg(2)Me+ O(1) additional bits.

Mairson [17] took a different approach. He assumed all structures are implicit
in Yao’s sense and the additional storage represents the complexity of a searching
program. Following a similar path, Schmidt and Siegel [22] proved a lower bound

of Ω(N/(k2ek) + lg(2)M) bits spatial complexity for k-probe oblivious hashing. In

particular, for constant-time hashing this gives a spatial complexity of Θ(lg(2)M+N)
bits.

For the dynamic case, Dietzfelbinger et al. [5] proved an Ω(lgN) worst-case lower
bound for a realistic class of hashing schemes. In the same paper they also presented
a scheme which, using results of [13] and a standard doubling technique, achieved
constant amortized expected time per operation. However, the worst-case time per
operation (nonamortized) was Ω(N). Later Dietzfelbinger and Meyer auf der Heide
[6] upgraded the scheme and achieved constant worst-case time per operation with a
high probability. A similar result was also obtained by Dietzfelbinger et al. [4].

In the data compression technique described by Choueka et al. [3], a bit vector is
hierarchically compressed. First, the binary representations of elements stored in the
dictionary are split into pieces of equal size. Then the elements with the same value as
the most significant piece are put in the same bucket and the technique is recursively
applied within each bucket. When the number of elements which fall in the same
bucket becomes sufficiently small, the data are stored in a compressed form. The
authors experimentally tested their ideas but did not formally analyze them. They
claim their result gives a relative improvement of about 40% over similar methods.

An information-theoretic approach was taken by Elias [7] in addressing a more
general version of the static membership problem which involved several different
types of queries. For these queries he discussed a trade-off between the size of the
data structure and the average number of bit probes required to answer the queries.
In particular, for the set membership problem he described a data structure of a
size N lg(M/N) + O(N) (using (2.5), B + o(B)) bits, which required an average of
(1 + ε) lgN + 2 bit probes to answer a query. However, in the worst case the method
required N bit probes. Elias and Flower [8] further generalized the notion of a query
into a database. They defined the set of data and a set of queries and, in a general
setting, studied the relation between the size of the data structure and the number
of bits probed, given the set of all possible queries. Later, the same arrangement was
more rigorously studied by Miltersen [19].

3. Static solution using O(B) space. Our solution breaks down to a number
of cases, based on the relative sparseness ofN . As noted earlier, we can assume that at
most half the elements are present, since the complementary problem could otherwise
be solved. We are left with four cases as r ranges between 2 and ∞ (cf. Table 3.1).
The crucial dividing point between the sparse and dense cases comes when r is in the
range Θ(lgM). For purposes of tuning the method, we find it convenient to define
this separation point in terms of a parameter λ(> 1), namely,

rsep = logλM,(3.1)

or the size of sets

Nsep = M/rsep = M/logλM.(3.2)

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1631

Table 3.1
Cases considered for the static version of the problem.

Sparseness Range of r Range of N Section

Very sparse ∞ to Mε 0 to M1−ε 3.1
Moderately sparse Mε to logλM M1−ε to M/logλM 3.2
Moderately dense logλM to 1/α M/ logλM to αM 3.3
Very dense 1/α to 2 αM to M/2 3.1

The very sparse and very dense cases are rather straightforward, though their bound-
aries with the more difficult moderately sparse and moderately dense cases are subject
to tuning as well. After handling these easy cases, we address the moderately sparse
case and subsequently extend its solution to handle the moderately dense.

3.1. Very sparse and very dense cases. When N is very dense, i.e., N ≥ αM
for 0 < α ≤ 1/2, we can afford to use a bitmap of size M = Θ(B) to represent it.
When N is very sparse, i.e., N ≤ M1−ε for 0 < ε ≤ 1, we are allowed Θ(N logM)
bits which is enough to list all the elements of N . For N ≤ c = O(1) we simply list
them. Beyond this we use a perfect hashing function of some form (cf. [10, 11, 13]).
Note that all of these structures allow us to answer a membership query in constant
time and are, indeed, reasonably practical methods.

3.2. Moderately sparse case—indexing. The range in which r ≈ rsep typi-
fies the case in which neither the straightforward listing of the elements nor a bitmap
minimizes the storage requirements. In this range, the N lgM bits needed to list all
elements is of the same order as the M for a bitmap, but B = Θ(N lg(2)M). Indeed,
thoughts of this specific case lead not only to a solution to the entire moderately
sparse range, but also to the first step in the solution for the moderately dense case.

Lemma 3.1. If N ≤ Nsep = M/ logλM for λ > 1, then there is an algorithm
which answers a membership query in constant time using an O(B) bit data structure.

Proof. The idea is to split the universe,M, into p buckets, where p is as large as we
can make it without exceeding our space constraints. The data falling into individual
buckets are then organized using perfect hashing. The buckets cover contiguous ranges
of equal sizes, M1 = bM/pc, so that a key x ∈M falls into bucket bx/M1c. To reach
individual buckets, we index through an array of pointers.

Each pointer occupies dlgMe bits. Hence, the total size of the index (the array of
pointers) is p dlgMe bits. We store all elements that fall in the same bucket in a perfect
hash table [10, 11, 13] for that bucket. Since the ranges of all buckets are of equal size,
the space required to describe each element in a hash table is dlg(M/p)e bits, and so
to describe all elements in all buckets we require only N dlg(M/p)e bits. We also need
some extra space to describe individual hash tables. If we use the method of Fiat et
al. [11], the additional space for bucket i is bounded by 6dlgNie+ 3dlg(2)M1e+ O(1),
where Ni is the number of elements in bucket i. Thus, the additional space to describe
all hash functions is bounded by p(6 lgN + 3 lg(2)M + O(1)). Putting the pieces
together, we get the expression for the size of the structure:

S = p lgM +N lg(M/p) + p(6 lgN + 3 lg(2)M + O(1)).

Choosing p to minimize this value leads to a rather complex formula. However, a
simple approximation is adequate, and so we take

p = N/lgM.(3.3)

1632 ANDREJ BRODNIK AND J. IAN MUNRO

This gives

S = N +N(lgM/N + lg(2)M) +

N(6 lgN + 3 lg(2)M + O(1))/lgM by (2.3)

≤ N lg r + (N lg r)(lg(2)M/ lg r) +N +

N(6 lgN + 3 lg(2)M + O(1))/lgM by (2.5)

= B +Blg(2)M/lg r + o(B).(3.4)

Hence, for a moderately sparse subset, i.e., r ≥ rsep, the size of the structure is O(B)
bits. It is also easy to see that the structure permits constant-time search.

Note that if rsep ≥ lgM (i.e., in (3.1) λ < 2), the lead term of (3.4) is less than
2B.

3.3. Moderately dense case—word-size truncated recursion. In this sec-
tion we consider sets of size N (or sparseness r) in the range

Nsep = M/logλM ≤ N ≤ αM ≤ M/2,
rsep = logλM ≥ r ≥ 1/α ≥ 2.

(3.5)

For such moderately dense N we apply the technique of Lemma 3.1—that is, split the
universe M into equal-range buckets. However, this time the buckets remain too full
to use hash tables and therefore we apply the splitting scheme again. In particular, we
treat each bucket as a new, separate-but-smaller, universe. If its relative sparseness
falls in the range defined by (3.5) (with respect to the size of its smaller universe) we
recursively split it.

Such a straightforward strategy leads, in the worst case, to a Θ(lg∗M) level
structure and therefore to a Θ(lg∗M) search time. However, we observe that at each
level the number of buckets with the same range increases and ultimately there must
be so many small subsets that not all can be different. Therefore we build a table
of all possible subsets of universes of size up to a certain threshold. This table of
small ranges (TSR) allows replacement of buckets in the main structure by pointers
(indices) into the table. Although the approach is not new (cf. [15, 16]), it does not
appear to have been given a name. We refer to the technique as word-size truncated
recursion. In our structure the truncation occurs after two splittings. In fact, because
all our second-level buckets have the same range, our TSR consists of all possible
subsets of only a single small universe. In the rest of this section we give a detailed
description of the structure and its analysis.

On the first split we partition the universe into

p = Nsep/lgM = M/(logλM lgM)(3.6)

buckets, each of which has a range M1 = M/p. At the second level we have, again,
relatively sparse and dense buckets which now separate at the relative sparseness

r′sep = logλM1 = logλ(M/p) = O(lg(2)M).(3.7)

For sparse buckets we apply the solution of section 3.2, and for very dense ones
with more than the fraction α of their elements present we use a bitmap. For the
moderately dense buckets, with relative sparseness within the range defined in (3.5),
we reapply the splitting. However, this time the number of buckets is (cf. (3.6))

p1 = M1/(r
′
sep lgM1),(3.8)

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1633

so that each of these smaller buckets has the same range,

M2 = M1/p1 = O((lg(2)M)2),(3.9)

because lgM1 = O(lg(2)M).
At this point we use the TSR. This table consists of bitmap representations of all

subsets of the universe of size M2. Thus we can replace buckets in the main structure
with “indices” (pointers of varying sizes) into the table. We order the table first ac-
cording to the number of elements in the subset and then lexicographically. We store
a pointer in the TSR as a record consisting of two fields: ν, the number of elements
in the bucket, which takes dlgM2e bits; and β, the rank of this bucket with respect to
the lexicographic order among all buckets containing ν elements. To store β, by (2.1),
takes Bν = dlg (M2

ν

)e bits. The actual position (index) of the corresponding bitmap
of the bucket in the TSR is thus

ν−1∑
i=1

(
M2

i

)
+ β − 1.(3.10)

The sum is found by table lookup and so a search is performed in constant time.
This concludes the description of the data structure also presented in Algo-

rithm 3.1. As demonstrated in Algorithm 3.2, the data structure allows constant-time
membership queries, but it remains to be seen how much space it occupies. The al-
gorithm uses functions LookUpBM—look up bitmap; FindOL—find in ordered list; and
FindHT—find in hash table, whose descriptions are omitted. However, their particu-
lar implementation suggests the constants c, ε, λ, and α used for the fine tuning of
Algorithm 3.2.

Algorithm 3.1. Data structure for the solution of the static prob-
lem.

TYPE

tCases=

(eEmpty, (* N = 0 *)

eVerySparse1, (* 0 < N ≤ c *)

eVerySparse2, (* c < N ≤ M1−ε *)

eModeratelySparse, (* M1−ε < N ≤ M / logλ M *)

eModeratelyDense, (* M / logλ M < N ≤ α M *)

eVeryDense); (* α M < N < M/2 *)

tSet= RECORD CASE BOOLEAN OF

TRUE: (* current universe is at most M2 *)

ν, β;
FALSE: (* general case *)

N; (* size of the set *)

CASE tCases OF

eEmpty: ; (* nothing *)

eVerySparse1: (* (un)ordered list *)

list: ARRAY [] OF tElement;

eVerySparse2: (* hash table *)

hashTable: tHashTable;

eModeratelySparse: (* indexing *)

index: ARRAY [] OF ^tHashTable;

eModeratelyDense: (* (word-size truncated) recursion *)

subset: ARRAY [] OF ^tSet;

eVeryDense: (* bit map *)

1634 ANDREJ BRODNIK AND J. IAN MUNRO

bitmap: ARRAY [] OF BOOLEAN;

END;

END;

Algorithm 3.2. Membership query if elt is in N ⊆M, where |M| = M .

PROCEDURE Member (M, N, elt): BOOLEAN;

IF M ≤ M2 THEN

pointer:= binomials[N.ν] + N.β -1; (* pointer by (3.10), *)

RETURN LookUpBM (TSR[pointer], elt); (* bit map from the TSR *)

ELSE

IF N.N ≥ M/2 THEN negate:= FALSE; N:= N.N
ELSE negate:= TRUE; N:= M-N.N END;

CASE N OF

(* How sparse the set N is: *)

N = 0: answer:= FALSE (* empty set; *)

N ≤ c: answer:= FindOL (N.list, elt); (* very sparse set; *)

N ≤ M1−ε: answer:= FindHT (N.hashTable, elt); (* still very sparse set;
*)

N ≤ M/logλ(M): (* moderately sparse set: *)

M1:= Floor ((M/N)*lg(M)); (* split into buckets of range M1 by (3.3), *)

answer:= FindHT (N.index[elt DIV M1], elt MOD M1); (* search bucket; *)

N ≤ α*M: (* moderately dense set: *)

M1:= Floor (logλ(M)*lg(M)); (* split into subuniverses of size M1 by
(3.6), *)

answer:= (* and recursively search it; *)

Member (M1, N.subset[elt DIV M1]^, elt MOD M1)

(* very dense set; *)

ENDCASE;

IF negate THEN RETURN NOT answer

ELSE RETURN answer ENDIF;

ENDIF;

END Member;

In analyzing the space requirements, we are interested only in moderately dense
subsets, as otherwise we use the structures of sections 3.1 and 3.2. First we analyze the
main structure, i.e., the data structure without a TSR, and begin with the following
lemma.

Lemma 3.2. Suppose we are given a subset of N elements from the universe
M , and B is as defined in (2.1). If this universe is split into p buckets of ranges of
sizes Mi containing Ni elements, respectively (now, using (2.1), Bi = dlg (Mi

Ni

)e for

1 < i ≤ p), then B + p >
∑p
i=1Bi.

Proof. If
∑p
i=1Mi = M and

∑p
i=1Ni = N , we know that 0 <

∏p
i=1

(
Mi

Ni

) ≤ (MN)
and therefore

∑p
i=1 lg

(
Mi

Ni

) ≤ lg
(
M
N

)
. On the other hand, from (2.1) we have Bi =

dlg (Mi

Ni

)e and therefore Bi − 1 < lg
(
Mi

Ni

) ≤ Bi. This gives us
∑p
i=1(Bi − 1) < B and

finally B + p >
∑p
i=1Bi.

In simpler terms, Lemma 3.2 proves that if subbuckets are encoded at close to the
information-theoretic bound, then the complete bucket also uses an amount of space
close to the information-theoretic minimum, provided that the number of buckets is
small enough (p = o(B)) and that the index does not take too much space.

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1635

We analyze the main structure itself from the top to the bottom. The first-level
index consists of p pointers of lgM bits each. Therefore, using (3.6) and (3.2), the
size of that complete index is

p lgM = M/logλM = Nsep = o(B).(3.11)

For the sparse buckets on the second level we use the solution presented in sec-
tion 3.2. For the very dense buckets (r ≤ 1/α) we use a bitmap. Both of these
structures guarantee space requirements within a constant factor of the information-
theoretic bound on the number of bits. If the same also holds for the moderately
dense buckets, then, using Lemma 3.2 and (3.11), the complete main structure uses

O(B) bits. Note that we can apply Lemma 3.2 freely because the number of buckets,
p, is o(B).

Next we determine the size of the encoding of the second-level moderately dense
buckets, that is, the encoding of buckets with sparseness in the range of (3.5). For this
purpose we first consider the size of bottom-level pointers (indices) into the TSR. As
mentioned, the pointers are records consisting of two fields. The first field, ν (number
of elements in the bucket), occupies dlgM2e bits, and the second field takes at most
Bν . Since Bν ≥ dlgM2e, the complete pointer1 takes at most twice the information-
theoretic bound on the number of bits, Bν . On the other hand, the size of an index
is bounded using an expression similar to (3.11). Subsequently, this, together with
Lemma 3.2, also limits the size of space needed to store representation of moderately
dense buckets on the second level to be within a constant factor of the information-
theoretic bound. This, in turn, limits the size of the complete main structure to O(B)
bits.

It remains to compute the size of the TSR. There are 2M2 entries in the table and
each of the entries is M2 bits wide. By (3.9) M2 = O((lg(2)M)2). This gives us the
total size of the table

M22M2 = O((lg(2)M)2(logM)lg(2) M)

= O((lg lgM lgM)(lg(2)M(lgM)1+lg(2) M))

= o(lg rsepM/rsep) by (3.1)

= o(Nsep lg rsep) = o(B).(3.12)

Finally, this also bounds the size of the whole structure to O(B) bits and hence in
conjunction with Lemma 3.1 proves the following theorem.

Theorem 3.3. There is an algorithm which solves the static membership problem
in O(1) time using a data structure of size O(B) bits.

Note the constants in order notation of Theorem 3.3 are relatively small. Algo-
rithm 3.2 performs at most two recursive calls of Member and eight probes of the data
structure:

• two probes in the first call of Member: one to get N and one to compute M1;
• two probes in the second call of Member: same as above; and
• four probes in the last call of Member: two probes to get the number of

elements in the bucket, ν, and the lexicographic order of the bucket, β; the
next probe to get the sum in (3.10) by lookup in table binomials; and the
final probe into the TSR.

1Note that the size of a pointer depends on the number of elements that fall into the bucket.

1636 ANDREJ BRODNIK AND J. IAN MUNRO

Table 3.2
Space usage for sets of primes and SINs for various data structures.

Example M N B ours hash bit map

Primes 1.0 ·232 1.4 ·227 1.6 ·229 1.9 ·230 1.4 ·232 1.0 ·232

SINs 1.9 ·229 1.7 ·224 1.1 ·227 1.2 ·228 1.6 ·229 1.9 ·229

If perfect hashing is used in one of the steps, the number of probes remains comparable.
It is easy to see that by setting α = 1/2 and ε = 1, thereby eliminating the two

extreme cases, at most 2B + o(B) bits are required for the structure. In the next
section we reduce this bound to B + o(B) bits while retaining the constant query
time. However, in practice the o(B) term can be as much of a concern as the factor
of 2. Indeed the reader of the next section is justified in questioning the notion of
(lg(2)M1− 5)/6 becoming large in practice. We therefore first illustrate the tuning of
the method to specific values of M and N with two examples.

The first is the set of primes that fit in a single 32-bit word, so M = 232 and N is
of size approximately M/lnM . We pretend that the set of primes is random and that
we are to store them in a structure to support the query of whether a given number
is prime. Clearly, we could use some kind of compression (e.g., implicitly omit the
even numbers or sieve more carefully), but for the purpose of this example we will
not do so. In the second example we consider Canadian Social Insurance Numbers
(SINs) allocated to each individual. Canada has approximately 28 million people and
each person has a nine-digit SIN. One may want to determine whether or not a given
number is allocated. This query is in fact a membership query in the universe of size
M = 109 with a subset of size N = 28 · 106. One of the digits is a check digit, but we
will ignore this issue.

Both examples deal with moderately sparse sets and we can use the method of
section 3.2 directly, using buckets and a perfect hashing function described in [11]. On
the other hand, no special features of the data are used, which makes our space calcula-
tions slightly pessimistic. Using an argument similar to that of Lemma 3.2, we observe
that the worst-case distribution occurs when all buckets are equally sparse, and there-
fore we can assume that in each bucket there are N/p elements. Table 3.2 contains the
sizes of data structures for both examples comparing a hash function, a bitmap, and
a tuned version of our structure (computed from (3.4)) with the information-theoretic
bound.

4. Static solution using B + o(B) space. We now return to the tuning of
our technique for asymptotically large sets, achieving a B + o(B) bit space bound.

First, we observe that for very dense sets (r ≤ 1/α) we cannot afford to use a
bitmap because it always takes B+Θ(B) bits. Similarly we cannot afford to use hash
tables for very sparse sets (i.e., r ≥ M1−ε). Therefore, we categorize sets only as
sparse or dense (and not moderately dense). The key point in decreasing the space
bound, however, is redefining the separation point between sparse and dense set to

rsep = (lgM)lg(2) M ,(4.1)

and so

Nsep = M/(lgM)lg(2) M .(4.2)

While we intend B to indicate the exact value from (2.1), for sparse sets we can

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1637

still use the approximation N lg r from (2.5) since the error in (2.4) is bounded by
Θ(N) = o(B).

4.1. Sparse subsets. Again, sparse subsets are those whose relative sparseness
is greater than rsep. For such subsets we always apply the two-level indexing of
section 3.2. All equations from section 3.2, and in particular (3.4), still hold. However,
the second term of (3.4) can be tightened to o(B), because now the relative sparseness,
r, is at least rsep defined in (4.1). This proves the following lemma.

Lemma 4.1. If ∞ > r ≥ rsep as in (4.1) (i.e., N ≤ Nsep as in (4.2)), then there
is an algorithm to answer membership queries in constant time using a B + o(B) bit
data structure.

4.2. Dense subsets. Dense subsets are treated in the same way as moderately
dense subsets were treated in section 3.3. Thus most of the analysis can be taken
from that section with the appropriate changes of rsep (cf. (3.1)) and r′sep (cf. (3.7)).
To compute the size of the main structure, we first bound the size of pointers into the
TSR. Recall that each pointer consists of two fields: the number of elements in the
bucket, ν, and the rank (in lexicographic order) of the bucket in question among all
buckets with ν elements, β. Although the number of bits needed to describe ν can
be as large as the information-theoretic minimum for some buckets, this is not true
on the average. By Lemma 3.2, all pointers together occupy no more than B + o(B)
bits, where B is the exact one from (2.1). Furthermore, the indices are small enough
so that all of them together occupy o(B) bits (cf. (3.11)). As a result we conclude
that the main structure occupies B+ o(B) bits of space. It remains to bound the size
of the TSR at the redefined separation points.

With the redefinition of rsep in (4.1), (3.6) now gives

p = M/(rsep lgM) = M/(lgM)1+lg(2) M(4.3)

buckets on the first level. Each of these has a range of

M1 = M/p = rsep lgM = (lgM)1+lg(2) M .(4.4)

To simplify further analysis we set the redefined separation point between first-level
sparse and dense buckets (cf. (3.7)) to

r′sep = (lgM1)(lg(2) M1−5)/6,(4.5)

which is adequate to keep the space requirement of the sparse buckets to o(B)
(cf. (3.4)). The position of this separation point r′sep is further bounded by

r′sep = (lg(rsep lgM))(lg(2)(rsep lgM)−5)/6 using (4.4)

< (2 lg rsep)
(lg(2 lg rsep)−5)/6 since rsep > lgM by (4.1)

< (2(lg(2)M)2)(lg((lg(2) M)2)−4)/6 again using (4.1)

< ((lg(2)M)3)(lg(3)M − 2)/3 since 2 < lg(2)M

< (lg(2)M)lg(3) M−1/3 since (lg(2)M)−1 < 1/3.(4.6)

Next, the first-level dense buckets are further split into p1 (cf. (3.8)) subbuckets,
each of range M2 = M1/p1 = r′sep lgM1. Finally, since M2 is also the range of buckets
in the TSR, the size of the table is

1638 ANDREJ BRODNIK AND J. IAN MUNRO

M22M2 = r′sep(lgM1)M
r′sep
1

= r′sep lg(rsep lgM)(rsep lgM)r
′
sep by (4.4)

< 2(lg rsep)r
′
seprsep

2r′sep since rsep = (lgM)ω(1)

< (lg rsep)rsep
3r′sep−1

< lg rsep((lgM)lg(2) M)(lg(2) M)lg(3) M−1

/rsep by (4.6) and (4.1)

< lg rsep(lgM)(lg(2) M)lg(3) M

/rsep

= o(M lg rsep/rsep) = o(Nsep lg rsep)

= o(B)

for r ≤ rsep. This brings us to the main asymptotic result.
Theorem 4.2. There is an algorithm which solves the static membership problem

in O(1) time using data structure of size B + o(B) bits.
Proof. The discussion above dealt only with the space bound. However, since the

structure is more or less the same as that of section 3, the time bound can be drawn
from Theorem 3.3.

With Theorem 4.2 we proved only that the second term in space complexity is
o(B). In fact, using a very rough estimate from the second term of sparse first-level

buckets we get the bound O(B/lg(3)M). To improve the bound one would have to
refine values rsep and r′sep.

5. Dynamic version. There are several options for converting our ideas for a
static structure into one that supports insertions and deletions. In the interest of
simplicity we sketch and demonstrate only one.

Theorem 5.1. There exists a data structure requiring O(B) bits which supports
searches in constant time and insertions and deletions in constant expected amortized
time.

The basic approach is simple, and we make no attempt here to minimize the space
bound other than to retain the O(B) requirement. We use the method of section 3
but substitute dynamic perfect hashing [5] for the static perfect hashing scheme used
there.

A key observation is that, given a set of N elements, our structure can be built
in expected time O(N) and O(B) space if we use dynamic perfect hashing for the
hashing aspect. Indeed, any of our substructures can be built in linear time and in
space within a constant factor of that suggested in the preceding section. This also
applies to the TSR in that it can be created in time linear in its size.

Like dynamic perfect hashing itself, our dynamic scheme operates in phases. At
the beginning of a phase, a structure of N0 elements is built, but each dynamic
perfect hashing structure is given 1 + κ times as much space as it requires. Here κ is
an arbitrary positive constant. In addition the entire space allocated for the structure
is increased globally by another factor of 1 + κ.

As insertions and deletions are made, two critical conditions can arise. The
number of elements in the table may drop, say to N0/(1 + κ), in which case we
obtain a new block of space appropriate for a table of the new, reduced, size. A new
table is constructed in the new space and the old table is released. The other condition
is that we run out of space either in one of the hash tables or in the structure as a
whole. It is unlikely that we will run out of space in a single dynamic perfect hashing
structure until a number of updates proportional to its original size is made. However,

MEMBERSHIP IN CONSTANT TIME AND ALMOST-MINIMUM SPACE 1639

with our multilevel structure we could have a large number of insertions fall into the
same bucket, which could cause a dynamic perfect hashing structure to overflow after
a rather small number of updates relative to the size of the entire structure. If this
happens, we simply rebuild this subtable using the extra space allocated globally.

6. Discussion and conclusions. In this paper we have presented a solution
to a static membership problem. Our initial solution answers queries in constant
time and uses space within a small constant factor of the minimum required by the
information-theoretic lower bound. Subsequently, we improved the solution reducing
the required amount of space to the information-theoretic lower bound plus a lower-
order term. We also addressed the dynamic problem and proposed a solution based
on a standard doubling technique.

Data structures used in solutions consist of three major substructures which are
used in different ranges depending on the relative sparseness of the set at hand (that
is, depending on the ratio between the size of the set and the universe). When the set
is relatively sparse we use a perfect hashing; when the set is relatively dense we use
a bitmap; and in the range between we use recursive splitting (indexing). The depth
of the recursion is bounded by the use of word-size truncation and in our case it is 2.

The feasibility of the data structure was addressed through a couple of examples.
However, to make the structure more practical one would need to tune the parameters
c, ε, λ, and αmentioned in Algorithm 3.2. Moreover, for practical purposes it is helpful
to increase the depth of recursive splitting to cancel out the effect of a constant hidden
in the order notation and, in particular, to decrease the size of the TSR below the
information-theoretic minimum defined by N and M at hand. For example, in the
case of currently common 64- and 32-bit architectures, the depths can be increased
to 4 and 5, respectively.

There are several open problems. One may be able to reduce the space require-
ment of the dynamic structure to B+o(B) by first reexamining the details of dynamic
perfect hashing and reducing its storage requirements to N + o(N) words, assuming
the universe is large relative to N . Another intriguing problem is to decrease the
second-order term in the space complexity as there is still a substantial gap between
our result, B+ O(B/lg(3)M), and the information-theoretic minimum, B. But do we
need a more powerful machine model to close this gap?

Acknowledgments. We thank Martin Dietzfelbinger and the referees for many
very helpful comments that improved this paper.

REFERENCES

[1] A. Brodnik, Searching in Constant Time and Minimum Space (Minimæ Res Magni Momenti
Sunt), Ph.D. thesis, available as Technical report CS-95-41, University of Waterloo, Wa-
terloo, ON, Canada, 1995.

[2] A. Brodnik and J. I. Munro, Membership in constant time and minimum space, in Proceed-
ings, Second European Symposium on Algorithms, Lecture Notes in Comput. Sci. 855,
Springer-Verlag, 1994, pp. 72–81.

[3] Y. Choueka, A. Fraenkel, S. Klein, and E. Segal, Improved hierarchical bit-vector com-
pression in document retrieval systems, in 9th International ACM SIGIR Conference on
Research and Development in Information Retrieval, ACM, 1986, pp. 88–96.

[4] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger, Polynomial hash functions are
reliable, in Proceedings, 19th International Colloquium on Automata, Languages and Pro-
gramming, Lecture Notes in Comput. Sci. 623, Springer-Verlag, 1992, pp. 235–246.

1640 ANDREJ BRODNIK AND J. IAN MUNRO

[5] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. Tarjan, Dynamic perfect hashing: Upper and lower bounds, SIAM J. Comput.,
23 (1994), pp. 738–761.

[6] M. Dietzfelbinger and F. Meyer auf der Heide, A new universal class of hash functions
and dynamic hashing in real time, in Proceedings, 17th International Colloquium on Au-
tomata, Languages and Programming, Lecture Notes in Comput. Sci. 443, Springer-Verlag,
New York, 1990, pp. 6–19.

[7] P. Elias, Efficient storage retrieval by content and address of static files, J. ACM, 21 (1974),
pp. 246–260.

[8] P. Elias and R. Flower, The complexity of some simple retrieval problems, J. ACM, 22
(1975), pp. 367–379.

[9] P. van Emde Boas, Machine models and simulations, in Handbook of Theoretical Computer
Science, Vol. A: Algorithms and Complexity, J. van Leeuwen, ed., Elsevier, Amsterdam,
1990, pp. 1–66.

[10] A. Fiat and M. Naor, Implicit O(1) probe search, SIAM J. Comput., 22 (1993), pp. 1–10.
[11] A. Fiat, M. Naor, J. Schmidt, and A. Siegel, Nonoblivious hashing, J. ACM, 39 (1992),

pp. 764–782.
[12] F. Fich and P. Miltersen, Tables should be sorted (on random access machines), in Proceed-

ings, Fourth Workshop on Algorithms and Data Structures, Lecture Notes in Comput. Sci.
955, Springer-Verlag, New York, 1995, pp. 482–493.

[13] M. Fredman, J. Komlós, and E. Szemerédi, Storing a sparse table with O(1) worst case
access time, J. ACM, 31 (1984), pp. 538–544.

[14] M. Fredman and D. Willard., Trans-dichotomous algorithms for minimum spanning trees
and shortest paths, J. ACM, 31 (1984), pp. 538–544.

[15] H. Gabow and R. Tarjan, A linear-time algorithm for a special case of disjoint set union, J.
Comput. System Sci. 30 (1985), pp. 209–221.

[16] T. Hagerup, K. Mehlhorn, and J. I. Munro, Optimal algorithms for generating discrete
random variables with changing distributions, in Proceedings, 20th International Collo-
quium on Automata, Languages and Programming, Lecture Notes in Comput. Sci. 700,
Springer-Verlag, New York, 1993, pp. 253–264.

[17] H. Mairson, The program complexity of searching a table, in 24th IEEE Symposium on Foun-
dations of Computer Science, 1983, pp. 40–47.

[18] K. Mehlhorn and A. Tsakalidis, Data structures, in Handbook of Theoretical Computer
Science, Vol. A: Algorithms and Complexity, J. van Leeuwen, ed., Elsevier, Amsterdam,
The Netherlands, 1990, pp. 301–334.

[19] P. Miltersen, The bit probe complexity measure revisited, in Proceedings, 10th Symposium
on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 665, Springer-
Verlag, New York, 1993, pp. 662–671.

[20] D. Mitrinović, Analytic Inequalities, Grundlehren Math. Wiss. 165, Springer-Verlag, Berlin,
1970.

[21] J. I. Munro and H. Suwanda, Implicit data structures for fast retrieval and update, J. Comput.
System Sci., 21 (1980), pp. 236–250.

[22] J. Schmidt and A. Siegel, The spatial complexity of oblivious k-probe hash functions, SIAM
J. Comput., 19 (1990), pp. 775–786.

[23] R. Tarjan and A. Yao, Storing a sparse table, Comm. ACM, 22 (1979), pp. 606–611.
[24] A.-C. Yao, Should tables be sorted?, J. ACM, 28 (1981), pp. 614–628.

View publication stats

https://www.researchgate.net/publication/220618405

