
VectorQuotient Filters:
Overcoming the Time/Space Trade-Off in Filter Design
Prashant Pandey

ppandey@berkeley.edu

Lawrence Berkeley National Lab

and University of California Berkeley

Alex Conway

aconway@vmware.com

VMware Research

Joe Durie

joedurie17@gmail.com

Rutgers University

Michael A. Bender

bender@cs.stonybrook.edu

Stony Brook University

Martin Farach-Colton

farach@rutgers.edu

Rutgers University

Rob Johnson

robj@vmware.com

VMware Research

ABSTRACT
Today’s filters, such as quotient, cuckoo, and Morton, have a

trade-off between space and speed; even when moderately full (e.g.,

50%-75% full), their performance degrades nontrivially. The result is

that today’s systems designers are forced to choose between speed

and space usage.

In this paper, we present the vector quotient filter (VQF). Locally,
the VQF is based on Robin Hood hashing, like the quotient filter,

but uses power-of-two-choices hashing to reduce the variance of

runs, and thus offers consistent, high throughput across load factors.

Power-of-two-choices hashing also makes it more amenable to

concurrent updates, compared to the cuckoo filter and variants.

Finally, the vector quotient filter is designed to exploit SIMD

instructions so that all operations have𝑂 (1) cost, independent of
the size of the filter or its load factor.

We show that the vector quotient filter is 2× faster for inserts

compared to the Morton filter (a cuckoo filter variant and state-of-

the-art for inserts) and has similar lookup and deletion performance

as the cuckoo filter (which is fastest for queries and deletes), despite

having a simpler design and implementation. The vector quotient

filter has minimal performance decline at high load factors, a

problem that has plaguedmodern filters, including quotient, cuckoo,

and Morton. Furthermore, we give a thread-safe version of the

vector quotient filter and show that insertion throughput scales 3×
with four threads compared to a single thread.

CCS CONCEPTS
• Theory of computation → Data structures design and
analysis; Bloomfilters and hashing.
KEYWORDS
Dictionary data structure; filters; membership query

ACMReference Format:
Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin

Farach-Colton, and Rob Johnson. 2021. Vector Quotient Filters: Overcoming

the Time/Space Trade-Off in Filter Design. In Proceedings of the 2021

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8343-1/21/06.

https://doi.org/10.1145/3448016.3452841

International Conference on Management of Data (SIGMOD ’21), June
20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3448016.3452841

1 INTRODUCTION
Filters, such as Bloom [9], quotient [43], and cuckoo filters [31],

maintain compact representations of sets. They tolerate a small

false-positive rate 𝜀: a membership query to a filter for set 𝑆 returns

present for any 𝑥 ∈𝑆 , and returns absentwith probability at least
1−𝜀 for any 𝑥 ∉𝑆 . A filter for a set of size 𝑛 uses space that depends

on 𝜀 and 𝑛 but is much smaller than explicitly storing all items of 𝑆 .

Filtersofferperformanceadvantageswhen theyfit incachebut the

underlying data does not. Filters are widely used in networks, stor-

age systems, machine learning, computational biology, and other ar-

eas [4, 11, 14, 19, 20, 25, 26, 29, 34, 36, 46, 50, 52–54, 56]. Forexample, in

storage systems, filters are used to summarize the contents of on-disk

data [5, 16, 21–23, 49, 51, 54]. Innetworks, theyareused to summarize

cachecontents, implementnetwork routing, andmaintainprobabilis-

ticmeasurements [14]. In computational biology, theyareused to rep-

resent huge genomic data sets compactly [2, 3, 19, 40, 42, 44, 46, 52].

In these applications, filter performance—i.e., space usage, query

speed, and update speed—is often the bottleneck. In fact it is often

the case that most of the working set of an application is from filters,

and the application is impractically slow unless the filters fit in

DRAM. Often systems are designed around the constraint that they

do not have enough space for their filters [23, 49, 55]. For example,

Monkey [23] uses an optimized allocation scheme to minimize the

size of filters in-memory. PebblesDB [49] uses over 2/3rds of its

working memory for constructing and storing filters. Furthermore,

storage devices, such as NVMe SSDs, are fast enough that CPU

bottlenecks are common [22].

Modern filters, such as quotient, cuckoo, and Morton [13] filters,

are all bumping up against the lower bound on space usage for a

dynamic filter, which is𝑛log(1/𝜀)+Ω(𝑛) bits [17]. As Table 1 shows,
these filters differ by less than 1 bit per element, which is less than

a 10% difference for typical values of 𝜀 (e.g. 1%).

These filters have converged on a common overall design—they

encode fingerprints into hash tables. Quotient filters and counting

quotient filters [43] are based on Robin Hood hashing [18], and

cuckoo andMorton filters are based on cuckoo hashing [39].

All these filters slow down as they are filled, because they

experience more collisions. This shows up clearly in Figure 4a,

which shows instantaneous insertion throughput as a function of

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8343-1/21/06.
https://doi.org/10.1145/3448016.3452841

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1386

https://doi.org/10.1145/3448016.3452841
https://doi.org/10.1145/3448016.3452841
https://creativecommons.org/licenses/by/4.0/

𝐹𝑖𝑙𝑡𝑒𝑟 Num bits for 𝑛 items

Bloom filter [9] 1.44𝑛log(1/𝜀)
Quotient filter [43] 1.053(𝑛log(1/𝜀)+2.125𝑛+𝑜 (𝑛))
Cuckoo filter

∗
[31] 1.053(𝑛log(1/𝜀)+3𝑛+𝑜 (𝑛))

Morton filter [13] 1.053(𝑛log(1/𝜀)+2.5𝑛+𝑜 (𝑛))
Vector quotient filter 1.0753(𝑛log(1/𝜀)+2.914𝑛+𝑜 (𝑛))

Table 1: The space usage of different filters in terms of num-
ber of items 𝒏 and false-positive rate 𝜺. Moderns filters use
essentially the same space. Quotient, cuckoo, and Morton
filters support amaximum load factor of 0.95 and hence face
amultiplicative overhead of 1.053. The vector quotient filter
supports a load factor of 0.93, for a multiplicative overhead
of 1.0753. The different additive overheads (e.g. 2.125 vs. 2.5)
come from the different collision-resolution schemes used
by the filters. ∗The cuckoo filter referred throughout the
paper has 4 slots per block and 3 bits of space overhead. We
picked thestandardversionas itoffers superiorperformance
compared to the semi-sorting variant.

load factor. Even at moderate load factors (e.g., 50%-75% occupancy),

their performance degrades nontrivially.
1
For example, the insertion

throughput in the cuckoo filter drops 16× when going from 10%

occupancy to 90% occupancy and in the quotient filter it drops

4×. The Morton filter is arguably the fastest and most robust of

existing filters, and, impressively, its insert throughout does not

really degrade substantially until 70% occupancy, at which point

it slows down by 2× by the time it reaches 95% occupancy.

As these observations show, the costs of collision resolution have

become one of the main roadblocks to further advances in filter

performance.

This paper. We present a new filter, the vector quotient filter,

that overcomes the collision-resolution roadblock to improving

filter update performance. The vector quotient filter shows that

it is possible to build a filter that offers high performance and

does not slow down across load factors. The vector quotient filter

shows how to combine power-of-two-choice hashing with new

vector-instruction hardware to build a filter with 𝑂 (1) insertion
time, independent of load factor. Furthermore, these improvements

come at no cost to query performance. Empirically,

Insertions: • Insertions in the vector quotient filter have constant
high performance from empty to full. We also describe an

optimization that further improves insertion performance

at low load factors without sacrificing performance at higher

load factors. • The vector quotient filter is 10×, 4.5×, and 2×
faster at insertions than the cuckoo filter, quotient filter, and

Morton filter at 90% load factor. • The vector quotient filter
supports aggregate insertions (i.e., from empty to full) over

2× faster than the next fastest filter (the Morton filter).

Deletions: •Vector quotient filter deletions are roughly as fast as in
the cuckoo filter, roughly 2× faster than theMorton filter, and

4× faster than thequotientfilter.•Athigh load factors, thevec-
tor quotient filter is the clearwinner for deletion performance.

1
All of these filters define “full” to be somewhat less than 100% occupancy. The quotient

filter suggests limiting occupancy to 95% in order to limit collision-resolution costs. The

cuckoo andMorton filter limit occupancy to 95% because their failure probabilty shoots

up above 95%. This is why all these filters have a 1.053× space overhead, as shown in
Table 1.

Queries: • Queries in the vector quotient filter are roughly 80%

as fast as in the cuckoo filter, 50% faster than in the Morton

filter, and over twice as fast as in the quotient filter.

Space: The vector quotient filter is nearly as space-efficient as other

modern filters (see Table 1). In practice, the vector quotient

filter uses around 1 to 2%more space than the cuckoo filter.

Concurrency: • Insertion throughput on a machine with 4

physical cores scales over 3× with 4 threads compared to

single-threaded insertion performance in the vector quotient

filter, demonstrating nearly linear scaling.

Limitations. While the vector quotient filter is substantially faster

than other filters for insertions, it is slightly slower than the fastest

filter (i.e. the cuckoo filter) for queries and deletes. Query-intensive

applications might be better served by the cuckoo filter. The vector

quotient filter uses similar space as the cuckoo filter and is about

10 to 12% larger than the quotient filter. If space is at an absolute

premium, then applications might consider the quotient filter. The

vector quotient filter also lacks some of the advanced features of

the quotient filter, such as resizability.

The vector quotient filter uses the same xor trick as the cuckoo

filter in order to support deletion. Thus, like the cuckoo filter,

the probability of failure increases as the filter becomes larger.

However, because the vector quotient filter never kicks items from

one block to another, it needs the xor trick only in order to support

deletions. The cuckoo filter, on the other hand, always needs to

use the xor trick, so that it can find an item’s alternate block during

kicks. Thus, if deletions are not needed, the vector quotient filter can

use independent hash functions, and hence the failure probability

can be made independent of the filter size.

Where performance comes from. Vector quotient filters achieve
these performance gains in three steps.

First, they use power-of-two-choice hashing instead of cuckooing,

which avoids the need to perform kicking in order to achieve high

load factors.

In power-of-two-choice hashing, items are hashed to two blocks

and placed in the emptier block. However, unlike cuckoo hashing,

blocks are sized so that they never overflow, so items never need to

be kicked from one block to another. Power-of-two-choice hashing

ensures that the variance in block occupancies is low, so that all

blocksgetfilled tohighoccupancybefore anyblockoverflows,which

means we can get good space efficiency.

Power-of-two-choice hashing makes operations on the vector

quotient filter cache efficient. Insertions and lookups access at most

two cache lines, and insertions modify at most a single cache line,

regardless of the load factor. Insertions into cuckoo and Morton

filters, however, perform kicking, and hence access and modify

multiple cache lines, and this increases as the filter becomes fuller.

This also compares favorably to standard quotient filters where, at

high load factors, a single insert may need to touch dozens of cache

lines. See Figure 4a, which shows that most modern filters exhibit

different amounts of performance degradation as they fill up; and

this is due, in a largepart, to the increasing cost of collision resolution.

We expect that vector quotient filters should perform well on

non-volatilememories, wherewrites aremore expensive than reads.

Power-of-two-choice hashing also makes it easy to support con-

current updates, since each updates examines at most two cache

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1387

lines and modifies at most one. Simple locks on each block or even

hardware transactional memory are all that is needed to support

concurrent updates. Cuckoo andMorton filters, on the other hand,

are difficult tomake concurrent, since each updatemay touch a large

number of locations, in essentially random order.

Second, vector quotient filters use a quotient-filter-like metadata

scheme to keep the false-positive rate from increasing aswe increase

the block size. (In cuckoo andMorton filters, the false-positive rate

increases with the block size, which is why they keep blocks small

and use kicking to achieve high load factors.)

2 RELATEDWORK
For decades, the Bloom filter [9] was essentially the only game in

town, but Bloom filters are suboptimal in terms of space usage,

running time, and data locality, and they support a bare-bones set

of operations (insert and lookup).

In particular, Bloom filters consume log(𝑒) 𝑛 log(1/𝜀) space,
which is roughly log(𝑒) ≈ 1.44 times more than the lower bound

of 𝑛 log(1/𝜀) + Ω(𝑛) bits [17]. Bloom filters also incur log(1/𝜀)
cache-line misses on inserts and positive queries, giving them poor

insertion and query performance.

The Bloom filter has inspired numerous vari-

ants [1, 10, 15, 25, 32, 37, 47, 48]. The counting Bloomfilter (CBF) [32]

replaces each bit in the Bloom filter with a 𝑐-bit saturating counter.

This enables the CBF to support deletes, but increases the space by

a factor of 𝑐 . The blocked Bloom filter [47] provides better cache

locality than the standard Bloomfilter but does not support deletion.

The quotient filter (QF) [7, 27, 28, 38] uses a new, non-Bloom-filter

design. It is built on the idea of storing small fingerprints via Robin

Hood hashing [18]. It supports insertion, deletion, lookups, resizing,

and merging. The counting quotient filter (CQF) [43], improves

upon the performance of the quotient filter and adds variable-sized

counters to count items using asymptotically optimal space, even

in large and skewed datasets.

The quotient filter uses 1.053(2.125+ log
2
1/𝜀) bits per element,

which is less than the Bloom filter whenever 𝜀 ≤1/64, which is the
case in almost all applications. Quotient filters are also much faster

than Bloom filters, since most operations access only one or two

cache lines. Geil et al. accelerated the QF by porting it to GPUs [35].

The cuckoo filter [31] uses the idea from quotient filters of

hashing small fingerprints but uses cuckoo hashing instead of Robin

Hood hashing. Cuckoo filters use 1.053(3+ log
2
1/𝜀) bits per item,

that is, somewhat more than a quotient filter.

The Morton filter [13] is a variant of the cuckoo filter that is

designed to speed up insertion using optimizations designed for

hierarchical systems. The Morton filter biases insertions towards

the primary hash slot and uses an overflow tracking array to

speed up negative queries. In addition, the Morton filter employs

a compression-based physical representation to store fingerprints

in blocks and achieves better space utilization than the cuckoo

filter. The Morton filter offers faster insertion throughput compared

to the cuckoo filter and also less throughput degradation at high

occupancy. TheMorton filter offers even faster insertion throughput

for bulk insertion scenarios which are often seen in practice.

The Morton filter space usage depends on several configuration

parameters, but the version benchmarked in the original Morton

filter uses approximately 1.053(2.5+log
2
1/𝜀).

From the above summary, we can see that the quotient, cuckoo,

andMorton filters all use 1.053(𝐾+log
2
1/𝜀) bits per element, where

𝐾 is 2.125, 3, or 2.5, respectively. The main remaining challenge is

speed, especially at higher load factors.

3 VECTORQUOTIENT FILTER
The vector quotient filter uses three techniques to get good

performance at all load factors:

• Power-of-two-choice hashing to allocate items to blocks.

• Space-efficient mini-filters within each block.

• SIMD-optimized encoding of mini-filters.

The vector quotient filter uses a power-of-two-choice hashing

scheme to allocate keys to blocks. Items are mapped to two blocks

and placed into the emptier one. Items are never “kicked” from one

block to another, avoiding the complexity and cost of kicking that

cuckoo andMorton filters incur. Power-of-two-choice hashing also

avoids the long chains of shifted elements in the quotient filter.

Themainchallenge tousingpower-of-two-choicehashing instead

of cuckooing is that blocksmust have large capacity (e.g.𝜔 (loglog𝑛))
in order to be able to achieve high load factor (and hence high space

efficiency). In contrast, cuckoo andMorton filters use small blocks,

whichmeans that some blocks fill much sooner than others, but they

handle this problem by kicking items from one block to another.

Because they use small (i.e. constant-sized) blocks, cuckoo and

Morton filters can use a relatively simple block structure: each block

is simply an array of fingerprints, and any query that maps to the

block can match with any fingerprint in the block. This means that

the false-positive rate is proportional to the block size, which is not a

problem in cuckoo andMorton filters because they use small blocks.

So we need a block structure that supports large blocks without

blowing up the false-positive rate.

We resolve this dilemma by structuring each block in the vector

quotient filter as a mini-filter in its own right. Our mini-filter struc-

ture is based on ideas from the quotient filter, and ensures that we

can make each mini-filter as large as we want without increasing its

false-positive rate. In the VQF, blocks can be as large as a cache line,

or even larger, and do not require rebalancing or cuckooing at all.

Finally, we encode the mini-filters to take advantage of recent

Intel SIMD instructions for operating on entire cache lines in a single

instruction. As a result, all operations on the VQF take constant

time. This improves upon the cuckoo, quotient, and Morton filters,

for which the cost of insertions grows as both a function of the filter

size and its occupancy.

3.1 Power-of-two-choice hashing
As shown in Figure 1, a VQF consists of an array of 𝑘 blocks, where

each block is a small filter with capacity 𝑠 and false-positive rate

𝜀/2. (In our implementation, 𝑠 is 48 or 28, see section 6.) Each block

is implemented as a mini-filter, described in Section 3.2.

To insert an item, 𝑥 , we compute two block indexes 𝑏1 (𝑥) and
𝑏2 (𝑥) using independent uniformly random hash functions. We

then insert 𝑥 into the emptier of blocks 𝑏1 (𝑥) and 𝑏2 (𝑥), following
the power-of-two-choices hashing paradigm [6]. If both blocks are

full, then the insertion fails.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1388

The following theorem of Berenbrink, et al. enables us to ensure

that all the blocks are heavily loaded before any insertion fails.

Theorem 1 (Berenbrink, et al. [8]). If we toss𝑚 balls into 𝑛
bins using the power-of-two-choices, then, with high probability, the
maximum load of any bin is𝑚/𝑛+𝑂 (lnln𝑛).

Furthermore, the constants are quite good—for most practical

purposes, we can treat the bound as𝑚/𝑛+lnln𝑛.
Thus, to create a VQF for 𝑛 items, we allocate an array of

𝑘 =𝑂 (𝑛/ln𝑛) blocks, eachwith capacity 𝑠 =𝑛/𝑘+Θ(lnln𝑛) items and

false-positive rate 𝜀/2. By Theorem 1, we can insert all 𝑛 items into

the filter without causing any block to reach its maximum capacity,

and hence all the insertions will succeed with high probability.

Note that this filter supports a load factor of
𝑛

𝑛+Θ(𝑛 lnln𝑛
ln𝑛
)
. When 𝑛

is large, this approaches 1, since
lnln𝑛
ln𝑛

=𝑜 (1).When𝑛 is small, say𝑛<

2
48
, we can simply pick𝑘 =𝑛/48, so that the average block occupancy

𝑛/𝑘 will still be substantially larger than the variance𝑂 (lnln𝑛).
To perform a query, we hash 𝑥 to 𝑏1 (𝑥) and 𝑏2 (𝑥) and return

“present” if 𝑥 is present in either block. As long as each block has

a false-positive rate of at most 𝜀/2, then the filter as a whole will

have a false-positive rate of at most 𝜀.

3.2 Mini-filters
In the vector quotient filter, each of the blocks described in

Section 3.1 is itself a small quotient filter, which we call amini-filter.
We now describe an efficient encoding that we use to implement

the mini-filter. This encoding is both space-efficent and, as we will

see in Section 3.3 enables insert, lookup and delete operations in

𝑂 (1) time using AVX-512 instructions.

The key difference between our mini-filter and the unstructured

blocks of cuckoo andMorton filters is that we divide the block into

𝑏 buckets. Each item 𝑥 inserted into a block is hashed using a hash

functionℎ(𝑥).We divide the outputℎ(𝑥) into a log𝑏-bit bucket index,
𝛽 (𝑥), and an 𝑟 -bit fingerprint, 𝑓 (𝑥).We then add 𝑓 (𝑥) to bucket 𝛽 (𝑥).
Note thatwe can recoverℎ(𝑥) from 𝑓 (𝑥) and 𝛽 (𝑥). Similarly, queries

for an element 𝑦 return yes only if 𝑓 (𝑦) is present in bucket 𝛽 (𝑦).
The main challenge is to efficiently encode the bucket structure.

Figure 1 shows how the mini-filter stores fingerprints and their

corresponding buckets. Themini-filter stores a (𝑏+𝑠)-bit bucket-size
vector followed by an array of up to 𝑠 fingerprints. The fingerprints
are stored in bucket order, i.e. all the fingerprints in bucket 0 are

stored together, followed by all the fingerprints in bucket 1, and so on.

The number of fingerprints in each bucket is stored in unary in the

bucket-size vector. The total number of metadata bits is therefore at

most𝑏+𝑠 , and the total size required for a block is at most𝑏+(1+𝑟)𝑠 .
Figure 1 shows an example of the encoding of a mini-filter using

colors to distinguish keys across different buckets. For example, in

Figure 1, bucket 3 of block 2 has 1 fingerprint, indicated in blue.

This mini-filter encoding improves upon both the cuckoo and

quotient filters. In the standard quotient filter, 𝑏=𝑠 . In that case, the

mini-filter has 2 bits of metadata overhead per element, whereas the

quotient filter has 2.125. The extra bits of overhead in the quotient

filter are there to enable queries and updates without parsing the

entire filter, which can be huge. Mini-filters, however, are never

large, so we can dispense with those extra metadata bits.

Compared to the structure of cuckoo-filter blocks, the mini-filter

is even more space efficient. Since cuckoo filter blocks have no

structure—just a set of fingerprints—the false-positive rate of queries

in a cuckoo-filter block grows roughly linearly in the size of the

block. This is why cuckoo filters keep blocks small and are forced to

use cuckooing to rebalance blocks. In the mini-filter, however, the

false-positive rate can be made indepdendent of the number of slots

in a block (see the analysis in Section 5). Thus we can make blocks

large enough to make block-occupancy variance a lower order term,

without the need for cuckooing.

3.3 SIMDMini-filter operations
The mini-filter structure described above is specifically designed

to be amenable to vector operations. Specifically, operations on

metadata can be performed usingword-level rank, select, and similar

operations, and operations in the fingerprint array can be performed

using vector permutation and comparison operations.

Wecanperformqueries inablockusingbitvector-selectandSIMD-

compare instructions, as follows. Let𝑚 be the metadata string and 𝑡

thevector offingerprints in ablock.Define𝑠𝑒𝑙𝑒𝑐𝑡 (𝑚,𝑖) to be the index
of the 𝑖th 1 in𝑚,where thebits of𝑚 and theones are counted from the

left, starting at 0. So, for example,𝑠𝑒𝑙𝑒𝑐𝑡 (001000000,0)=2because the
first 1 appears at index 2. Then the first fingerprint for bucket 𝑗 >0 is

stored in slot 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑚,𝑗−1)− 𝑗 . (The first fingerprint for bucket 𝑗 =0
is stored in slot 0.) Thus all the fingerprints for keys in bucket 𝑗 >0

can be found in slots [𝑠𝑒𝑙𝑒𝑐𝑡 (𝑚,𝑗−1)− 𝑗+1,𝑠𝑒𝑙𝑒𝑐𝑡 (𝑚,𝑗)− 𝑗) of 𝑡 . The
fingerprints for bucket 𝑗 =0 can be found in the first 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑚,0) slots.
Furthermore, bitvector-select is fast on modern CPUs. Since the

mini-filter metadata vector contains only𝑂 (log𝑛) bits, we can use
word operations, such as the x86 PDEP instruction, to perform select

in constant time (first used in the counting quotient filter [41, 43]).

During an insert, we must first choose the emptier of two

blocks. We can compute the occupancy of a block by computing

𝑠𝑒𝑙𝑒𝑐𝑡 (𝑚,𝑏−1)−𝑏+1.
Once we have identified the range of slots to check, we can use

a SIMD comparison instruction to check all the candidate slots

against the queried fingerprint in constant time.

To insert a new key 𝑘∗ with bucket 𝑏∗ and fingerprint 𝑓 ∗, we
insert 𝑓 ∗ into slot 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑚,𝑏∗) −𝑏∗ of 𝑡 , shifting over subsequent
fingerprints in 𝑡 , and insert a 0 bit at index 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑚,𝑏∗) in𝑚. We

can shift the metadata bits and insert the 0 into the metadata using

the x86 PDEP instruction and some lookup tables.

We can shift the fingerprints by using a SIMD table-lookup

instruction, similar to the AVX-512 VPERMB (Permute Packed Bytes

Elements) instruction. These fingerprint and metadata shifting

operations can be performed in a small constant number of instruc-

tions irrespective of the load factor and enable the VQF to maintain

a high and consistent insertion throughput even at high load factors.

3.4 Deletes
Naively, we would like to implement deleting an element 𝑥 by just

finding an instance of ℎ(𝑥) in either of the blocks 𝑏1 (𝑥) or 𝑏2 (𝑥)
and removing it.

The only problem this could cause is false negatives. Note that

the only tricky case is when we have inserted two elements 𝑥 and

𝑦 with ℎ(𝑥) = ℎ(𝑦) and 𝑏𝑖 (𝑥) = 𝑏 𝑗 (𝑦) for some 𝑖 and 𝑗 , and we are

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1389

0 0

(𝑏+𝑠) metadata bits 𝑠 𝑟 -bit fingerprint slots

𝑏1 (𝑥)
item 𝑥

𝑏2 (𝑥)

𝑘 blocks
10 1 0 1 -0 1 79 5 -2 4

1 0 11 0 0 1 -- - 53 8 -- -

0 0 10 1 0 1 -0 1 79 5 -2 4

0 1 10 1 0 0 -1 - 86 3 -5 -

insert 𝑓 (𝑥)=6
into bucket 𝛽 (𝑥)=0

0

1

2

3

4

5

0

1

2

3

4

5

Figure1:Avectorquotientfilterandtheprocessof insertinganewitem.Eachrowisaminifilter.Minifiltershave𝑏 logicalbuckets,
𝑠 slots for storing fingerprints, and 𝑏 + 𝑠 metadata bits (𝑏 = 4 and 𝑠 = 6 in the example). The metadata bits encode, in unary the
number of fingerprints in each bucket. Thefingerprints for each bucket are stored consecutively in thefingerprint array. So, for
example, bucket 0 in block 2 has three fingerprints, 9, 5, amd 7 (indicated in green). To insert an item 𝑥 , we hash it to blocks𝑏1 (𝑥)
and 𝑏2 (𝑥) and insert it into the emptier block. In the example, we insert 𝑥 into block 5 since it is emptier than block 2. To insert
𝑥 into the block, we add 𝑥 ’s fingerprint 𝑓 (𝑥) to its bucket 𝛽 (𝑥), shifting overmetadata bits and other fingerprints as necessary.

now trying to delete one of these elements (say 𝑥). This is because,

if two elements do not have the same value under hash function

ℎ, then there is no way they can be confused, and hence no way that

deleting one of them could cause a false negative in future queries of

the other. Similarly, if two elements have no block in common, then

deleting one cannot affect the result of future queries for the other.

The vector quotient filter supports deletes by using the sameXOR

trick as in the cuckoofilter.Wehandle these cases by setting theblock

index 𝑏2 (𝑥) =𝑏1 (𝑥) ⊕ℎ(𝑥). Thus, if we insert any two items 𝑥 and

𝑦 whereℎ(𝑥)=ℎ(𝑦) and 𝑏𝑖 (𝑥)=𝑏 𝑗 (𝑦) for any 𝑖 and 𝑗 , then we must

have that {𝑏1 (𝑥),𝑏2 (𝑥)}= {𝑏1 (𝑦),𝑏2 (𝑦)}. Thus we will have at least
twocopiesofℎ(𝑥) acrossblocks𝑏1 (𝑥) and𝑏2 (𝑥), one for𝑥 andone for
𝑦 (and possibly more for other elements). Hence, if we delete 𝑥 (or𝑦),

we can delete one copy ofℎ(𝑥) without causing any false negatives.
The data structure will still guarantee the same false positive be-

havior even after deleting the item. Because if𝑥 (or𝑦) is queried after

deletion then itwouldcausea falsepositivebut that is theexpectedbe-

havior of filters. Moreover, the secondary hash is computed from the

primary hash using a simple multiply-and-xor technique. Thus, the

total cost to perform an operation is less than 2 hash computations.

One important requirement for safely deleting (without introduc-

ing a false negative) an item is that it must have been inserted. Oth-

erwise, deleting a non-inserted itemmight unintentionally remove a

real, different item that happens to share the same fingerprint. This

requirement also holds true for all other deletion-supporting filters.

Using the XOR operation to compute the second hash does

not guarantee independence between the first and second hash

functions, which is a requirement for the power-of-two-choice

hashing. In practice, however, the number of bits in the fingerprints

introduce enough randomness to achieve a very high load factor.

This same idea is used in the cuckoo filter to support deletion

without introducing false negatives. Empirically, the XOR trick has

marginal impact on the maximum load factor. In our measurements,

it only reduced the maximum load factor from 94.85% to 94.40%.

4 VECTORQUOTIENT FILTEROPERATIONS
This section describes the algorithms used to implement the insert,

lookup and delete operations on a vector quotient filter.

Insert. Algorithm1 shows the pseudocode for the insert operation.

To perform an insert, the item is first hashed to determine the

fingerprint 𝑢 that we will store in either the element’s primary or

secondary block. Then, it is hashed again to determine the indices

Algorithm 1 Insert (x)
1: 𝑢←ℎ (𝑥) ⊲𝑢 is hash to be inserted in mini-filter

2: 𝑏1←ℎ1 (𝑥) ⊲ Compute primary and secondary block indexes

3: 𝑏2←𝑏1 ⊕𝑢
4: 𝑖←𝑏1 ⊲ Select index 𝑖 of emptier block

5: if Select(block[𝑏2] .metadata,𝑏−1) <Select(block[𝑏1] .metadata,𝑏−1) then
6: 𝑖←𝑏2
7: end if
8: if Select(block[𝑖] .metadata,𝑏−1) =𝑠+𝑏−1 then
9: return False ⊲ Filter is full.

10: end if
11: 𝑦←𝑢/2𝑟 ⊲ 𝑦 is bucket index within the block

12: 𝑡←𝑢 mod 2
𝑟 ⊲ 𝑡 is fingerprint

13: 𝑚←Select(block[𝑖] .metadata,𝑦) ⊲𝑚 is metadata index

14: 𝑧←𝑚−𝑦 ⊲ 𝑧 is slot for this fingerprint

15: 𝑛←𝑏+𝑠
16: while𝑛>𝑚 do ⊲ Implemented using PDEP

17: block[𝑖] .metadata[𝑛]←block[𝑖] .metadata[𝑛−1]
18: 𝑛←𝑛−1
19: endwhile
20: 𝑛←𝑠

21: while𝑛>𝑧 do ⊲ Implemented using VPERMB

22: block[𝑖] .fingerprints[𝑛]←block[𝑖] .fingerprints[𝑛−1]
23: 𝑛←𝑛−1
24: endwhile
25: block[𝑖] .metadata[𝑚]←0

26: block[𝑖] .fingerprints[𝑠]←𝑡

𝑏1 and𝑏2 of the primary and secondary blocks and put in whichever

is emptier. We compute occupancy of a block by using Select, as

described in Section 3.3.

Inside a block, the item must be placed at the end of the run of

elements in its bucket. We first compute the target bucket𝑦 for the

element and its fingerprint 𝑡 . We then use Select to compute the po-

sition𝑚 of the 1 indicating the endof the runof fingerprints in bucket

𝑦. From𝑚 and𝑦,we compute the correct slot𝑧 to store thefingerprint.

From here, the rest of the algorithm performs simple shifts over the

fingerprints and metadata bits. The while loop on line 12 shifts over

the metadata bits from position𝑚 onwards, inserting a 0 at position

𝑚. In our implementation, the while loop is implemented as two

PDEP instructions and some precomputed tables. The while loop on

line 17 shifts thefingerprints fromposition𝑧 onwards, and inserts the

new fingerprint at position 𝑠 . In our implementation, this loop is im-

plemented as a single VPERMB instruction and some lookup tables.

Lookup. Algorithm 2 shows the pseudocode for the lookup opera-

tion. Analoguously to the insertion algorithm, performing a lookup

begins by computing hashes of the key to determine its remainder𝑢

as well as its primary and secondary block indices. Then the primary

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1390

Algorithm 2 Lookup (x)
1: 𝑢←ℎ (𝑥) ⊲𝑢 is hash to be queried in mini-filter

2: 𝑏1←ℎ1 (𝑥) ⊲ Compute primary and secondary block indexes

3: 𝑏2←𝑏1 ⊕𝑢
4: return 0 ≤ find_fingerprint(𝑏1,𝑢)∨ 0 ≤ find_fingerprint(𝑏2,𝑢)

5:

6: procedure find_fingerprint(𝑖,𝑢)
7: 𝑦←𝑢/2𝑟 ⊲ 𝑦 is bucket index within the block

8: 𝑡←𝑢 mod 2
𝑟 ⊲ 𝑡 is fingerprint

9: if 𝑦=0 then ⊲ Compute start of run of elements in bucket 𝑦

10: 𝑠𝑡𝑎𝑟𝑡←0

11: else
12: 𝑠𝑡𝑎𝑟𝑡←Select(block[𝑖] .metadata,𝑦−1)−𝑦+1
13: end if
14: 𝑒𝑛𝑑←Select(block[𝑖] .metadata,𝑦)−𝑦
15: while 𝑠𝑡𝑎𝑟𝑡 <𝑒𝑛𝑑 do ⊲ Implemented using VPCMPB

16: if block[𝑖] .fingerprints[𝑠𝑡𝑎𝑟𝑡]=𝑡 then
17: return start

18: end if
19: 𝑠𝑡𝑎𝑟𝑡←𝑠𝑡𝑎𝑟𝑡+1
20: endwhile
21: return -1

22: end procedure

Algorithm 3 Remove (x)

1: 𝑢←ℎ (𝑥) ⊲𝑢 is hash to be queried in mini-filter

2: 𝑏1←ℎ1 (𝑥) ⊲ Compute primary and secondary block indexes

3: 𝑏2←𝑏1 ⊕𝑢
4: if remove_fingerprint(𝑖1,𝑢) then
5: return True

6: else
7: return remove_fingerprint(𝑖2,𝑢)

8: end if
9:

10: procedure remove_fingerprint(𝑖,𝑢)
11: 𝑦←𝑢/2𝑟 ⊲ 𝑦 is bucket index within the block

12: ℓ← find_fingerprint(𝑖,𝑢) ⊲ ℓ is position of fingerprint to be removed

13: if ℓ <0 then
14: return False

15: end if
16: 𝑚← ℓ+𝑦 ⊲𝑚 is index of metadata bit to be deleted

17: while𝑚<𝑠+𝑏 do ⊲ Implemented using PEXT

18: block[𝑖] .metadata[𝑚]←block[𝑖] .metadata[𝑚+1]
19: 𝑚←𝑚+1
20: endwhile
21: while ℓ <𝑠 do ⊲ Implemented using VPERMB

22: block[𝑖] .fingerprints[ℓ]←block[𝑖] .fingerprints[ℓ+1]
23: ℓ← ℓ+1
24: endwhile
25: return True

26: end procedure

and secondary blocks are checked to see if either contains 𝑢; if so,

the lookup returns “present,” otherwise it returns “not present.”

Inside a block, we first compute the bucket𝑦 for the given item,

and use Select on the bucket-size bitvector to find the start and end

of the run of fingerprints in bucket𝑦. Then we compare each finger-

print in the run to the queried fingerprint 𝑡 , and return the position

of the match if one exists, and -1 otherwise. The comparison loop

on line 14 is implemented as a single AVX-512 VCMPB instruction.

Remove. Algorithm 3 shows the pseudocode for the remove

operation. The remove operation uses find_fingerprint to find the

fingerprint in the item’s primary or secondary block. If it exists, then

it reverses the operations of insert. As with insert, we can replace

all the loops with AVX-512 instructions, PDEP/PEXT instructions,

and lookup tables.

Because the vector quotient filter uses XOR to link the hash

functions which determine the primary and secondary blocks, it

is safe to remove a remainder found in this way. See section 3.4.

5 SPACEANALYSIS
We now analyze the space usage of the vector quotient filter and

compare it against the space usage of other filters. We perform the

analysis on a generalized version of our optimized vector quotient

filter, parameterized by 𝑏, 𝑟 , and 𝑠 , as defined in the table below.

The notation used for analysis is:

𝜀 target false positive rate

𝛼 maximum allowed load factor

𝑆 number of bits per item

𝑟 number of bits in the fingerprint

𝑏 number of buckets per block

𝑠 number of slots per block

𝑚 number of blocks

Wefirst compute the false-positive rate 𝜀 as a function of𝑏, 𝑠 , and𝑟 .

Each itemmaps to twoblocks.Withinablock, itmaps tooneof𝑏 buck-

ets. The total number of items in a block is at most 𝑠 , so the average

number of items in an item’s bucket is 𝑠/𝑏. For each item in a query’s

bucket, there is a 2
−𝑟

probability that its fingerprint matches that of

the query. Thus, by a union bound, we can upper bound the prob-

ability of a match within one block as
𝑠
𝑏
2
−𝑟
. Since each query maps

to two blocks, the probability of a match in either block is at most

𝜀 ≤ 2 𝑠
𝑏
2
−𝑟 = 𝑠

𝑏
2
1−𝑟

. Solving for 𝑟 gives 𝑟 ≤ log(1/𝜀)+log(𝑠/𝑏)+1.
We now compute the bits per item, 𝑆 , as a function of 𝑏, 𝑠 , 𝑟 , and

the load factor 𝛼 . Each slot occupies an 𝑟 -bit fingerprint in a block.

Each block also has 𝑏+𝑠 metadata bits that are shared by the 𝑠 slots

in the block. So the total bits per slot is 𝑟 + 𝑏+𝑠𝑠 . If only a fraction 𝛼

of slots have items stored in them, then the bits per item is

𝑆 =
𝑟+ 𝑏+𝑠𝑠
𝛼

=
𝑟+𝑏/𝑠+1

𝛼
.

By subtituting 𝑟 ≤ log(1/𝜀)+log(𝑠/𝑏)+1 for 𝑟 in our equation for
𝑆 , we get

𝑆 ≤ log(1/𝜀)+log(𝑠/𝑏)+𝑏/𝑠+2
𝛼

.

Thus we can minimize 𝑆 by minimizing log(𝑠/𝑏) + 𝑏/𝑠 , which is

minimized when 𝑠/𝑏= ln2.
Thus the space used by the vector quotient filter is

𝑆 ≤ log(1/𝜀)+logln2𝑒 +2
𝛼

≈ log(1/𝜀)+2.914
𝛼

.

Note that space usage and false-positive rate are functions of 𝑠/𝑏.
Thus we can make blocks as large as we like (i.e. we can make 𝑠

arbitrarily large) without affecting the false-positive rate or space

efficiency, so long aswemaintain the same ratio of 𝑠/𝑏. In the cuckoo
andMorton filters, however, the false-positive rate increases with

the number of slots per block, which is why they keep blocks small

and use kicking.

The additive overhead of 2.914 bits/element is slightly less than

the cuckoo filter’s 3 bits of overhead. However, as we will see

experimentally in Section 7, the vector quotient filter supports load

factors only up to 93%. Thus we expect these differences to cancel

out, so that the vector quotient filter uses very close to the same

space as the cuckoo filter.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1391

5 10 15 20 25

0

10

20

Number of bits per element

−𝑙
𝑜
𝑔
2
(𝜀
)

vector quotient filter

quotient filter

cuckoo filter

Bloom filter

Figure 2: False-positive rate verus the number of bits per
element for the vector quotient filter, quotient filter, cuckoo
filter, and Bloom filter. The vector quotient filter requires
similar space as the cuckoo filter. 𝜀 is the false positive rate.
The y-axis shows the negative log of the false-positive rate
for a clearer interpretation. (Higher is better.)

Figure 2 shows the comparison of the false positive rate and

the number of bits per item for the vector quotient filter, counting

quotient filter, cuckoo filter, and Bloom filter. We assume a 93% load

factor for the vector quotient filter, 95% for the quotient filter and

cuckoo filter, and 100% for the Bloom filter. The vector quotient

filter space usage for a given false positive rate is similar to the

cuckoo filter and slightly higher than the counting quotient filter.

The Bloom filter has no additive overhead, so is smaller for large

false-positive rates, but its larger multiplicative overhead means

that it is larger for small false-positive rates.

Note that the optimal vector quotient filter configuration con-

strains only the ratio 𝑠/𝑏, but says nothing about 𝑠 or 𝑏 individually.
Thus we can make 𝑠 and 𝑏 as large or small a we want, as long as we

keep 𝑠/𝑏≈ ln2. In practice, for a given fingerprint size 𝑟 , we set 𝑠 and
𝑏 as large as possible given the constraint that a block, consisting

of 𝑠+𝑏+𝑠𝑟 bits, fit on a single cache line.
We note that Figure 2 shows the theoretical relationship between

the false-positive rate and the bits-per-element in different filters.

In practice, only the counting quotient filter implementation sup-

ports arbitrary fingerprint sizes with relatively good efficiency. The

vector quotient filter, cuckoo, and Morton filter implementations

evaluated in this paper, on the other hand, support only a few dis-

crete false-positive rates in practice. Our vector quotient filter proto-

type supports only two false-positive rates—0.004 and 0.000023. The

cuckoo filter implementation supports more false-positive rates (by

adjusting both thefingerprint size and the block size), butmany false-

positive rates arenotpractical. This is because the cuckoofilter imple-

mentation supports only 8, 12, 16, and 32-bit fingerprints and, given a

fingerprint size 𝑟 and block size𝑏, it has a false positive rate of 2𝑏2−𝑟 .
Thus the only way to get a false-positive rate of say, 2

−16
, would be

to use 32-bit fingerprints and blocks of size 𝑏 = 2
15
, which would

need to be searched on every query, resulting in very slow queries.

6 IMPLEMENTATIONANDOPTIMIZATION
This section describes details and optimizations of the vector

quotient filter implementation. We begin by analyzing the optimal

parameters for the vector quotient filter, then describe a shortcut

optimization that we use to speed up insertions, and also how to

convert single-threaded operations in the vector quotient filter into

thread-safe operations using lightweight spin locks.

0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

𝑠/𝑏

l
o
g
(𝑠
/𝑏
)+
𝑏
/𝑠

log(𝑠/𝑏)+𝑏/𝑠
𝑠=48 𝑏=80

𝑠=28 𝑏=36

Figure 3: The relation between 𝑠/𝑏 and the overhead bits in a
vector quotient filter. (Lower is better.)

6.1 Optimizing the vector quotient filter for x86
We now describe howwe design the vector quotient filter to fit mini

quotient filters in a single x86 cache line.

There are several constraints on the design. Ideally, each

mini-filter should fit in a 512-bit cache line with no wasted bits. In

order to use the VPERM and VCMP instructions to shift and search

fingerprints (see section 3.3), those fingerprints should be 8, 16, or

32 bits and aligned. Finally, we want to minimize the false-positive

rate and maximize the capacity.

Therefore, when setting the parameters of the mini-filter, we

want to choose 𝑏 and 𝑠 so that the total space of the mini-filter,

𝑏+(𝑟+1)𝑠 , is as close to 512 as possible, without going over. Subject
to this constraint, we want to keep 𝑠/𝑏 as close as possible to ln2.

Our prototype supports 8 and 16-bit fingerprints. For 8-bit fin-

gerprints, we choose 𝑠 = 48 and 𝑏 = 80. For 16-bit fingerprints, we

use 𝑠 =28 and 𝑏=36. We choose these values because they result in

128-bit and 64-bitmetadata, respectively,waste nobits in a block, and

have fast multiply, divide, and mod algorithms. Furthermore, they

both achieve close to the optimal bit overhead. Figure 3 shows the

bit overhead from various choices of 𝑠/𝑏, and the two points chosen
in our implementation. As the graph shows, the overhead curve is

relatively flat in the region around itsminimum, so there is notmuch

cost in choosing convenient points near the minimum. For example,

our choices result in 0.93 and 0.923 bits of overhead for 8 and 16 bits

fingerprints, respectively, compared to the optimal of 0.914 bits.

6.2 Shortcuts during insertion
The insert operation in the vector quotient filter described in

section 4 must check the occupancy of both the blocks given by the

two block indexes and pick the less loaded block. This causes two

cache-line misses during every insert operation irrespective of the

load factor. Thus, while the power-of-two-choices allocation scheme

balances load extremely well, it can lead to a higher insertion cost

than simply allocating with a single hash function.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1392

The shortcut optimization balances these two schemes: allocating

to a single block when the occupancy is low and allocating

with power-of-two-choices when the occupancy is high. This is

implemented on insertion by checking the occupancy of the first

block first and always selecting it if it is less than 75% occupied,

thereby eliding the access to the second block completely. As a result,

the insert operation incurs only a single cache-line miss during low

load factors and speeds up the average insertion throughput.

Empirically, we find that this optimization only slightly reduces

the maximum load factor of the vector quotient filter, and increases

insert performance substantially. We empirically evaluated the

effect of shortcut optimization on the maximum load factor for

different thresholds. For the 75% threshold the optimization has only

a marginal effect reducing the maximum load factor from 94.40% to

93.56%. However, increasing the threshold higher than 75% did show

a sharp decrease in the maximum load factor. For example, with

87.5% and 95.83% threshold the maximum load was reduced to 90%

and 64.83%. See section 7 for an evaluation of the insert operation

performance with and without the shortcut optimization.

6.3 Multi-threading
We now describe an implementation of thread-safe operations in

the vector quotient filter. In the vector quotient filter, each insert,

lookup, and remove operation touches at most two blocks and

each block fits in a cache line. Therefore, most operations occur

on independent cache lines, so that threads rarely contend for the

same cache lines. As a result, the vector quotient filter is especially

amenable to highly concurrent thread-safe operations.

In the thread-safe implementation, the rightmost bit in the

metadata bitvector of each block is used as a lock bit. As explained

in section 3.2, 𝑏+𝑠 metadata bits are required to store 𝑠 fingerprints

belonging to 𝑏 buckets in a block. However, if it isn’t full, it uses

fewer, and if it is full, then the last (rightmost) bit is always 1.

Therefore, we can use it as the lock bit and treat it as though it were

1 in the bucket-size bitvector.

A lock is acquired or released using atomic instructions

(“__sync_fetch_and_or” to lock and “__sync_fetch_and_and” to

release). To acquire the lock on a block, we set the bit to 1 and reset

the bit to release the lock. When multiple locks are held at once,

they are always acquired in increasing order of block index. This

protocol avoids any potential deadlocks.

During an insert operation, the lock is acquired on the primary

block before checking its occupancy. Following the shortcut

optimization, if the occupancy is high enough the secondary block

is checked as well. But in that case, if the secondary block has a

lower index than the primary block, the lock on the primary block

is released and then reobtained after acquired the lock on the

secondary block, as per the locking order protocol.

During the lookup and remove operations, we acquire the lock on

the block only during find_fingerprint or remove_fingerprint.

7 EVALUATION
In this section,weevaluateour implementationof thevectorquotient

filter (VQF).We compare the vector quotient filter against three other

filterdata structures: Fanet al.’s cuckoofilter (CF) [30],Breslowet al.’s

Morton filter (MF) [13], and Pandey et al.’s quotient filter (QF) [43].

We evaluate each data structure on three fundamental operations:

insertions, lookups, and removals. We evaluate lookups both for

items that are present and for items that are not present in the filter.

This section tries to address the following questions about how

filters perform in RAM and L3 cache:

(1) How does the vector quotient filter (VQF) compare to the

cuckoo filter (CF), Morton filter (MF), and quotient filter (QF)

when the filters are in RAM?

(2) How does the vector quotient filter (VQF) compare to the

cuckoo filter (CF), Morton filter (MF), and quotient filter (QF)

when the filters fit in L3 cache?

(3) How does the vector quotient filter (VQF) compare to the

cuckoo filter (CF) and Morton filter (MF) when running a

mixed workload at high occupancy?

(4) How does the insertion throughput of the vector quotient

filter (VQF) scales with multiple threads?

7.1 Experimental setup
In order to see the impact of collision resolution, we report the

performance on all operations as a function of the data structures’

load factor. This also eases comparison with prior work, which uses

the same methodology [7, 13, 31, 43]. We also report the aggregate

throughput performance which is the performance of the filter

going from scratch to 95% (or 90%) load factor.

One challenge we face is that the filters do not all support the

same false-positive rates. For example, the cuckoo filter implemen-

tation [30] supports only 2, 4, 8, 12, 16, and 32-bit fingerprints. The

false-positive rate can further be tweaked by a small amount by

adjusting the block size, but making the blocks too small increases

the failure probability, and making them too large decreases perfor-

mance. This is why the cuckoo filter authors recommend a block size

of 4. The Morton filter implementation [12] has similar limitations.

Thus we pick two target false positive rates and configure each

filter to get as close as possible to those false-positive rates without

sacrificing performance. Our target false-positive rates are 2
−8

and

2
−16

. We configure the vector quotient filter with 8 and 16-bit finger-

prints, respectively and slots and buckets as described in Section 6.

We use 8- and 16-bit fingerprints in the quotient filter. We use 12-

and 16-bit fingerprints and blocks of size 4 in the cuckoo filter. We

use 8- and 16-bit fingerprints and blocks of size 3 in theMorton filter.

Table 2 shows the empirical space usage and false-positive rate of

different filters in these experiments. In the 8-bit experiments, all the

filters are within roughly a factor of two in terms of false-positive

rate. In the 16-bit experiments, the cuckoo filter false-positive rate

is significantly higher than the other filters due to limitations of the

implementation.

To compare these filters space and false-positive rate, we compute

each filter’s space efficiency in Table 2, which is defined to be

𝑛log1/𝜀
𝑆

,

where 𝑛 is the number of items in a full filter (i.e. at the maximum

supported occupancy), 𝜀 is the false-positive rate achieved by the

filter, and 𝑆 is the total number of bits used by the filter. As Table 2

shows, the quotient filter is the most space efficient, followed by the

Mortonfilter. The cuckoofilter ismore space efficient than the vector

quotient filter for our 8-bit experiments, but the vector quotient

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1393

vector quotient filter vector quotient filter (shortcut) quotient filter cuckoo filter Morton filter

0 20 40 60 80 100

0

10

20

30

40

Load Factor

T
h
r
o
u
g
h
p
u
t
(
M
i
l
l
i
o
n
s
/
s
e
c
o
n
d
)

(a) Insertion (Higher is better.)

0 20 40 60 80 100

0

10

20

30

40

Load Factor

T
h
r
o
u
g
h
p
u
t
(
M
i
l
l
i
o
n
s
/
s
e
c
o
n
d
)

(b) Deletion throughput (Higher is better.)

0 20 40 60 80 100

0

10

20

30

40

Load Factor

T
h
r
o
u
g
h
p
u
t
(
M
i
l
l
i
o
n
s
/
s
e
c
o
n
d
)

(c) Successful lookup (Higher is better.)

0 20 40 60 80 100

0

10

20

30

40

Load Factor

T
h
r
o
u
g
h
p
u
t
(
M
i
l
l
i
o
n
s
/
s
e
c
o
n
d
)

(d) Random lookup (Higher is better.)

Figure 4: Insertion, deletion, and lookup performance of different filters in RAM. All filters were configured with a target
false-positive rate of 2−8, as described in Table 2. Shortcut refers to the optimization described in Section 6.2. Note that in
Figure 4d, the lines for the vector quotient filters with and without the shortcut optimization nearly coincide. The vector
quotient filter is shownwith throughput only up to 90% because it reaches full capacity at 93%.

filter is more efficient than the cuckoo filter for 16-bit experiments.

Nonetheless, the differences are relatively small across the board.

The configurations used in our experiments are consistent with

the author’s recommendations and show these filters at or near

their best performance. For example, all other configurations that

we tried for the Morton filter were slower. The cuckoo filter is ≈20%
faster with 8-bit fingerprints, but this gives a false-positive rate of

1/32, which is too high for many applications.

We evaluate the performance of the data structures in RAM

as well as in L3 cache. This is because applications use filters in

multiple different scenarios and filters are often small enough to

completely fit in L3 cache. We perform two sets of benchmarks.

For the in-RAM benchmark, we create the data structures with 2
28

(268M) slots which makes all the data structures substantially larger

than the L3 cache. For the in-cache benchmark, we create the data

structures with 2
22
(4M) slots (and 2

21
slots for 16-bit fingerprints)

which keeps themwell smaller than the size of the L3 cache (8MB).

All the experiments were run on an Intel Ice Lake CPU (Intel(R)

Core(TM) i7-1065G7 CPU @ 1.30GHz with 4 cores and 8MB L3

cache) with 15 GB of RAM running Ubuntu 19.10 (Linux kernel

5.3.0-26-generic).

Microbenchmarks.We measure performance on raw inserts,

removals, and lookups which are performed as follows.We generate

64-bit hashvalues fromauniform-randomdistribution to be inserted,

removed or queried in the data structure. Items are inserted into an

empty filter until it reaches its maximum recommended load factor

(e.g., 95%). The workload is divided into slices, each of which is 5% of

the load factor. The time required to insert each slice is recorded, and

after each slice, the lookup performance for that load factor is mea-

sured.Once the data structure is 95% full, items thatwere inserted are

removed—again in slices of 5% of the load factor—until the data struc-

ture is empty andmeasure the performance after removing each slice.

Wemeasure thequeryperformance for items that exist (successful

lookups) and items that do not exist in the filter (random lookups).

For successful lookups, we query items that are already inserted and

for random lookups we generate a different set of 64-bit hashes than

the set used for insertion. The random lookup set contains almost

entirely non-existent hashes because the hash space is much bigger

than thenumberof items in thefilter. Empirically, 99.9989%ofhashes

in the random lookup query set were non-existent in the input set.

The vector quotient filter supports up to only 93% load factor for

in-RAM experiments and was able to support up to 95% load factor

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1394

Target log(FPR) 8 16

Filter log(FPR) Space (MB) Efficiency log(FPR) Space (MB) Efficiency

Quotient filter 8.16 324.20 0.76 16.44 580.35 0.76

Cuckoo filter
∗

9.15 384.00 0.72 13.17 512.00 0.70

Morton filter 8.50 356.19 0.73 16.96 606.88 0.72

Vector quotient filter 7.84 341.34 0.68 15.15 585.14 0.72

Table 2: Empirical space usage and false-positive rate of filters used in the benchmarks. All filters were created with 2
28 slots

(in-RAMexperiments). Space is given inMB. ∗In our 8-bit experiments,we configure the cuckoofilterwith 12-bit fingerprints so
that its false-positive rate roughlymatches the other filters. In our 16-bit experiments, there is no practicalway to configure the
cuckoo filter for amatching false-positive rate, so we just use 16-bit fingerprints, which gives amuch higher false-positive rate.

for in-cache experiments due to the difference in the number of items

inserted in the data structure. Therefore, for in-RAM experiments,

the vector quotient filter plots do not show the throughput at 95%

load factor.

In order to isolate the performance differences between the

data structures, we do not count the time required to generate the

random inputs to the filters.

Application workload. We also measure the performance of

the data structures on workloads consisting of equal portions of

insertions, removals, and lookups when the data structure is main-

tained at a high load factor (90%). This workload is characterized as

awrite heavy (WH) workload [24] because it involves inserting and

removing items from the data structure when it is almost full. This

type of workload is often seen in real-world applications and the

performance of the data structure at a high load factor and under

a write heavy workload is critical for applications to scale.

For the applicationworkload, we first fill up all the data structures

to 90% load factor. We then perform operations from a mixed

workload and compute the aggregate throughput of the data

structure to execute the set of operations.

The Morton filter supports a batch API for insertions and

queries [13]. Nonetheless, we use the one-at-a-time API for two

reasons. First, this makes an apples-to-apples comparison with

the other filters. Second, many applications cannot use batching,

and we want our benchmarks to reflect the performance that such

applications would see.

7.2 In-RAMperformance
Figure 4 shows the in-RAM performance of data structures. The

vector quotient filter has the highest insertion throughput compared

to other data structures. It is 2× and 2.5× faster than the Morton

filter and cuckoo filter, respectively. Aggregate throughput of

different operations are shown in Figure 6a.

The insertion throughput of the vector quotient filter without the

shortcut optimization stays consistent across different load factors.

With the shortcut optimization, the insertion throughput is ≈1.25×
higher until ≈ 75% load factor and then becomes similar to the no

shortcut optimization. However, the aggregate insertion throughput

is higher with the shortcut optimization. The shortcut optimization

does not affectmaximum load factor for the vector quotient filter. For

removals and lookups, the vector quotient filter has similar through-

put to the cuckoo filter and is 1.5× faster than the Morton filter.

The quotient filter has the lowest throughput for all operations.

This is due to the additional overheads of maintaining counters with

unbounded size and support for storing associated valueswith items.

Filter Throughput (Million/sec)

vector quotient filter 20.268

cuckoo filter 3.147

Morton filter 11.958

Table 3: Aggregate throughput for application workload.
Workload includes 100M operations (equally divided into
insertions, deletions, and queries) at 90% load factor of
different filters in RAM. All filters were configured for a
target false-positive rate of 2−8, as described in Table 2.

Our performance results for the Morton filter are worse than

the main experimental results from the Morton filter paper [13].

This is because the Morton filter implementation is optimized for

AMD CPUs, but we evaluate it on an Intel CPU, where performance

is known to be worse. For example, Figure 17 in the Morton filter

paper [13] shows that the Morton filter speed on a Skylake-X CPU

is similar or worse than the CF. Our results are consistent with that.

7.3 In-cache performance
Figure5 shows the in-cacheperformanceofdata structures.Through-

put for all operationswhen the filters are in-cache operation is much

higher compared to their corresponding throughput in RAM. The

relative performance of different operations in-cache across data

structures shows similar trend as the in-RAM performance. The vec-

tor quotient filter has the highest insertion and removal throughput

andoffers lookupperformance similar to the cuckoofilter.Aggregate

throughput of different operations are shown in Figure 6b.

7.4 Low false-positive rate performance
Figures 6c and 6d show the performance (aggregate throughput) of

the filters at very low (≈2−16) false-positive rates. The relative per-
formance of the filters with 16-bit fingerprints shows similar trends

as the 8-bit performance. One difference from the 8-bit results is that,

with 16-bits the random lookup performance of the vector quotient

filter is higher than the cuckoofilter.This is because the false-positive

rate is very low and almost all random lookups are negative queries.

The vector quotient filter has an early exit condition in this case. The

instantaneous throughput performance of all the data structures for

16-bit fingerprints shows similar trends as the 8-bit fingerprint. We

omit the instantaneous throughput plots due to space constraints.

7.5 Write heavy workload
Table 3 shows the throughput of data structures for a write heavy

workload when the filters are maintained at 90% load factor. We did

not use the quotient filter for this workload as it was the slowest

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1395

vector quotient filter vector quotient filter (shortcut) quotient filter cuckoo filter Morton filter

0 20 40 60 80 100

0

20

40

60

80

Load Factor

T
h
r
o
u
g
h
p
u
t
(
M
i
l
l
i
o
n
s
/
s
e
c
o
n
d
)

(a) Insertion (Higher is better.)

0 20 40 60 80 100

0

20

40

60

80

Load Factor

T
h
r
o
u
g
h
p
u
t
(
M
i
l
l
i
o
n
s
/
s
e
c
o
n
d
)

(b) Deletion throughput (Higher is better.)

0 20 40 60 80 100

0

20

40

60

80

Load Factor

T
h
r
o
u
g
h
p
u
t
(
M
i
l
l
i
o
n
s
/
s
e
c
o
n
d
)

(c) Successful lookup (Higher is better.)

0 20 40 60 80 100

0

20

40

60

80

Load Factor

T
h
r
o
u
g
h
p
u
t
(
M
i
l
l
i
o
n
s
/
s
e
c
o
n
d
)

(d) Random lookup (Higher is better.)

Figure 5: Insertion, deletion, and lookup performance of different filters in L3 cache. The vector quotient filter with shortcut
refers to theoptimizationdescribed inSection6.2. Allfilterswere configuredwitha target false-positive rate of 2−8, as described
in Table 2.

Num threads Throughput (Million/sec)

1 16.059

2 31.154

3 43.737

4 54.282

Table 4: Insertion throughput with increasing number of
threads in RAM. All filters were configured for a target
false-positive rate of 2−8, as described in Table 2.
data structure for both in-RAM and in-cache benchmarks. We also

only use the vector quotient filter with shortcut optimization as

it has higher aggregate throughput compared to no optimization.

All filters were configured for a target false-positive rate of 2
−8
, as

described in Table 2. The vector quotient filter is 1.6× faster than
the Morton filter and 6.4× faster than the cuckoo filter. It is due to
the slow insertion performance of the cuckoo andMorton filters at

high load factors that they become really slow to operate for write

heavy workloads at high load factors.

7.6 Scaling withmultiple threads
Table 4 shows the insertion throughput of the vector quotient filter

with multiple threads. All filters were configured for a target false-

positive rate of 2
−8
, as described in Table 2. The insertion throughput

increases almost linearly with increasing number of threads with

≈3× increase from1 thread to4 threads. Wescaleup toonly4 threads

as the machine only had 4 physical cores and we do not have access

to a machine with more than 4 cores that also supports AVX512BW

instructions. The multi-threaded benchmark was performed using

the same configuration as the In-RAM experiments (Figure 4).

7.7 Impact ofAVX512 intrinsics onperformance
We implemented a variant of the vector quotient filter using only

AVX2 instruction set and not using any of the AVX512 intrinsics.

In our evaluation (using the same configuration as experiments

in Figure 6a), the AVX2 variant was between 13% to 46% slower

than AVX512 variant for different operations. The biggest impact

of AVX512 is on the deletion performance. However, even without

AVX512 intrinsics the vector quotient filter is between 17% to 34%

faster than the Morton filter for all operations and 48% faster than

the cuckoo filter for inserts.

8 CONCLUSION
This paper shows that it is possible to build a filter that is

space-efficient and offers consistently high insertion and deletion

throughput even at very high load factors.

The vector quotient filter offers superior insertion performance

compared to the state-of-the-artfilters, especially athigh load factors,

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1396

vector quotient filter (AVX512) vector quotient filter (AVX512, shortcut) vector quotient filter (AVX2, shortcut)

quotient filter cuckoo filter Morton filter

Insertion Positive

Lookup

Random

Lookup

Deletion

0

20

40

1
8
.6

2
5
.5 2
8
.8

1
9
.6

2
5

2
8
.3

2
9
.2

2
1
.7

1
9
.2

2
3
.4 2
5
.7

1
4
.9

9
.3 1
1
.4

1
6

5

9
.9

3
2
.4

3
1
.9

2
2
.1

1
2
.5 1
5
.3

1
9
.9

1
2
.3

(a) Aggregate throughput in RAM. Filters were configured with a
target false-positive rate of 2−8, per Table 2.

Insertion Positive

Lookup

Random

Lookup

Deletion

0

50

100

150

200

4
7
.3

6
3
.8

6
5
.1

5
3

5
0
.3

6
7
.8

6
9
.1

5
5
.1

4
7
.2

6
9
.4

5
3
.8

4
2
.9

2
3
.3 3
2
.6 4
3
.2

1
1
.3

3
4

8
9
.8

8
8
.2

4
6
.2

4
0
.4

4
1
.7

4
7
.7

4
0
.7

(b) Aggregate throughput in L3 cache. Filters were configured with a
target false-positive rate of 2−8, per Table 2.

Insertion Positive

Lookup

Random

Lookup

Deletion

0

20

40

2
2

2
9

3
7
.9

2
4
.9

2
6
.5

3
4
.3

3
7
.9

2
7
.7

2
1
.3

2
9
.4

2
6
.1

2
1
.3

1
0
.2

1
1
.4

1
6
.5

5
.6

1
5
.8

3
6
.8

3
5
.3

2
6
.9

1
8
.8

1
8
.1

2
3
.5

1
7
.5

(c) Aggregate throughput in RAM. Filters were configured with a
target false-positive rate of 2−16, per Table 2.

Insertion Positive

Lookup

Random

Lookup

Deletion

0

50

100

150

200

5
7
.3

7
9
.8

1
6
2
.9

6
7
.47
5
.5

1
1
9
.6

1
7
3
.6

9
0
.4

6
8
.9

1
0
2
.3

1
0
8
.8

6
8
.7

2
4
.3

3
1
.2 4
3
.4

1
3
.6

4
8

1
6
6
.2

1
6
1
.7

6
4
.3

5
2
.3

4
7
.3

5
4
.2

4
5
.9

(d) Aggregate throughput in L3 cache. Filters were configured with a
target false-positive rate of 2−16, per Table 2.

Figure 6: Aggregate throughput for insertion, deletion, and lookup performance of different filters in RAM and L3 cache. The
vector quotient filter with shortcut refers to the optimization in section 6.2. (Higher is better.)

where vector quotient filter insertions are over 2× faster other mod-

ern filters. Vector quotient filter queries are slightly slower than in

the cuckoo filter, but faster than the other filters in our experiments.

We attribute the high throughput and space-efficiency of the

vector quotient filter to two things, the power-of-two-choice

hashing and SIMD instructions. Power-of-two-choice hashing

reduces themini filter occupancy variance, enabling high occupancy.

The SIMD instructions enable the vector quotient filter to perform

constant-time operations in mini filters.

Like the quotient filter, the vector quotient filter also has the

ability to associate a small value with each item. Applications often

use the value bits to store some extra information with each item

in the filter [21, 33, 45]. We believe the ability to associate a value

with each key makes the vector quotient filter a go-to data structure

in every application builder’s toolbox.

ACKNOWLEDGMENTS
We gratefully acknowledge support from NSF grants CCF 805476,

CCF 822388, CCF 1724745, CCF 1715777, CCF 1637458, IIS 1541613,

CNS 1408695, CNS 1755615, CCF 1439084, CCF 1725543, CSR

1763680, CCF 1716252, CCF 1617618, CNS 1938709, IIS 1247726,

CNS-1938709. This research is funded in part by the Advanced

Scientific Computing Research (ASCR) programwithin the Office

of Science of the DOE under contract number DE-AC02-05CH11231.

We used resources of the NERSC supported by the Office of Science

of the DOE under Contract No. DEAC02-05CH11231. This research

was also supported by the Exascale Computing Project (17-SC-20-

SC), a collaborative effort of the U.S. Department of Energy Office

of Science and the National Nuclear Security Administration.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1397

REFERENCES
[1] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison.

2007. Scalable Bloom filters. Journal of Information Processing Letters 101, 6 (2007),
255–261.

[2] Fatemeh Almodaresi, Prashant Pandey, Michael Ferdman, Rob Johnson, and Rob

Patro. 2019. An Efficient, Scalable and Exact Representation of High-Dimensional

Color Information Enabled via de Bruijn Graph Search. In International Conference
on Research in Computational Molecular Biology (RECOMB). Springer, 1–18.

[3] Fatemeh Almodaresi, Prashant Pandey, Michael Ferdman, Rob Johnson, and

Rob Patro. 2020. An Efficient, Scalable, and Exact Representation of High-

Dimensional Color Information Enabled Using de Bruijn Graph Search. Journal
of Computational Biology 27, 4 (2020), 485–499.

[4] Sattam Alsubaiee, Alexander Behm, Vinayak Borkar, Zachary Heilbron, Young-

Seok Kim, Michael J Carey, Markus Dreseler, and Chen Li. 2014. Storage man-

agement in AsterixDB. Proceedings of the VLDB Endowment 7, 10 (2014), 841–852.
[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload analysis of a large-scale key-value store. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint International Conference onMeasurement
and Modeling of Computer Systems. 53–64.

[6] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. 1999. Balanced

allocations. SIAM J. Comput. 29, 1 (1999), 180–200.
[7] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kaner, Bradley C.

Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane,

and Erez Zadok. 2012. Don’t Thrash: How to Cache Your Hash on Flash.

Proceedings of the VLDB Endowment 5, 11 (2012).
[8] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. 2006.

Balanced Allocations: The Heavily Loaded Case. SIAM J. Comput. 35, 6 (June
2006), 1350–1385. https://doi.org/10.1137/S009753970444435X

[9] Burton H. Bloom. 1970. Space/time Trade-offs in Hash CodingWith Allowable

Errors. Commun. ACM 13, 7 (1970), 422–426.

[10] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George

Varghese. 2006. An improved construction for counting Bloom filters. In European
Symposium on Algorithms (ESA). Springer, 684–695.

[11] Phelim Bradley, Henk C Den Bakker, Eduardo PC Rocha, Gil McVean, and Zamin

Iqbal. 2019. Ultrafast search of all deposited bacterial and viral genomic data.

Nature biotechnology 37, 2 (2019), 152–159.
[12] Alex D Breslow. 2018. Morton Filter source code in C++. https://github.com/

AMDComputeLibraries/morton_filter. [Online; accessed 19-July-2020].

[13] Alex D Breslow and Nuwan S Jayasena. 2018. Morton filters: faster, space-efficient

cuckoo filters via biasing, compression, and decoupled logical sparsity. Proceedings
of the VLDB Endowment 11, 9 (2018), 1041–1055.

[14] Andrei Broder and Michael Mitzenmacher. 2004. Network applications of Bloom

filters: A survey. Internet Mathematics 1, 4 (2004), 485–509.
[15] Mustafa Canim, George AMihaila, Bishwaranjan Bhattacharjee, Christian A Lang,

andKennethARoss. 2010. BufferedBloomFiltersonSolidStateStorage.. InProceed-
ings of the International Workshop on Accelerating Analytics and Data Management
Systems Using Modern Processor and Storage Architectures (ADMS). 1–8.

[16] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HCDu. 2020. Characterizing,

modeling, and benchmarking RocksDB key-value workloads at Facebook. In 18th
USENIX Conference on File and Storage Technologies (FAST). 209–223.

[17] Larry Carter, Robert Floyd, John Gill, George Markowsky, and Mark Wegman.

1978. Exact and approximate membership testers. In Proceedings of the tenth
annual ACM symposium on Theory of computing. 59–65.

[18] Pedro Celis, Per-Ake Larson, and J Ian Munro. 1985. Robin hood hashing. In 26th
Annual Symposium on Foundations of Computer Science (FOCS). 281–288.

[19] Rayan Chikhi and Guillaume Rizk. 2013. Space-efficient and exact de Bruijn

graph representation based on a Bloom filter. Algorithms for Molecular Biology
8, 1 (2013), 22.

[20] Justin Chu, Sara Sadeghi, Anthony Raymond, Shaun D Jackman, Ka Ming Nip,

Richard Mar, Hamid Mohamadi, Yaron S Butterfield, A Gordon Robertson, and

Inanc Birol. 2014. BioBloom tools: fast, accurate andmemory-efficient host species

sequence screening using bloom filters. Bioinformatics 30, 23 (2014), 3402–3404.
[21] Alexander Conway, Martin Farach-Colton, and Philip Shilane. 2018. Optimal

Hashing in External Memory. In ICALP (LIPIcs), Vol. 107. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 39:1–39:14.

[22] Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton,

Richard P. Spillane, Amy Tai, and Rob Johnson. 2020. SplinterDB: Closing

the Bandwidth Gap for NVMe Key-Value Stores. In USENIX Annual Technical
Conference. USENIX Association, 49–63.

[23] Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey: Optimal

navigable key-value store. In Proceedings of the 2017 ACM International Conference
on Management of Data. 79–94.

[24] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G Khatib, and

Cristian Ungureanu. 2016. Revisiting hash table design for phase change memory.

ACM SIGOPS Operating Systems Review 49, 2 (2016), 18–26.

[25] Biplob Debnath, Sudipta Sengupta, Jin Li, David J Lilja, and David HC Du.

2011. BloomFlash: Bloom filter on flash-based storage. In Proceedings of the 31st

International Conference on Distributed Computing Systems (ICDCS). 635–644.
[26] Biplob K Debnath, Sudipta Sengupta, and Jin Li. 2010. ChunkStash: Speeding Up

Inline Storage Deduplication Using Flash Memory.. In Proceedings of the USENIX
Annual Technical Conference (ATC).

[27] Peter C. Dillinger and Panagiotis (Pete) Manolios. 2009. Fast, All-Purpose

State Storage. In Proceedings of the 16th International SPIN Workshop
on Model Checking Software. Springer-Verlag, Berlin, Heidelberg, 12–31.

https://doi.org/10.1007/978-3-642-02652-2_6

[28] Gil Einziger and Roy Friedman. 2016. Counting with TinyTable: Every Bit Counts!.

In Proceedings of the 17th International Conference on Distributed Computing and
Networking (ICDCN ’16). Association for Computing Machinery, New York, NY,

USA, Article 27, 10 pages. https://doi.org/10.1145/2833312.2833449

[29] John Esmet, Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul.

2012. The TokuFS Streaming File System. In Proc. 4th USENIXWorkshop on Hot
Topics in Storage (HotStorage). Boston, MA, USA.

[30] Bin Fan. 2014. Cuckoo Filter source code in C++. https://github.com/efficient/

cuckoofilter. [Online; accessed 19-July-2014].

[31] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.

2014. Cuckoo Filter: Practically Better Than Bloom. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and Technologies.
75–88.

[32] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder. 2000. Summary cache:

A scalable wide-area web cache sharing protocol. IEEE/ACM Transactions on
Networking (TON) 8, 3 (2000), 281–293.

[33] Martin Farach and S. Muthukrishnan. 1996. Perfect Hashing for Strings:

Formalization and Algorithms. In CPM (Lecture Notes in Computer Science),
Vol. 1075. Springer, 130–140.

[34] Martin Farach-Colton, Rohan J. Fernandes, and Miguel A. Mosteiro. 2009.

Bootstrapping a hop-optimal network in the weak sensor model. ACM Trans.
Algorithms 5, 4 (2009), 37:1–37:30.

[35] Afton Geil, Martin Farach-Colton, and John D Owens. 2018. Quotient filters:

Approximate membership queries on the GPU. In 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 451–462.

[36] Shaun D Jackman, Benjamin P Vandervalk, Hamid Mohamadi, Justin Chu, Sarah

Yeo, S Austin Hammond, Golnaz Jahesh, Hamza Khan, Lauren Coombe, Rene L

Warren, et al. 2017. ABySS 2.0: resource-efficient assembly of large genomes

using a Bloom filter. Genome research 27, 5 (2017), 768–777.
[37] Guanlin Lu, Biplob Debnath, and David HC Du. 2011. A Forest-structured Bloom

Filter with flash memory. In Proceedings of the 27th Symposium onMass Storage
Systems and Technologies (MSST). 1–6.

[38] Anna Pagh, Rasmus Pagh, and S Srinivasa Rao. 2005. An optimal Bloom filter

replacement. In Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Mathematics, 823–829.

[39] Rasmus Pagh and Flemming Friche Rodler. 2001. Cuckoo hashing. In European
Symposium on Algorithms. Springer, 121–133.

[40] Prashant Pandey, Fatemeh Almodaresi, Michael A Bender, Michael Ferdman,

Rob Johnson, and Rob Patro. 2018. Mantis: A fast, small, and exact large-scale

sequence-search index. Cell systems 7, 2 (2018), 201–207.
[41] Prashant Pandey, Michael A Bender, and Rob Johnson. 2017. A fast x86

implementation of select. arXiv preprint arXiv:1706.00990 (2017).
[42] Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. 2017. deBGR:

an efficient and near-exact representation of the weighted de Bruijn graph.

Bioinformatics 33, 14 (2017), i133–i141.
[43] Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. 2017. A

general-purpose counting filter: Making every bit count. In Proceedings of the
2017 ACM International Conference on Management of Data. 775–787.

[44] Prashant Pandey, Michael A Bender, Rob Johnson, and Rob Patro. 2017. Squeakr:

an exact and approximate k-mer counting system. Bioinformatics 34, 4 (2017),
568–575.

[45] Prashant Pandey, Shikha Singh, Michael A Bender, Jonathan W Berry, Martín

Farach-Colton, Rob Johnson, Thomas M Kroeger, and Cynthia A Phillips. 2020.

Timely Reporting of Heavy Hitters using External Memory. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 1431–1446.

[46] Jason Pell, Arend Hintze, Rosangela Canino-Koning, Adina Howe, James M

Tiedje, and C Titus Brown. 2012. Scaling metagenome sequence assembly with

probabilistic de Bruijn graphs. Proceedings of the National Academy of Sciences
109, 33 (2012), 13272–13277.

[47] Felix Putze, Peter Sanders, and Johannes Singler. 2007. Cache-, hash-and

space-efficient bloom filters. In International Workshop on Experimental and
Efficient Algorithms. 108–121.

[48] Yan Qiao, Tao Li, and Shigang Chen. 2014. Fast Bloom Filters and Their

Generalization. IEEE Transactions on Parallel and Distributed Systems (TPDS) 25,
1 (2014), 93–103.

[49] Pandian Raju, RohanKadekodi, Vijay Chidambaram, and Ittai Abraham. 2017. Peb-

blesDB: Building key-value stores using fragmented log-structured merge trees.

In Proceedings of the 26th Symposium on Operating Systems Principles. 497–514.
[50] BrandonReagen,UditGupta,RobertAdolf,MichaelMMitzenmacher,AlexanderM

Rush, Gu-YeonWei, and David Brooks. 2017. Weightless: Lossy weight encoding

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1398

https://doi.org/10.1137/S009753970444435X
https://github.com/AMDComputeLibraries/morton_filter
https://github.com/AMDComputeLibraries/morton_filter
https://doi.org/10.1007/978-3-642-02652-2_6
https://doi.org/10.1145/2833312.2833449
https://github.com/efficient/cuckoofilter
https://github.com/efficient/cuckoofilter

for deep neural network compression. arXiv preprint arXiv:1711.04686 (2017).
[51] RocksDB [n. d.]. RocksDB. https://rocksdb.org/, Last Accessed Sep. 26, 2018.

[52] Brad Solomon and Carl Kingsford. 2016. Fast search of thousands of short-read

sequencing experiments. Nature biotechnology 34, 3 (2016), 300.
[53] Henrik Stranneheim,MaxKäller, TobiasAllander, BjörnAndersson, LarsArvestad,

and Joakim Lundeberg. 2010. Classification of DNA sequences using Bloom filters.

Bioinformatics 26, 13 (2010), 1595–1600.
[54] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen Zhang,

and Jason Cong. 2014. An efficient design and implementation of LSM-tree

based key-value store on open-channel SSD. In Proceedings of the 9th European
Conference on Computer Systems (EuroSys). 16:1–16:14.

[55] Maysam Yabandeh. 2017. Partitioned Index/Filters. https://rocksdb.org/blog/2017/
05/12/partitioned-index-filter.html.

[56] Benjamin Zhu, Kai Li, and R Hugo Patterson. 2008. Avoiding the Disk Bottleneck

in the Data Domain Deduplication File System. In Proceedings of the 6th USENIX
Conference on File and Storage Technologies (FAST). 1–14.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1399

https://rocksdb.org/
https://rocksdb.org/blog/2017/05/12/partitioned-index-filter.html
https://rocksdb.org/blog/2017/05/12/partitioned-index-filter.html

	Abstract
	1 Introduction
	2 Related Work
	3 Vector quotient filter
	3.1 Power-of-two-choice hashing
	3.2 Mini-filters
	3.3 SIMD Mini-filter operations
	3.4 Deletes

	4 vector quotient filter Operations
	5 Space Analysis
	6 Implementation and Optimization
	6.1 Optimizing the vector quotient filter for x86
	6.2 Shortcuts during insertion
	6.3 Multi-threading

	7 Evaluation
	7.1 Experimental setup
	7.2 In-RAM performance
	7.3 In-cache performance
	7.4 Low false-positive rate performance
	7.5 Write heavy workload
	7.6 Scaling with multiple threads
	7.7 Impact of AVX512 intrinsics on performance

	8 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 46.14, 73.00 Width 251.69 Height 87.25 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 46.1438 72.995 251.6937 87.2538

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 14
 0
 1

 1

 HistoryList_V1
 qi2base

