
Information Processing Letters 17 (I 983) 8 l-84

North-Holland

24 August 1983

LOG-LOGARITHMIC WORST-CASE RANGE QUERIES ARE POSSIBLE IN SPACE O(N)

Dan E. WILLARD

Bell Laboratories, Murray Hill, NJ 07974, U.S.A.

Communicated by K. Mehlhorn

Received 24 November 1982

Revised 17 February 1983

Let S denote a set of N records whose keys are distinct nonnegative integers less than some initially specified bound M. This

paper introduces a new data structure, called the y-fast rrie, which uses Q(N) space and @(log log M) time for range queries on
a random access machine. We will also define a simpler but less efficient structure. called the x-fusr me.

Keywordst Priority queues. stratified trees (often called ‘Van Emde Boas trees’), sparse tables. special search algorithm of

Fredmann, Komolos and Szemeredi

1. Introduction

Below we give a list of retrieval operations that
we perform on a set of N positive integers, each

i M:
(i) FIND(K): Determine whether or not the

key K belongs to the set S, and return a pointer to
K if it belongs to S.

(ii) SUCCESSOR(K): Find the least element in

the set S with key value greater than K.
(iii) PREDECESSOR(K): Find the greatest mem-

ber of the set S with key value less than K.

(iv) SUBSET(K,, K,): Find (and then produce)
the list of the elements of the set S whose key
values lie between K, and K,.

For convenience, we will say that a data struc-
ture has a worst-case overall-retrieval complexity
@[f(M)] iff retrieval operations (i) through (iii)
have a worst-case runtime @[f(M)] and the worst-
case runtime Of SUBSET queries iS proportional t0
f(M) plus the size of the retrieved subset.

Van Emde Boas, Kaas and Zijlstra [IO] have
presented a data structure, called a stratified tree,
that has worst-case overall-retrieval complexity
@(log log M) and uses O(M log log M) memory.
Their work motivated much of our research effort.
It indicated the need for more space-efficient data
structures [8]. Van Emde Boas developed a mod-

ified tree data structure that uses O(M) space in
[9]. Also, Knuth [5] offered a very clear summary
of the paper by Van Emde Boas et al. [lo].

Prior to this article, space-efficient modifica-
tions of stratified trees [lo] were studied by John-
son [3], who showed how to attain a worst-case
overall-retrieval complexity

@ [log log(SUCCESSOR(K) - PREDECESSOR(K))]

in O(N . M’) space, and by Willard [I 1,121, who
showed how to attain a time-complexity

O(dlog M) in O(N) space. Also, Willard [12]
proved that all implementations of stratified trees
use at least expected memory Q(m) when there
exists an integer i such that N = O(M’~2-‘), and

that their worst-case space always respects the
lower bound Q(N’/4M’/4).

In this article we modify the stratified tree
[9,10] with the proposal of Fredman et al. [l] to
prove that a worst-case overall-retrieval complex-

ity @(log log M) is possible in space O(N). Our
results are the best known complexities for the
worst-case in O(N) space, but [2,6,7,16] produced
a log log N expected time under the uniform dis-
tribution for even unindexed files, and Willard
[13,141 shows that the latter expected time gener-
alizes to many nonuniform densities (even in the
absence of an index or other information specify-

0020-0190/83/$3.00 :‘5 1983, Elsevier Science Publishers B.V. (North-Holland) 81

Volume 17. Number 2 INFORMATION PROCESSING LETTERS

ing the probability distribution).
Our data structure has a good expected inser-

tion-deletion time, but it does not control the
worst case of insertions and deletions. Therefore,
no one of the results mentioned in this section is
preferable to the others by all measures of com-
plexity. In particular, the literature on stratified
tree-like methods [3,9,10,11,12] has established
several data structures with better insertion-dele-
tion times than y-fast tries although less efficient
combinations of retrieval time and space. This

point leads to several open questions mentioned in
Section 3, the most important of which is whether
a worst-case complexity @(log log M) for in-

sertions, deletions and retrievals simultaneously is
possible in O(N) space.

2. Main result

For simplicity, we assume that M is an integer
of the form 2h - 1. Our first data structure, the
x-fast trie, will consist of a binary trie of height h
where all records are stored at the leaf level (that
is, at depth h). If v is a node at a height j, then all
the leaves descending from v will have key values
between the quantities (i - 1)2J + 1 and i. 2J, for
some integer i. We will call i the identifier of v, and
denote it as ID(V). The term COUNT(V) will denote
the number of elements in the set S which corre-
spbnd to leaves descending from v. If v is a node
with no left (respectively right) son, then DESCEN-
DANT(V) will be a pointer to the leaf with the
smallest (respectively largest) key descending from
it. The leaves of an x-fast trie will form a doubly-
linked list with each leaf pointing to its left and
right neighbor. To save memory space, a node v is
stored in the x-fast trie only when COUNT(V) > 0.
Fig. 1 illustrates an example of the main section of
an x-fast trie.

The second part of an x-fast trie, its level-search
structure (LSS), uses a concept recently introduced
by Fredman, Komolbs and Szemerkdi [l]. They
considered a computation model identical to that
in the literature on stratified trees ‘, and illustrated

’ The assumption in [l] and in all the other articles we have
cited is that all arithmetic operations on two nonnegative

integers < M can be performed in time O(1).

82

24 August 1983

d

Fig. 1. An x-fast trie representing the set (0, I. 3). The quantity

inside a node is its COUNT-field. The only nodes with well-de-

fined DESCENDANT fields are the IeaVeS (pointing to themselves)

and c pointing to f.

a data structure which uses O(n) space and ex-
ecutes FIND-queries in worst-case time O(1) for
any set of n nonnegative integer keys each of
which is < m. We will use h + 1 copies of this

search structure. The jrh copy, denoted LOSS, will
represent the set of trie-nodes of height j with their
identifiers serving as keys. For instance, LSS(O) in
Fig. 1 represents the trie’s three leaves with the
key-values 0, 1, and 3, respectively.

In our discussion, a node v of height j will be
called an ancestor of the integer K iff [K/2J] =
ID(V). The symbol BOTTOM(K) will denote the
lowest ancestor of v stored in the trie. (We do not
store nodes when COUNT(V) = 0.) Many aspects of
our algorithm and data structure will have analogs
from the work of Van Emde Boas, Kaas and
Zijlstra [lo]. For instance, they used analogs of
descendant-pointers and also employed a binary
search similar to that described in the next para-
graph for finding BOTTOM(K). However, our
method uses memory space much more economi-
cally. The next three lemmas are therefore signifi-
cant.

Lemma 1. The x-fast trie makes it possible to find
the node BOTTOM(K) in worst-case time @(log

log M).

Proof. An algorithm which finds this node by
making a binary search among the h + 1 different

Volume 17. Number 2 INFORMATION PROCESSING LETTERS 24 August 1983

LSSS is shown in Fig. 2. Each probe of an LSS uses

time O(1) by the basic result of [l]. Since our
binary search makes [log(h + l)] probes and since
h = log M, the time of this algorithm is clearly

@(log log M). IJ

A BINARY SEARCH OF THE TRIE-LEVELS FOR FINDING
BOTTOM (K)

Sfepl. SetP=Oandu=h.
Step 2. Set j = 1 i(l+ u)].

Step 3. If searching ~ss(j) indicates that the key K has a
non-null ancestor at a height j in the trie, then set
u=j,elsesetI=j+l.

Step 4. If I* u, then go back to Step 2, else print the
ancestor found in Step 3, since it is BOTTOM(K).

Fig. 2.

Lemma 2. x-fast tries have a worst-case overall-

retrieval complexity @(log log M) and never occupy
more memory than O(N . log M).

Proof. Time-complexity. The first step of a search
in an x-fast trie will be the @(log log M) algorithm
for finding BOTTOM(K) in Lemma 1. Let v denote
the node BOTTOM(K). The DESCENDANT-field of
this node will be a pointer to K, its successor, or
its predecessor. Since the leaves of an x-fast trie
are ordered by key-value with each leaf pointing to

its predecessor and successor, only constant time is
needed to find these three elements after
BOTTOM(K) is located. These three queries there-
fore run in time @(log log M). Subset queries run
in time proportional to log log M plus the size of
the retrieved subset, by similar reasoning.

Space-complexity. A trie of height log M with N
leaves can have no more than N. log M nodes.
The main section of the x-fast trie will therefore
consume this much space, and its LSSs also use
space linear in N. log M by the theorem of Fred-
man, Komolos and Szemeredi [l]. 0

Van Emde Boas [9] has noted that the memory
space of stratified trees can be reduced from
O(M log log M) to O(M) by pruning the bottom
of the data structure, and similar techniques have
been used in other contexts [4,11,12]. Now we will
apply this technique to x-fast tries, and develop a
modified data structure, called the y-fast trie. which
has the same retrieval complexity as x-fast tries

but satisfies a better memory constraint O(N).
Define an L-separator of the set S, denoted S,,

as the subset of S including S’s largest element, its
smallest element, its (L + 1)st smallest element, its
(2L + 1)st smallest element, etc. Let K, denote the
i th smallest element in S, and let

Sy = (k E SJK; < k < K,,,).

Then a y-fast trie of order L will be defined as a
two-part data structure whose top half is an x-fast
trie representing the set S,, whose bottom half is a
forest of binary trees of height [log L] where the
i th tree describes the set ST, and which has the i th

leaf in the top half of this data structure pointing
to the i th tree.

Lemma 1 implies that the top half of the y-fast
trie can certainly be searched in time @(log log M),

and will occupy no more memory than @((N/L) x

log M]. Each binary tree in the bottom half will
have a search-time @(log L), and the full forest of
binary trees will use space O(N). Therefore, an
arbitrary y-fast trie of order L will have a worst-
case overall-retrieval complexity @(log L +
log log M) and will use O[N . (1 + (log M)/L)]
space. Lemma 3 follows by applying these ob-
servations to the case L = log M.

Lemma 3. y-fast tries make possible a worst-case
overall-retrieval complexity 0 (log log M) within

memory space O(N).

3. Open questions

Does Lemma 3 represent the best time possible
for data structures in the space O(N)? Yao and
Yao 1161 have proven a lower bound log log N for
unindexed files which may be partially relevant to

this open question.
How does the answer to the question above

change if the environment is dynamic? One prob-
lem is that y-fast tries do not have a good worst-
case insertion-deletion time, although it should be
possible to guarantee expected cost log log N. The
best current worst-case result in the space O(N) is
given in [11,121, and [3,8] describe alternatives in
larger memory spaces. Fast tries have unusual
implications for multi-dimensional retrieval [151,
and many further questions remain there.

83

Volume 17, Number 2 INFORMATION PROCESSING LETTERS 24 August 1983

Acknowledgment I81

I would like to thank Eric Wolman for sugges-
tions on presentation.

References

[I] M.L. Fredman, J. Komolos and E. Szemeredi, Storing a

space table with O(1) worst-case access times. Proc. 23rd

IEEE Symp. on Foundations of Computer Science (1982)

pp. I65- 169.

[2] G.H. Gonnet. L.D. Rogers and J.A. George, An algorith-

mic and complexity analysis of interpolation search, Acta

Inform. 13 (1980) 39-52.

[3] D.B. Johnson, A priority queue in which initialization and

queue operations take O(loglogD) time, Rept. No. CS

81-13, Penn. State University, 1981.

[4] D.E. Knuth, The Art of Computer Programming, Vol. 3:

Sorting and Searching (Addison-Wesley, Reading. MA,

1973).

[5] D.E. Knuth, Widely disseminated classroom notes on

stratified trees. 1979.

[6] Y. Pearl. A. Itai and H. Avni. Interpolation search-A

log log N search, Comm. ACM 21 (1978) 550-554.

[7] Y. Pearl and E.M. Reingold, Understanding the complex-

ity of interpolation search, Inform. Process. Letters 6 (6)

(1977) 219-222.

191

[‘Ol

[I 11

[I21

1131

1141

[I51

[IhI

P. Van Emde Boas, Preserving order in a forest in less

than logarithmic time, Proc. 16th Ann. Symp. on the

Foundations of Computer Science (1975) pp. 75-84.

P. Van Emde Boas, Preserving order in a forest in less

than logarithmic time and linear space, Inform. Process.

Lett. 6 (1977) 80-82.

P. Van Emde Boas, R. Kaas and E. ZiJlstra. Design and

implementation of an efficient priority queue, Math. Sys-

tems Theory 10 (1977) 99-127.

D.E. Willard, Two very fast trie data structures, 19th Ann.

Allerton Conf. on Communication, Control and Comput-

ing (1981) pp. 355-363.

D.E. Willard, New trie data structures which support very

fast search operations of order m, JCSS, to appear.

D.E. Willard, Searching nonuniformly generated files in

log log N runtime, SIAM J. Comput., to appear.

D.E. Willard, A log log N search algorithm for nonuni-

form distribution, Proc. ORSA-TIMS Conf. on Applied

Probability-Computer Science Interface Vol. II (Birk-

h&user, Boston, 1981) pp. 3- 14.

D.E. Willard, A new time complexity for orthogonal range

queries, 20th Allerton Conf. on Communications, Control,

and Computing (1982) pp. 462-472.

A.C. Yao and F.F. Yao, The complexity of searching an

ordered random table. Proc. 17th Ann. Symp. on the

Foundations of Computer Science (1975) pp. 173- 177.

