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Abstract
Dynamic memory management is critical for efficiently port-

ing modern data processing pipelines to GPUs. However,

building a general-purpose dynamic memory manager on

GPUs is challenging due to the massive parallelism and weak

memory coherence. Existing state-of-the-art GPUmemory

managers, Ouroboros and Reg-Eff, employ traditional data

structures such as arrays and linked lists to manage memory

objects. They build specialized pipelines to achieve perfor-

mance for a fixed set of allocation sizes and fall back to the

CUDA allocator for allocating large sizes. In the process, they

lose general-purpose usability and fail to support critical ap-

plications such as streaming graph processing.

In this paper, we introduce Gallatin, a general-purpose and

high-performance GPUmemory manager. Gallatin uses the

van Emde Boas (vEB) tree data structure to manage mem-

ory objects efficiently and supports allocations of any size.

Furthermore,wedevelopahighly-concurrentGPU implemen-

tation of the vEB treewhich can be broadly used in other GPU

applications. It supports constant time insertions, deletions,

and successor operations for a given memory size.

In our evaluation, we compare Gallatin with state-of-the-

art specialized allocator variants. Gallatin is up to 374× faster
on single-sizedallocations andup to264× fasteronmixed-size

allocations than the next-best allocator. In scalability bench-

marks, Gallatin is up to 254× times faster than the next-best

allocator as the number of threads increases. For the graph

benchmarks, Gallatin is 1.5× faster than the state-of-the-art
for bulk insertions, slightly faster for bulk deletions, and is

3× faster than the next-best allocator for all graph expansion
tests.

CCS Concepts: • Theory of computation→Data struc-
turesdesignandanalysis; •Softwareand its engineering
→ Parallel programming languages; Concurrent pro-
gramming structures.

Keywords: GPU; Memory allocation; Concurrent data struc-

tures; High performance computing
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1 Introduction
GPUs are increasingly used in large-scale data processing

applications because they offer a substantial jump in terms of

low-cost parallelism as long as data structures and algorithms

can be designed and implemented to match the memory and

parallelism requirements of GPUs. For example, GPUs are

already used in domains such as databases [1, 12, 14], data

analytics [3], genomics [7, 9, 13, 17], sparse linear algebra [25],

and graph analytics [8, 10, 24, 27].

However, the penetration of GPUs into these applications

is limited due to the lack of a generic, dynamic memory man-

ager in GPUs. In most GPU applications, memory is managed

by the host CPU, meaning threads in a kernel do not allocate

or freememory during execution. Dynamicmemorymanage-

ment is provided in CUDA in the form of the CUDA heap allo-

cator, but the high latency of this allocator makes it challeng-

ing to build performant data structures. These limitations af-

fect the capabilities ofGPUdata structures:most existingGPU

data structures do not support dynamic resizes and are stat-

ically allocated; pointer-based data structures, such as trees

and tries, do not achieve high performance onGPUs [28]; data

structures on hard-to-align data, such as strings or vectors, or

which have variable lengths, such as graphs, are not available.

Overcoming these limitations is critical for building scal-

able data processing applications. For example,𝑘-mer (length-

𝑘 strings) analysis is at the core of rawdata processing [13, 17]

in genomics. In 𝑘-mer analysis, the size of the 𝑘-mer multiset

is not known in advance. Therefore, applications initialize the

data structures (such as filters and hash tables) to a default

size and then dynamically resize (mostly expand) based on

the actual number of 𝑘-mers. The ability to resize is critical

to perform 𝑘-mer analysis in a space-efficient manner. Static

data structures such as hash tables and filters [17] currently

available on GPUs are sized using an over-approximation

of the number of 𝑘-mers, which leads to space inefficiency.

Over-provisioning of memory makes things worse in GPUs

due to the limited GPUmemory.

Existing GPU allocators face a trade-off between perfor-
mance and general usability that stems from their choice of

data structures. These allocators can broadly be classified into

two types depending on the data structures used for manag-

ing objects: array-based and list-based. Array-based solutions
such as Ouroboros [23] andHalloc [4] partition GPUmemory

into an array of statically sized regions. These allow for fast

and parallel allocations but limit the maximum allocable size,

as all allocations must be smaller than a region. Linked-list

https://doi.org/10.1145/3627535.3638499


PPoPP ’24, March 2–6, 2024, Edinburgh, United Kingdom Hunter McCoy and Prashant Pandey

allocators such asRegEff [22] and ScatterAlloc [20]maintain a

linked-list heap over all memory. This allows for more varied

allocations but can limit performance, as linked lists tend to

serialize and perform scattered memory accesses. To rectify

this, these systems pre-split the heap, forming a binary heap

in the case of RegEff and splitting memory into super blocks
in the case of ScatterAlloc. These splits increase throughput

but again limit the maximum possible allocation size.

Furthermore, state-of-the-art allocators such as Ouroboros

[23] andRegEff [22] providemultiple allocator variants (6 and

5, respectively) specialized for different goals. Thismeans that

applications must make hard decisions about which variant

to use, as the variants can run slowly in the wrong context.

In addition to being specialized, these variants are not robust

to changing workload profiles at runtime.

The only functioning GPU allocator capable of supporting

allocations of any size is the CUDA allocator [2], which is

often several orders of magnitude slower than the current

state-of-the-art. To handle large allocations, other allocators

often fall back to the CUDA allocator [2]. This lowers overall

throughput and incurs hidden costs, as the CUDA heap must

also be initialized and takes up extra space unrelated to the

main allocator.

A high-performance and general-purpose allocator is re-

quired to serve modern data processing applications. For ex-

ample, consider the problem of operations on a graph mod-

eling a social network such as Twitter [6, 19]. This kind of

graph grows over time and exhibits heavy skew, as a small

percentage of the user base will have many social connec-

tions. In the Twitter graph, the average user vertex has less

than 35 edges, while themost connected user has over 2.9 mil-

lion edges. To handle such large-scale and skewed graphs, the

allocatorsmust efficiently support both small and large alloca-

tions and frees. Existing allocators typically reserve 500MB in

the CUDA heap for large allocations. They fail to process the

graph if the total size of these skewed nodes exceeds 500 MB,

even if the overall graph could fit in GPU DRAM.

Our contribution. In this paper, we propose a van Emde

Boas (vEB) tree-based [21] allocation scheme to bridge the gap

between fast, specialized allocators and the slower, general-

purpose allocators. Using an ensemble of vEB trees as the

underlying data structure design allows for large allocations

to bequickly acquired andallows for theuseof a fast successor

search when looking for new allocations.

The vEB tree is a highly concurrent data structure that

allows for faster insertions and deletions than a concurrent

linked list. Successor search provides quick access to the first

available region of the vEB tree. This enables it to maintain

an ordering over the memory regions while being as fast as

an array-based data structure. This ordering minimizes frag-

mentation and allows for large allocations to be performed.

In addition, we propose the use of a tiered, block-based

allocation scheme for handling smaller allocations. Using

a buffer that maps physical memory to blocks and oppor-

tunistic thread coalescing from theCUDAcooperative groups

library [18],we can performmany allocations simultaneously

and minimize memory pressure on the system.

The combination of these schemes is a high-performance

and general-purpose GPU allocator that we call Gallatin. Gal-

latin can perform allocations of any size and efficiently utilize

the entirety of GPU DRAM. Furthermore, unlike existing

state-of-the-art allocators, Gallatin provides a single general-

purpose variant that is suitable for all workflows and can

adapt smoothly to changing workloads.

Our results.We employ the suite of benchmarks from the

Winter et al. GPU memory manager survey paper [26] to

evaluate Gallatin against existing GPU memory managers.

We further update and extend the tests in the benchmark to

better depict the scale and complexity of current real-world

systems and applications.

We find that Gallatin is up to 374× faster than the next-best
allocator on single-sized allocations and up to 264× faster

than the next-best allocator on mixed-size allocations. Gal-

latin scales well as the number of threads increases and in

scaling benchmarks is up to 254× faster for single-sized allo-
cations as the number of threads increases.

In addition, Gallatin is competitive with more specialized

allocator designs on real-world benchmarks. For the graph

benchmark, Gallatin is 1.5× faster than the Ouroboros-P [23]
series allocators for bulk insertions, slightly faster for bulk

deletions, and is the fastest allocator for all graph expansion

tests. These results show that a vEB tree-based allocator can

bridge the gap between performance and general usability on

GPUs, providing fast allocations of any size.

2 Previous work
In this section, we provide an overview of the existing GPU

allocators. All allocators offer a standardmalloc/free interface.

XMalloc. In XMalloc [11], allocations occurring in the same

warp are combined by being packed into one large allocation

with padding and an internal counter. One thread from the

group is thensent toperformtheallocation forall threads.Two

tiers of buffers are used to reduce latency for allocations, and

a doubly-linked list backs the allocator. The use of a linked list

provides a point of serialization that slows down the allocator.

ScatterAlloc. ScatterAlloc [20] accelerates allocations by

"scattering" them inside of memory via the use of a hash

function. ScatterAlloc splits the memory pool into a set of

fixed-size blocks called super blocks, which are chained to-

gether into a singly-linked list. Each super block is further

subdivided into pages. Pages are fixed chunks of memory that

can be specialized to different allocation sizes. In this scheme,

allocations larger than a super block are not possible.

RegEff. RegEff [22] or Register Efficient allocator was intro-
duced after ScatterAlloc with the goal of providing similar

performancewith less register pressure. TheRegEffallocators
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Figure 1. Insertion operation in a vEB tree of universe size 16.

Each node has a summary structure (shown in red), min/max

(shown in blue), and pointers to the next level. The size of the

summary structure and the number of pointers is same. The

leaf nodes have summary structure of size 2 and only contain

min and max. While inserting 0 in the tree, it replaces the

minimum value of nodes until it reaches the leaf. As the leaf

is empty, the minimum and maximum are both set to 0.

are built using a lock-free singly-linked list. The list is frag-

mented into a binary heap to reduce thread contention when

allocating. This improves the throughput of the linked list but

limits the maximum allocation size possible. The faster vari-

ants trade fragmentation for throughput by introducing an

array of memory offsets used for indexing into the linked list.

Ouroboros. The Ouroboros [23] allocators are based on

a queue structure for allocations, with a semaphore being

used to control operations on the queue. GPU memory is

split into sections called pages, which are then grouped into

larger contiguous sections called chunksof size 8192bytes.All

Ouroboros allocators have a set of queues, one for each power-

of-two size supported. When an allocation is requested, the

request is forwarded to the smallest queue that can support

it. The allocators are split based on whether or not the queue

holds chunks (C) or pages (P). TheCseries has full reuse,while

in theP series freedallocations canonlybe reused for the same

allocation size as the original. Each type of queue comes with

a variant that is statically sized (S), a virtualized array (VA), or

a virtualized list (VL). None of the variants natively support

any allocation size larger than the chunk size (8192 bytes).

3 Preliminary
In this section, we will first give an overview of the van Emde

Boas (vEB) tree and explain how to perform operations. We

then describe howwe adapt the traditional recursive design

to develop a GPU implementation of the van Emde Boas tree.

The core data structure used in Gallatin is the van Emde

Boas (vEB) tree. Originally described by van Emde Boas [21]

for use in priority queues, the vEB tree operates on a universe
𝑈 =0,1,2,...,𝑢−1, maintaining a subset 𝑆 ⊆𝑈 of elements from

𝑈 , where |𝑈 | = 𝑢 and |𝑆 | = 𝑛. In this universe, the vEB tree

performs the following operations in𝑂 (log log𝑢) time:

• insertion(𝑥): Add 𝑥 ∈𝑈 to 𝑆 , i.e. 𝑆←𝑆∪𝑥 .
• delete(𝑥): Remove 𝑥 from 𝑆 , i.e. 𝑆←𝑆−𝑥 .
• query(𝑥): Return whether 𝑥 ∈𝑆 .
• succ(𝑥): Return the minimum𝑦 ∈𝑆 , such that𝑦 ≥𝑥 .
• pred(𝑥): Return the maximum𝑦 ∈𝑆 , such that𝑦 ≤𝑥 .

Note that 𝑥 ∈𝑈 but 𝑥 need not be in 𝑆 .

3.1 vEB tree design
AvEB tree is a recursive tree structure, with each node having

three components: a min value, a max value, and a bit array

(summary structure). This bit array has one bit for each of the

node’s children. The bit for each child is set to zero if the child

(and corresponding subtree) is empty. Otherwise, the bit is set

to one. For a universe𝑈 , the root node has

√
𝑈 bits in the bit

array, with each subtree below the root responsible for

√
𝑈

items. A node’s minimum and maximum values record the

minimum and maximum stored in the entire subtree.

Insertions and deletions are done similarly to other tree

data structures by recursively stepping into smaller subtrees

until the item is found or the current subtree is empty. Inser-

tion and deletion must update the minimum and maximum

of each subtree traversed.

Successor search is also performed recursively, using the

minimum and maximum values to determine how to recurse.

Starting at the root, the maximum value is checked first. If

𝑥 >𝑚𝑎𝑥 , then a larger item does not exist. Next, theminimum

value is checked. If𝑥 ≤𝑚𝑖𝑛, then theminimumis the successor.

Otherwise, traverse the bit array until you find a set bit and

recurse to the subtree the bit represents. As each subtree is

sized to be the square root of the size of the previous tree, this

gives a recurrence relation of𝑇 (𝑈 ) =𝑇 (
√
𝑈 ) +𝑂 (1), which

translates to an𝑂 (loglog𝑈 ) runtime for successor search.

3.2 Implementing vEB trees on GPU
The standard vEB tree design does not directly port efficiently

to the GPU due to the large node sizes. As all data must be

loaded atomically, having a total size larger than 64 bitsmeans

that nodes cannot be loaded/stored atomically. This can allow

nodes to be viewed in an inconsistent state and requires a

more complicated control flow to guarantee consistency.

To prevent inconsistent states, we fix the size of each node

to 64bits, andwe remove theminandmaxvalues.Capping the

number of bits in the bitarray (summary structure) to 64 bits

enables atomic operations on the vEB tree nodes. However,

modifying the vEB tree design this way results in losing the

𝑂 (log log 𝑈 ) performance bound on operations but allows

for every vEB node operation to be performed in one atomic

operation and guarantees that nodes cannot be viewed in an

inconsistent state. Removing the min and max means that

operations can no longer be shortcut, though for small trees,

this is made up for by the reduced number of operations per
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Figure 2. Data structures used in Gallatin during an

allocation request. Memory is split into large regions called

segments. Segments are managed by the segment tree. Blocks
are segments formatted to a given size. Each block contains

4096 slice allocations of a set size. Blocks are managed by

block trees. There are multiple block trees one for each

pre-configured size. Pre-allocated block Buffers provide fast

access to slices. The block buffer is loaded with blocks from

segment 0 formatted to the given slice size. An allocation

request comes to the block buffer, which sends the request to

block 1 in the segment. An atomicAdd on the malloc counter

of the block marks that this thread reserves the first slice

in Block 1, and the address of the slice (labeled in orange) is

handed to the requesting thread as an allocation.

node. In practice, losing the𝑂 (loglog𝑈 ) bound is not an issue
because, for most practical memory managers, the size of the

universe is known and small, so we can bound the height of

the tree to a small constant.

Using atomic operations over the vEB nodesmakes the tree

highly-concurrent andmakes the vEB tree the right candidate

to exploit massive parallelism available in GPUs.

4 Design of Gallatin
In this section, we describe the design of Gallatin. We start

with thememory partitioning scheme ofGallatin, followed by

adiscussionof themajor data structures used and anoverview

of the allocation pipelines. Memory in Gallatin is partitioned

into three types of allocations known as segment, block, and
slice allocations. Moving from segments to slices, the alloca-

tions become smaller, less reusable, and significantly faster to

allocate. This section starts with a discussion of GPUmemory

as awhole and covers the allocation sizesmoving from largest

to smallest.

Algorithm 1Allocate segment

procedureGetSegment(treeId) ⊲

Gather new segment(s) from segmentTree

if treeId >= numBlockTrees then
segment = segmentTree.claimMultiple(treeId - num-

BlockTrees)

⊲ Allocate multiple contiguous segments from back of

the tree

return segment

else
while true do

segment = segmentTree.successor(0)

if segment == -1 then ⊲All segments in use

return false

end if
if !segmentTree.claimIndex(segment) then

Continue ⊲Another thread claimed segment, retry

end if
memoryTable.initSegment(segment, treeId)

⊲ Segment claimed, initialize

blockTrees[treeId].insert(segment)

⊲ Broadcast availability to all threads

return true

endwhile
end if

end procedure

4.1 Segments
GPUmemory in Gallatin is partitioned into large, contiguous

16MB regions called segments. All memory segments are al-

located using cudaMalloc [2] and form one contiguous array

in the GPUmemory.

To mark a segment as being free or in use, we use a van

Emde Boas (vEB) tree called the segment tree. This tree has
one bit per segment. If the segment is free, the bit is set to 1.

If any part of the segment is in use anywhere in the system,

this bit is set to 0. Since each segment is composed of 16MB of

memory, every leaf node in the vEB tree covers 64 segments

or 1GB of GPU DRAM. In this setting, A 3-level vEB tree can

cover up to 4 terabytes of memory in this design.

Using successor search, segments are allocated from the

front of the segment tree in order to minimize the external

fragmentation of memory. The use of successor search when

finding new segments allows us tomaintain the property that

the 𝑘𝑡ℎ segment can only be allocated if all segments < 𝑘 are
allocated as well. Minimizing the fragmentation from smaller

allocations allows us to reserve space for larger allocations.

When an allocation requiresmore than 16MB or one segment

of memory, it is pulled from the end of this contiguous region

in a first-fit strategy using the predecessor search.

The use of a fixed-size van EmdeBoas tree provides both an

embarrassingly parallel method for finding free segments and

maintains a total memory ordering. Previous allocators, such

as Ouroboros [23], use a queue to provide obstruction-free
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segment reclamation but did not provide an ordering. This

ordering is crucial to provide large allocations andmakes Gal-

latin the first GPU allocator to provide both high-throughput

and arbitrary-sized allocations.

See Algorithm 1 for more information on segment allo-

cations. Segment allocation either attaches a segment to a

block tree or returns a set of contiguous segments as one large

allocation. This is controlled by the input parameter treeId: If

treeId < numBlockTrees, where numBlockTree is the num-

ber of block trees as described in Section 4.2, a single segment

is allocated and attached to block tree with ID treeId. Other-
wise, treeID - numBlockTrees segments are allocated from

the end of the segment tree and returned as one allocation.

Algorithm 2Allocate block
procedureGetBlock(treeId)

while true do
segment = blockTrees[treeId].findSegment()

if segment == -1 then
if !getSegment(treeId) then

return nullptr ⊲No allocations left

end if
continue

end if
blockId = memoryTable[segment].getBlock()

if ldcv(memoryTable[segment].treeId) != treeId then
⊲Assert tree read was not stale

memoryTable[segment].releaseBlock(blockId)

continue

end if
myBlock = memoryTable.getBlock(blockId)

myBlock.init(treeId)

returnmyBlock

endwhile
end procedure

4.2 Blocks
Fulfilling smaller allocations using segments directly from

the segment treewill result in high internal fragmentation. To

avoid that, we format segments into smaller regions known

as blocks to efficiently handle smaller allocation requests.

Blocks range in size from 4 KB to 16 MB, stepping in pow-

ers of two, meaning that a segment can be split into 1 to 256

blocks (as segments are 16 MB) depending on the block size

needed. To format a segment into blocks, we give control of

the block to another vEB tree known as a block tree. There
is one block tree for each block size. To mark a segment as

being formatted into blocks, we remove it from the segment

tree and insert it into the appropriate block tree.

Whenever a block is requested, a search is performed on

the block tree to locate a formatted segment to hand out the

block. If no segments are available, a new segment is taken

from the segment tree, formatted into the appropriate block

size, and handed to the block tree.

Figure 3. Pipelines in order from smallest to largest. Failure

in a pipeline forwards a request to the next pipeline.

Blocks are allocated and returned to the segment using a

constant-size per-segment ring queue. When all blocks are

allocated from the queue, the segment is removed from the

block tree to prevent over-subscription on the segment. The

segment is re-added to the block tree when enough blocks are

returned. When all blocks are returned, the segment is freed

and re-added to the segment tree.

Please refer to algorithm 2 for pseudocode for block allo-

cations. The treeId argument will always be strictly smaller

than numBlockTrees, as blocks must come from a block tree.

ldcv is the CUDA intrinsic for a global data load. This is used

to fetch the treeId of the segment from the memory table.

4.3 Slice
The smallest allocations given by Gallatin are slices. These
small allocations are crucial to many dynamic data structures

such as linked lists, skip lists, queues, trees, andhash tables [5]

and range in size from 16 B–4096 B.

In a weak memory system, the minimum amount of work

required to perform an allocation is one atomic instruction.

To achieve this minimum atomic bound, memory reuse is

only allowed at the block level. This makes the control of

slice allocations relatively lightweight: one atomic operation

on a 32-bit machine word is employed for malloc and free to

control the slice allocations.

To minimize internal fragmentation, slices are allocated

from blocks.When formatted, each block contains 4096 slices

equally sized to be 1/4096-th of the block size. Slices are

handed out in order, and reuse of slices is only allowed once

all slices have been returned to the block.

Coalescing allocations. Using counters over a more sophis-

ticated approach such as bit array allows Gallatin to serve

multiple requests using the same atomic instruction. When

multiple threads in the same warp request an allocation of

the same size, we can group these requests and satisfy them

simultaneously using a single atomic instruction. This group-

ing occurs opportunistically via the cooperative_groups ::
coalesced_threads function, which returns a handle to all
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threads performing the same request. The leader for these

threads performs the allocation anddistributes the allocations

to the other threads in the team. If the block is exhausted, the

leader is in charge of fetching a new block.

See Algorithm 3 for the pseudocode of slice allocation. In

the code, size is the number of bytes requested for the al-

location, and offset is a function that converts integers to

pointers to live memory.

Faster access to blocks. To reduce the latency for the slice
allocation operation, we store formatted blocks in a buffer.

This buffer, called the block buffer , maps streamingmultipro-

cessors (the hardware in aGPU that executes thread blocks) to

live block allocations. For the smallest slice size, this bufferhas

one block pointer for every streaming multiprocessor, with

each larger allocation size having half as many slots as the

next. In an A40 GPU, for example, the block buffer for 16-byte

allocations holds pointers to 128 blocks (one per streaming

multiprocessor). Theblockbuffer for 32-byte allocationsholds

pointers to 64 blocks, the 64-byte block buffer holds pointers

to 32 blocks, and so on. The minimum number of blocks held

at a level is capped at four to reduce contention on large block

sizes. When a block is exhausted, the thread that took the last

allocation replaces the block in the buffer. Using block buffers

improves the performance of slice allocations but slightly

increases the memory overhead of the allocator, as the block

buffer is always populated. Please refer to Figure 2 for more

details on using the block buffer.

Algorithm 3 Slice allocation
procedureMallocSlice(size)

treeId = log(size) - log(minSize)

while true do
wholeWarpTeam = cg::coalesced_threads()

mallocTeam = cg::ballot(wholeWarpTeam, size)

if thread == mallocTeam.leader() then
myBlock = blockBuffer[treeId].getBlock()

blockId = memoryTable.getBlockId(myBlock)

end if
blockId = mallocTeam.broadcast(leader, blockId)

myBlock = mallocTeam.broadcast(leader, myBlock)

allocCount = mallocTeam.exclusiveScan(1)

myAllocation = myBlock.malloc(mallocTeam, alloc-

Count)

bool valid = (myAllocation <4096)

bool replace = mallocTeam.ballot(!valid)

if replace and (thread == mallocTeam.leader()) then
newBlock = getBlock(treeId)

blockBuffer[treeId].replaceBlock(newBlock)

end if
if valid then

return offset(blockId*4096 + myAllocation)

end if
continue ⊲Alloc failed, loop

endwhile
end procedure

An overview of the allocation pipeline across the three

memory constructs, segments, blocks, and slices, in Gallatin

is described in Figure 3.

5 Freeingmemory
We now describe howwe perform the free operation in Gal-

latin. To free an allocation, we first identify the segment the

allocation came from and the block size of the segment. The

segment can be found by treating the pointer as an offset into

the memory allocated by Gallatin. Dividing this offset by the

segment size returns the segmentId for the allocation.
Once thesegmentIdhasbeenacquired, aglobal read isused

to identify the block size of the segment. For segments that

have been partitioned into blocks, this value is in the range

(0, numBlockTrees) and corresponds to the block tree the
segment belongs to. For allocations greater than or equal to

one segment in size, the value is equal to numBlockTrees+
numSegments.

For smaller allocations, knowing the allocation offset and

block size is sufficient to locate the block fromwhich the al-

location came. Once the block has been identified, the free

counter is incremented to signal that the allocation has been

returned. If all slices in the block are free, the slice is re-added

to the segment’s queue. If this was the last block in use in the

segment, the entire segment is returned to the segment tree.

Larger allocations are returned to the systemby reinserting

them into the segment tree. See algorithm 4 for pseudocode

for freeing allocations. locateBlockfinds a block in constant
time using the segment and treeId of the allocation by cast-
ing theallocation toa relativeoffset into thesegment.Dividing

this value by 4096 returns the relativeblockId in the segment.

Algorithm 4 Free
procedure Free(allocation)

segment =
𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛−𝑚𝑒𝑚𝑜𝑟𝑦𝑆𝑡𝑎𝑟𝑡

𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒

treeId = ldcv(&memoryTable.ids[segment])

if treeId < numBlockTrees then
⊲ return slice and block allocations to their block

myBlock = memoryTable.locateBlock(segment, treeId,

allocation)

if myBlock−>free(allocation == 4095 then
memoryTable.free(myBlock)

end if
else

⊲ Segment allocation, return allocation(s) to segment tree

numSegments = treeId - numBlockTrees

segmentTree.insert(segment, numSegments)

end if
end procedure

5.1 Memory table
Since the maximum possible number of blocks in a segment

is known during construction, themetadata for each segment
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is initialized during construction of Gallatin, with the block

metadata being enabled or disabled depending on the current

size of the segment. For example, in the default configuration

of Gallatin, there is a maximum of 256 blocks per segment, so

every segment comes with 256 block counters. When a seg-

ment is initialized to a larger slice size, such as 32 bytes, only

128 block counters are needed. In this example, only the first

128block counterswill be initialized,while the latter 128block

counters in the metadata will be unused. The queues used for

performingmalloc and free of blocks can also be initialized be-

forehand, as can thecountersused insideblocks formallocand

free of slices. These items are grouped together in a table for

efficient memory access and are known as thememory table.

6 Evaluation
In this section, we evaluate the performance of Gallatin, our

GPUmemorymanager. For this evaluation, we use the bench-

mark fromtheWinter et al. [26] surveypaper.This benchmark

evaluates the following performance characteristics:

• Performancewhen allocating/freeing a single size. This per-

forms all allocations of the same size, returns all allocated

memory, and checks the correctness of allocated memory.

• Performance when allocating/freeing different sizes. This

performs allocations in a range of sizes, returns all allocated

memory, and checks the correctness of allocated memory.

• Performance scaling when increasing the number of active

threads. Every iteration doubles the number of threads, and

all allocations performed are the same size.

• Fragmentation as ameasure of the gap between the highest

and lowest addresses when performing a series of alloca-

tions and frees.

• Utilization of the allocator as a measure of the fraction of

memory given to the allocator that can be used for alloca-

tions. Performs allocations in batches of 100,000 until the

allocator returns nullptr or encounters an error. This bench-
mark was referred to as the "Out of Memory" benchmark

inWinter et al. [26]. We have renamed it here for clarity.

• Performance of the allocator when running a dynamic

graphsimulation.This tests theperformancewhenbuilding

and modifying edge-list graphs.

Systemspecification.AllexperimentswererunonanNVIDIA

A40with 48GBofDRAMand10,752CUDAcores. The code for

Gallatin [15] and the benchmark [16] are publicly available.

6.1 Benchmarkmodifications
The benchmark fromWinter et al. [26] covers all the major

characteristics an allocator can exhibit. However, it does not

fully depict the scale and complexity of major real-world sce-

narios. In practice,most GPUs are used for compute-intensive

workflows where millions of threads can take advantage of

the massive parallelism available on these devices. The orig-

inal benchmark uses only a small number of threads, with

most tests running with 10K threads and the largest running

with 100K threads. To more accurately model the use cases

of these allocators, we increased the number of threads used

in the benchmark to one million.

Additionally, we modified the benchmark to reset alloca-

tors between runs for the allocation and scaling allocation

benchmarks. The performance in these benchmarks is an ag-

gregate of 50 different runs. The allocator is initialized once in

the original benchmark, and all 50 tests are run back-to-back.

This gives some allocators an unfair advantage as they cannot

fully reset between runs, meaning that the memory is already

reserved at the start of the next iteration. This results in a

high variance in the overall performance, as the first run is sig-

nificantly slower than subsequent iterations. Re-initializing

the allocators before every iteration makes the performance

representative of the performance when the allocators are

run for the first time.

6.2 Allocators involved in the benchmark
The following is the list of allocators included and excluded in

our benchmarks compared to the evaluationWinter et al. [26].

• Allocators included: CUDA, Ouroboros, RegEff, Scatter-
Alloc, XMalloc.

• Allocators excluded: FDGMalloc, Halloc, DynaSOAR,

BulkAllocator. These allocators do not compile for the cur-

rent version of CUDA, are not publicly available, or do not

complete any tests in the extended benchmark.

RegEff-AW is included in the figures only as a baseline to

show optimal allocator performance. This allocator performs

all allocations in one atomicAdd and all frees in one no-op.

However, this allocator does not manage memory and can

give out the same address to multiple threads, making it un-

suitable for real applications. The performance of RegEff-AW

is not considered for comparison in any of the benchmarks.

6.3 Results summary
On the scaled tests, Gallatin is the fastest for single andmixed

allocations and frees of any size, being up to 374× faster than
the next best allocator for single-sized allocations, up to 39×
faster for frees, up to 264× faster for mixed-size allocations,

and up to 22× faster for mixed-size frees. In the scaling bench-

mark, Gallatin is the fastest allocator for nearly all alloca-

tion sizes. Gallatin is up to 254× faster than the next best

allocator and is at worst 75% slower than ScatterAlloc when

running with 65,336 threads and 512-byte allocations, and is

only slower than RegEff-CFMwhen the number of threads

is between 16,384 and 65,336.

Gallatin has the third-best fragmentation performance,

only being beaten by theOuroboros series allocators. Gallatin

also has the third-best memory utilization and has the high-

est memory utilization when accounting for the extra space

reserved in the CUDA heap by Ouroboros.

For the graph experiments, Gallatin is the fastest alloca-

tor for initialization, insertion, and bulk operations, and is
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competitive with the Ouroboros-P allocators for deletion. In

addition, Gallatin is 3x faster than the next-best allocator for

all operations in the expansion graph tests.

Ouroboros and RegEff have multiple variants that special-

ize for either memory overhead or utilization. This leads to a

variant of these allocators being performant in every bench-

mark, though the variant that performswell changes between

benchmarks. In contrast, Gallatin has one generic version

that is competitive for all benchmarks.

6.4 Allocator initialization overhead
All allocators initialize within 32 ms, with most allocators

taking ∼ 27 ms and Gallatin taking 31 ms. Ouroborous-C-

S is fastest for initialization, taking only ∼ 12 ms. We have

excluded the cost of one-time initialization in the other bench-

marks.

6.5 Single-sized test
The single-size tests measure performance on 1M alloca-

tions/frees of a single size, stepping in powers of two from

16–4096 bytes. All tests are run 50 times, and the results re-

ported are the median time.

Single-sized allocation test. Figure 4a shows the results of
the single-size allocation tests. Gallatin is the fastest allocator

for single-sized allocations, and is between 8− 374× faster
than the next-best allocator for these tests, depending on the

size of the allocations. Thehigh throughput ofGallatin on allo-

cations dependson several factors. Firstly,most allocations oc-

cur in one atomic operation, as up to 4096 atomicAdds can oc-

cur before a newblockmust be loaded. In addition, threads are

coalesced before allocation, meaning that if multiple threads

in a warp request an allocation of the same size, the requests

will be grouped, amortizing the cost of the atomic operation.

Single-sized free test. The results for this benchmark can

be seen in Figure 4b. Gallatin is the fastest allocator for single-

sized frees, being between 2−39× faster than the next best

allocator. Like allocations, the ability to coalesce multiple

frees allows Gallatin to reduce the contention on blocks and

achieve high throughput.

6.6 Mixed-size test
The mixed-size tests measure performance when all threads

allocate and free from a range of possible allocation sizes,

between 16-4096 bytes. The number presented is the median

latency over all allocations. The x-axis is the upper end of the

range, and the lower end is always 16 bytes, with all allocation

sizes being a power of two. All tests perform 1M allocations

and frees per round, resetting the allocators between each

round.

Mixed-size allocation test. The results of the mixed-size al-

location tests can be seen in Figure 4c. Gallatin is the fastest al-

locator for mixed allocations of all ranges and is 8-264× faster
than thenext best allocator, dependingon theallocation range.

Mixed-size free test. The results of the mixed-size free tests

can be seen in Figure 4d. Gallatin is the fastest allocator for

mixed frees and is 6−22× faster than the next best allocator,
depending on the free range.

6.7 Scaling test
The scaling allocation tests hold the allocation size static at

16 bytes and vary the number of threads from 2
0
to 2

20
to

measure the effect of increased parallelism on the allocators.

Scaling allocations. For the 16 and 64-byte scaling tests,

Gallatin is the best among all allocators when allocatingmore

than four items.Against thenonatomic_wrap (AW)allocators,

Gallatin scales in performance from 1.17× to over 91× faster
than the next best allocator, as the number of simultaneous al-

locations increases. In addition, Gallatin is faster than the AW

allocatorswhen runningwith less than 131,072 threads, likely

due to the coalescing of atomic operations in Gallatin. For

the 512-byte scaling test, Gallatin is the fastest allocator until

16,384 threads, at which point it is 64% slower than ScatterAl-

loc. ScatterAlloc is the fastest allocator until 65,336 threads, at

which point Gallatin is the fastest again and is between 2−8×
faster than the next best allocator. For the 8192-byte scaling

test, Gallatin is the fastest allocator for all allocation sizes, be-

ing between 1.25 and 254× faster than the next best allocator.

Scalingfrees.Forscaling frees,Gallatin is the fastestallocator
or competitivewith the best. In theworst case, Gallatin is 1.9×
slower than the stateof theart. For16and64-byte scaling frees,

the performance of Gallatin is between .83−11× faster than
the best allocator. For the 512 and 8192-byte frees, Gallatin is

slower than ScatterAlloc and regEff-CFM between 2
12
and 2

15

threads for 512-byte frees and is atworst 133% slower than the

best allocator for 8192-byte freeswhen the number of allocs is

between2
12
to 2

14
. For all other free sizes,Gallatin is the fastest

or competitive at .86−17× faster than the next-best allocator.

6.8 Variance in allocation and free latency
Gallatin has the lowest variance across all sizes for single and

mixed-size allocations, with a variance that is 4−87× lower
than the next best allocator. When allocating more than 16

allocations for 16, 64, and 8192-byte scaling allocation tests,

Gallatin has a variance between .87−74× lower than the best
allocator. For 512-byte allocations, Gallatin loses to ScatterAl-

loc between 2
13−216, although the difference is negligible: at

2
16
, Gallatin has a variance of 0.0072 while ScatterAlloc has

a variance of 0.0025.

Gallatin is the best or close to the best for variance during

frees for all experiments, with variance between .57− 74×
lower than the best allocator.

6.9 Experiments with warmed-up allocators
In addition to the main benchmark, we evaluated all alloca-

tors in a warmed-up state by running the first round of the
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Figure 4.Allocation and free performance for single and mixed-size tests. Each allocation/free is handled by a unique thread.

The x-axis is the allocation size for the single-size tests and the upper range for the mixed-size tests, with the lower range fixed

at 16 bytes. The y-axis is median latency per thread across 50 runs. Lower is better.
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(h) 8192-byte scaling frees

Figure 5. Scaling allocation tests and free tests for various allocation sizes. The x-axis is the log
2
of the number of threads with

the allocation size held constant. The y-axis is the median latency per thread over 50 runs. Lower is better.

benchmark before recording results and not resetting the al-

locator state, similar to how results are generated inWinter

et al. [26]. Most allocators, including Gallatin, show no dif-

ference in performance when running warmed-up: on the

single-sized allocation test, the largest change recorded for

Gallatin was a change in latency from 2.13197 ms to 2.15344

ms for 2 KB allocations. The only allocators that do change

performance are theOuroboros-P series allocators,whoseme-

dian performance lowers from 15.0069 ms to 0.224256 ms for

16-byte allocations. However, this is because these allocators

cannot release memory once it has been acquired, meaning

that subsequent runs start with the queue full of items. This

inability to release allocations back to the systemmakes them

unusable in many real applications.

6.10 Fragmentation tests
The fragmentation test measures the fragmentation of an

allocator as the difference between the highest and lowest

address given out when performing an allocation. All alloca-

tions occur as a static set of 1M allocations. The single-sized
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Figure 6. Fragmentation performance for both single-sized and mixed-size allocations, along with the memory utilization

performance. (a,b) For the fragmentation tests, the x-axis is the allocation size for the single-sized test and the upper bound

of the range for the mixed-size test, with the lower bound being fixed at 16 bytes. The y-axis is the difference between the highest

and lowest address given for an allocation. Lower is better. (c) For the utilization tests, the y-axis is a ratio compared to the

maximum possible number of allocations that could be given. Higher is better.

fragmentation test uses a single set size, whereas the mixed

fragmentation test allocates from a range of sizes using the

generator from Section 6.6.

Single-size fragmentation. The results for the single-size
fragmentation experiments can be seen in Figure 6a. Gallatin

is the second best class of allocator in terms of fragmentation,

following the Ouroboros series allocators. This is because

allocations are always given from the first segment available.

As the size of the allocations increases, Gallatin approaches

the fragmentation of the best allocator, Ouroboros-C-VL, due

to the wavefront used in Gallatin. During initialization, the

first group of segments is pre-allocated to fill the block buffers

of every allocation size. That means once the first new block

is requested, it will come from a later memory segment. For

example, the tree for 16-bit allocations will be initialized with

segments 1 and 2, with segments 3–20 going to the other

trees. Once a new block is required, the system will pull from

the 21st memory segment instead of the 3rd, leading to a

measurable gap in the fragmentation. As the allocation size

increases, the segment used for the memory size approaches

the end of the pre-allocated segment, meaning that segments

are more adjacent to the new segments being used, bringing

the fragmentation closer to optimal.

Mixed fragmentation. The results for the mixed fragmen-

tation experiment can be seen in Figure 6b. The results are

similar to those seen in Figure 6a, with the Ouroboros se-

ries allocators having the lowest fragmentation, followed by

Gallatin, followed by the other allocators.

6.11 Utilization tests
The utilization tests perform allocations until failure or time-

out and report how often an allocation with 100K threads

was possible as a ratio compared to the theoretical maximum

number of allocations possible.

Figure 6c shows the results of the utilization test when run

on allocation sizes between 4–8192 bytes with the allocators

initialized with 2GB of memory. RegEff-AW has the highest

utilization, as being a wrapper for an atomic operation it can

hit and exceed 100% utilization by double allocating the same

region of memory. After RegEff-AW, the Ouroboros C-VL,

P-VL, and P-VA have the highest utilization, being able to

use 98.8% of the memory when performing 256-byte alloca-

tions. Ouroboros P-S and C-S have the next highest utiliza-

tion at 92.8% and 91.6%, respectively, followed by Gallatin at

89.1%. Gallatin has a lower utilization than the Ouroboros

allocators due to the wavefront of blocks used in Gallatin.

As all allocation sizes start with some blocks, live, allocating

from only one size will leave the initialized blocks from other

sizes untouched,which contributes toGallatin’s lower overall

utilization. However, when calculating their overhead, the

Ouroboros allocators do not consider the additional 500MBof

space used for the CUDAheap. This results in their totalmem-

ory use being roughly 20% larger than reported. Including

this space usage brings the space efficiency of all Ouroboros

allocators below 89%, giving Gallatin the highest memory

utilization.

6.12 Graph tests
The graph tests measure the performance of the allocators

when integrated into a graph workflow. Graph operations

were measured on five operations: graph initialization, edge

updates,bulkedgeupdates, edgedeletes, andbulkedgedeletes.

The graphs are stored in memory as edge lists, with an edge

list for a given vertex malloc the next largest power of two

when it becomes too full.

The original experiments [26]were performed on the email

dataset, a graphof 5,451 emails exchangedbetween1133mem-

bers of the Univeristy Rovira i Virgili (Tarragona), and the

1138 bus dataset, a graph of 1138 nodes and 2596 edges of a

bus power system. However, these tests do not fully stress the

system as at most 2,600 threads are live per iteration. Tomore

fully test the allocators, we use the Orkut dataset [19], a set of
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(b) Performance for expansions only

Figure 7. Performance on the graph tests. The y-axis is the

mean runtime over 100 iterations. Lower is better.

3,072,626 vertices and 234,370,166 edges representing social

connections on the website Orkut.

We test the Orkut dataset on two graph experiments, a

scaled version of the graph test fromWinter et al. [26], and

an expansion test to measure performance when the graph

grows over time. The scaled test initializes the graph and

performs 100 iterations of adding and removing 1M edges

from the graph. In the expanding graph test, the graph is ini-

tialized with a full set of 234,370,166 edges. Then over 100

rounds, 100M additional edges are added in batches of 1M.

This mimics the growth of real-world datasets, where graphs

often expand over time [19].

The results of these experiments are shown in Figure 7. For

the original benchmark, Gallatin is the fastest for initializa-

tion, outperforming the non-AW allocators by an order of

magnitude. Gallatin is the fastest allocator for insertion and is

1.46× faster than thenextbest allocator. Fordeletions,Gallatin
is 1.1% slower than the best allocator. Gallatin is the fastest for

the bulk operations, being 53% faster than the next best alloca-

tor for range insertion and 1.1% faster for range deletion. For

the expansion tests, Gallatin is the fastest allocator of the fully

functional allocators for all three operations, outperforming

the next-best allocator by 12.24× for initialization, 3.94× for
insertion, and 3.11× for bulk insertions.
The only RegEff variant that could complete the graph

benchmarks was RegEff-AW. Other RegEff variants did not

finish the benchmark.

6.13 Benchmark discussion.
Gallatinhas thebestperformancewhenallocating fromscratch

and for most operations in the real-world graph experiments.

For reuse, a more specialized allocator like Ouroboros-P-VA

is the ideal choice if the size of the allocations remains consis-

tent, as it can reuse allocations 56% faster than Gallatin. For

the allocators that support full reuse, Gallatin is best in class.

The ability to perform large allocations does affect the utiliza-

tion and fragmentation of Gallatin. While this strategy does

lower the overall utilization compared to the state-of-the-art,

the ability to perform both small and large allocations from

the same memory closes the utilization gap and allows for

allocations that span the entirety of GPUmemory.

7 Conclusion
WepresentGallatin, a general-purpose andhigh-performance

GPUmemoryallocator basedon thevanEmdeBoas (vEB) tree.

vEB trees offer fast, highly-concurrent operations in bounded

time (loglog𝑢). vEB trees are well suited for efficiently man-

aging memory objects on massively parallel GPUs. Gallatin

can exceed (or match in some cases) the performance of the

state-of-the-art while also allowing for much larger alloca-

tions thanwere previously possible. Gallatin also provides full

re-use of memory, which is not feasible for Ouroboros-P-VA

and P-S, the fastest competing allocators.

Gallatin offers faster or competitive performance across

various benchmarkswhen compared tomore specialized vari-

ants designed for specific scenarios. Gallatin is a true general-

purpose allocator. Gallatin is the ideal choice for tasks with

allocation-heavy workflows, tasks with an unknown alloca-

tion pattern, and tasks requiring large allocations. It is posi-

tioned well as a general-purpose allocator, significantly im-

proving over the default CUDA allocator in every context. In

addition, the configurable nature ofGallatin allows it to be eas-

ily specialized for specific tasks. These results show that a tree-

basedallocationsystemis competitivewith theexisting linked

list and queue-based solutions while providing extra features.
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A Artifact Appendix
Gallatin is entirely open-source, and the most up-to-date ver-

sion of the source code is available at https://github.com/
saltsystemslab/gallatin.git.

The testbed for reproducing the results in this paper is avail-

able at https://github.com/saltsystemslab/memmansurvey.
A static version of these repositories is available at https:
//zenodo.org/records/10475796.

A.1 Reproducing results
The results of this paper can be reproduced in their entirety

using the test suite in the memmansurvey benchmark. This

can be pulled from the github URL above or from the static

zenodo link. Once a copy of the repository is downloaded,

run the following steps to build and execute the experiments.

1. Determine architecture:Determine your compute archi-

tecture from https://developer.nvidia.com/cuda-gpus.
2. Clone repository: Pull a fresh clone with submodules via

–recurse-submodules or initialize the submodules with

git submodule init && git submodule update.
3. Curl graphs: The graphs used in the graph benchmark

are stored in a persistent zenodo link. Running

graph_curl.sh will download these graphs and place

them in graph_tests/data.
4. Initialize tests: Initialize the repository with

python init.py. This verifies that boost has been in-

stalled.

5. Build experiments: Run python setupAll.py –cc
YOUR_ARCHITECTURE to compile all tests. Each test suite

has its own CMake file that can be built independently

using the setup.py file located in the test directory.
6. Run experiments: To run a representative testsuite, sim-

ply call python testAll.py -mem_size 8 -device 0
-runtest -genres. The memory size is in Gigabytes, and

the device ID of the device used for testing has to match

the compute version passed in the build stage.

7. Compile results: Run python process_results.py to
produce a pdf artifact.pdfwith the results.

These instructions are packaged into an execuatable

download_and_run.shwhichwill build and execute all tests.
In total, the tests take roughly 8 hours to execute on an

A40. Executing python3 testGallatin.py -mem_size 8
-device 0 -runtest -genreswill generate results only for
Gallatin, and should finish in roughly half an hour.

Tocleanorreset thebuild folders, callpython cleanAll.py.
For more information on building and running the experi-

ments, see the readME in the memmansurvey repository.

A.2 Using Gallatin
Gallatin is a header-only library, and once included can be

used in a project by including

gallatin/allocators/gallatin.cuh. Gallatin can be in-

cluded in a project by including the repository as a git sub-

module or via the use of the CMake Package Manager (CPM).

Once the repository has been linked it can be included in the

project by linking it to a library or target executable via

target_link_libraries( EXE_NAME PRIVATE gallatin).
More information on including and usingGallatin is available

in the README of the Gallatin repository.

For convenience, Gallatin has a global variantwhich can be

calledwith static device pointers. To use the global variant, in-

clude global_allocator.cuh. Once this has been inlcuded,
the allocator can be initialized with

init_global_allocator(num_bytes). Once initialized,
void * global_malloc(num_bytes) and
void global_free(void * alloc) canbeused in anydevice
function to allocate and free memory. For more information

see the readME in the gallatin repository.

https://github.com/saltsystemslab/gallatin.git
https://github.com/saltsystemslab/gallatin.git
https://github.com/saltsystemslab/memmansurvey
https://zenodo.org/records/10475796
https://zenodo.org/records/10475796
https://developer.nvidia.com/cuda-gpus
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