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Abstract
Sparse tensor contractions are a core computational primitive in
scientific computing and machine learning. Effective optimization
of such contractions through loop permutation/tiling remains an
open challenge. Our work perform the first comprehensive com-
parative analysis of data access costs and memory requirements for
loop permutations for sparse tensor contractions. Based on these
insights, we develop FaSTCC, a novel hashing-based parallel im-
plementation of sparse tensor contractions. FaSTCC introduces a
new 2D tiled contraction-index-outer scheme and a correspond-
ing tile-aware design. Using probabilistic modeling, our approach
automatically chooses between dense and sparse output tile accu-
mulators and selects suitable tile size. We evaluate FaSTCC across
two CPU platforms and a range of real-world workloads, demon-
strating significant speedups on benchmarks from FROSTT and
from quantum chemistry.
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1 Introduction
Tensor contractions generalize matrix-matrix multiplication to
higher dimensions. Such contractions are important components
of scientific computations and machine learning techniques. Loop
permutation and loop tiling are key transformations for optimizing
dense matrix/tensor computations and have been used for optimiz-
ing dense tensor contractions [18, 24, 29, 37].

The focus of ourwork are contractions on sparse tensors. A signifi-
cant challenge to analysis and implementations of loop permutation
and tiling for sparse tensor contractions is that any compact repre-
sentation imposes restrictions on efficient element access patterns.
For example, consider a 𝐷-mode tensor in the compressed sparse
fiber (CSF) format [35]. Efficient access of nonzero elements along
one mode, for fixed coordinates in the remaining 𝐷 − 1 modes, is
only possible along the innermost mode in the CSF representation.
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With sparse matrices, since there are only two dimensions, loop
transformations and loop tiling have been successfully employed
for a number of sparse-matrix algorithms [4, 5, 23, 27, 28, 42].
Loop ordering and tiling for sparse tensor contractions.To our
knowledge, no systematic analysis has previously been performed
for loop permutation and tiling for optimizing higher-dimensional
sparse tensor contractions. In related prior work, the TACO [19]
tensor compiler automatically generates code for sparse tensor
contractions on CSF tensors. TACO currently has some restrictions
when the output is a sparse high-dimensional tensor, requiring a
contraction-index-inner (CI) loop order (elaborated later in Sec. 2).
Sparta [22] is a state-of-the-art sparse tensor contraction library that
operates on input tensors in the COO format and uses a contraction-
index-middle (CM) loop order. Neither framework uses loop tiling
for optimizations.

A key goal of our work is to perform systematic analysis of the
trade-offs between data access costs and memory requirements
for sparse tensor contraction using different loop permutations,
followed by an analysis for tiled execution of sparse tensor contrac-
tions. Although input tensors in a sparse tensor contraction can
have an arbitrary number of modes, their indices can be catego-
rized into three groups: (1) contraction indices – indices shared by
both input tensors that are summed over during the contraction;
(2) external-left indices – indices that appear in both the left input
tensor and the output tensor; and (3) external-right indices – indices
that appear in both the right input tensor and the output tensor.
Thus an analysis of all possible loop orders is feasible even for
tensors with an arbitrary number of modes.

It is well known that matrix-matrix multiplication𝑂𝑖 𝑗 = 𝐴𝑖𝑘𝐵𝑘 𝑗
allows six possible permutations of the three nested loops. Similarly,
when tensor modes are grouped into contraction, external-left, and
external-right indices, there are six possible loop orderings for
a tensor contraction. However, due to the symmetry in Einstein
notation, the order of operands (i.e., 𝐿𝑅 vs 𝑅𝐿) has no semantic
significance — making the distinction between external-left index
and external-right index arbitrary. As a result, only three unique
loop orders remain, corresponding to the position of the contraction
index within the three-level loop structure.

In this work we systematically analyze the trade-offs among
the three possible loop orders for sparse tensor contractions, fo-
cusing on data access overhead and memory usage. We show that
the contraction-index-outer (CO) loop order minimizes data access
overheads, but at the cost of significantly increasedmemory require-
ments for the output accumulators (where multiple contributions

https://orcid.org/0000-0003-3294-1481
https://orcid.org/0000-0002-4233-9796
https://orcid.org/0000-0003-4556-4937
https://orcid.org/0000-0001-5576-0320
https://orcid.org/0000-0002-4737-2034
https://doi.org/10.1145/3712285.3759841
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3712285.3759841


SC ’25, November 16–21, 2025, St Louis, MO, USA Saurabh Raje, Hunter McCoy, Atanas Rountev, Prashant Pandey, and P. Sadayappan

to sparse output elements are combined). However, by using tiling,
the space requirement for output accumulators can be controlled,
as well as made very efficient by matching its size to cache capacity.
FaSTCC. Based on these insights, we develop FaSTCC (Fast Sparse
Tensor Contractions on CPUs), a novel hashing-based parallel im-
plementation of sparse tensor contractions that uses the CO loop
order within tiles and 2D tiling along the output tensor dimen-
sions. FaSTCC uses a probabilistic model based on the sparsity of
input tensors to select between dense versus sparse accumulator for
representing the tiles of the output tensor. Across a range of bench-
mark tensors, we show that FaSTCC performs much better than the
current state-of-the-art frameworks, TACO [19] and Sparta [22],
demonstrating the practical value of our approach.
Contributions. The novel contributions of this work are:
• We perform the first comprehensive comparative analysis of data
access costs and memory requirements for loop permutations for
sparse tensor contractions.
• We develop FaSTCC, to our knowledge the first multicore imple-
mentation of a 2D tiled scheme for sparse tensor contractions,
with the option to use dense or sparse output accumulators.
• We develop a probabilistic modeling approach based on the es-
timated density of the output to automatically choose between
dense and sparse output accumulator and to select tile size.
• We present an experimental evaluation on two multicore plat-
forms, an 8-core desktop system and a 64-core server, across a
range of benchmarks, to demonstrate significant performance
improvements over state-of-the-art alternatives.

2 Background
2.1 Sparse Tensor Contractions
A tensor𝑇 of order𝑛 is defined by a set of𝑛modes, with mode𝑀𝑘 =

{1, . . . , 𝑁𝑘 } for 1 ≤ 𝑘 ≤ 𝑛. These modes define the index space of
the tensor.𝑇𝑖1,...,𝑖𝑛 denotes the tensor element for a particular point
in that index space, with 𝑖𝑘 ∈ 𝑀𝑘 . In a sparse tensor most 𝑇𝑖1,...,𝑖𝑛
have zero numeric values; thus, standard dense representations of
size

∏
𝑘 𝑁𝑘 are wasteful. Instead, compact representations such

as COO (COOrdinate format [34, 40]) or CSF (Compressed Sparse
Fiber [35]) are used.

Consider two tensors 𝐿 and 𝑅. A tensor contraction of 𝐿 and 𝑅 is
a tensor 𝑂 defined by

𝑂𝑙1,...,𝑙𝑝 ,𝑟1,...,𝑟𝑞 =
∑︁

𝑐1,...,𝑐𝑚

𝐿𝑙1,...,𝑙𝑝 ,𝑐1,...,𝑐𝑚 ∗ 𝑅𝑐1,...,𝑐𝑚,𝑟1,...,𝑟𝑞

Here contraction indices 𝑐1, . . . , 𝑐𝑚 denote modes that are common
to both tensors. These contraction indices are specified as part
of the contraction definition. The remaining indices 𝑙1, . . . , 𝑙𝑝 and
𝑟1, . . . , 𝑟𝑞 are referred to as external indices.

Clearly, this is a higher-dimensional analog of matrix-matrix
multiplication. In fact, the approach we define in this paper assumes
that a pre-processing step has been applied to linearize the tuple
𝑙1, . . . , 𝑙𝑝 to a single index 𝑙 ∈ L. Similarly, 𝑟1, . . . , 𝑟𝑞 is linearized to
an index 𝑟 ∈ R and 𝑐1, . . . , 𝑐𝑚 is linearized to an index 𝑐 ∈ C. In our
implementation such linearlization is applied as a pre-processing
step, and the inverse delinearlization is applied as a post-processing
step (both are accounted for in the measured execution time). Thus,

the computation we aim to optimize is

𝑂𝑙𝑟 =
∑︁
𝑐

𝐿𝑙𝑐 ∗ 𝑅𝑐𝑟 , 𝑙 ∈ L, 𝑟 ∈ R, 𝑐 ∈ C

2.2 Sparse Tensor Representations
A variety of representations for sparse tensors have been considered
in prior efforts. We outline the most relevant three representations.

The COO (Coordinate) format [40] stores a sparse tensor as a
list of tuples, each of which describes a nonzero tensor element.
For a tensor with 𝑛 modes, each tuple contains 𝑛 + 1 values, with
the first 𝑛 values representing index coordinates and the final one
representing the numeric value of the tensor element. While the
COO format is not as compact as other formats, it does support
constant-cost insertions of new elements, since a new tuple can
simply be appended to the end of the list. Due to its ease of con-
struction COO is commonly used to read in input tensors and write
out result tensors, with the tensor being converted from COO to a
more optimized format for the targeted computations. Both Sparta
[22] and FaSTCC consume COO input and produce COO output.

The CSF (Compressed Sparse Fiber) format [35] is based on a
chosen outer-to-inner order of the tensor modes. CSF structures a
sparse tensor as a tree. The internal nodes of this tree at a depth 𝑘
represent the indices present in the 𝑘-th mode, and each leaf in the
tree represents one nonzero element in the tensor.

Some approaches (e.g., Sparta [22]) employ hash tables to rep-
resent sparse tensors. A hash table maps a universe of keys to a
universe of values. Internally, hash tables store keys by mapping
them to an internal slot via a hash function, a function that deter-
ministically maps input data to an output universe of a fixed size.
Hash tables come in two categories, open addressing and closed ad-
dressing (or chaining). Open addressing tables use a hash function
to map input keys to positions in a fixed size array: if the position
chosen for a key is occupied, the key finds a new position via a
probing scheme that determines which positions to probe in the
array. Closed addressing schemes hash keys to a bucket data struc-
ture which can store any number of keys using chaining (or linked
list). The chaining table used in Sparta is one such table, as keys are
mapped to an internal linked list during insertion. Open addressing
hash tables can achieve higher space efficiency and offer better data
locality compared to chaining hash tables.

3 Analysis of Loop Orders for Sparse Tensor
Contraction

In this section, we perform a comparative analysis of the data
access costs for sparse tensor contraction for different loop orders.
We first perform the analysis without considering tiling, and then
in Section 5 extend the analysis for the tiled case.

A sparse tensor contraction is shown in an abstract form in
Algorithm 1, using the notation from Section 2.

Algorithm 1: Abstract Sparse Tensor Contraction
for 𝑙 ∈ L do

for 𝑐 ∈ C with nonzero 𝐿𝑙𝑐 do
for 𝑟 ∈ R with nonzero 𝑅𝑟𝑐 do

𝑂𝑙𝑟 ← 𝑂𝑙𝑟 + 𝐿𝑙𝑐 ∗ 𝑅𝑟𝑐
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In the compressed sparse fiber (CSF) representation, tensor in-
dices are typically ordered from left to right according to the outer-
to-inner hierarchy, defining the tensor’s layout. This means that effi-
cient element access is possible only for loop orders that align with
the tensor’s layout: accessing elements in non-layout-compatible
order requires costly searches. In contrast, using a hash table to
store sparse tensor elements allows flexible and efficient access
across different loop orders, depending on how the table is indexed.

Since the roles of the two input tensors (“left” or “right”) are
interchangeable in a contraction, only three unique loop orders need
to be considered — determined by the position of the contraction
index in the loop nest. Below, we examine these three loop orders
and analyze their impact on data access costs in sparse tensor
contractions. For each case, we first create appropriately indexed
hash tables for the two input tensors.

3.1 Contraction-Inner (CI) Scheme
The input tensors are first placed in hash tables as follows:

HL : L→ P(C × V)

HR : R→ P(C × V)
L is the set of values for the left index 𝑙 (assuming linearization

if there are multiple left indices 𝑙1, 𝑙2, . . .). Similarly, R is the set
of values for the right index 𝑟 and C is the set of values for the
contraction index 𝑐 . The numeric values are from set V. We use
P(𝑋 ) denotes the powerset of 𝑋 .

For each possible combination of 𝑙 and 𝑟 , this scheme requires
the determination of the intersection of HL(𝑙) and HR(𝑟 ) in order
to find pairs ⟨𝑐, lv⟩ and ⟨𝑐, rv⟩ with matching values of 𝑐 .

Algorithm 2: Contraction-Inner (CI)
for 𝑙 ∈ L do

for 𝑟 ∈ R do
sum← 0
update← false
for ⟨𝑐, lv⟩ ∈ HL(𝑙) ∧ ⟨𝑐, rv⟩ ∈ HR(𝑟 ) do

sum← sum + lv ∗ rv
update← true

if update then
Out .append (𝑙, 𝑟 , sum)

With this scheme (Algorithm 2), the output tensor is constructed
element-by-element by using a scalar variable 𝑠𝑢𝑚 to accumulate
all contributions from matching pairs of nonzero elements from
the two inputs. The TACO compiler [19] can automatically syn-
thesize efficient tensor contraction code for the CI scheme, using
CSF representations of the input tensors, where the contraction
index is innermost in both input tensors. This scheme is therefore
also called an “inner-inner" scheme. A CSF mode order with outer
mode L and inner mode C allows iteration over 𝑙 followed by 𝑐 . In
contrast to a hash table, CSF needs sorted indices in every dimen-
sion, and cannot resize dynamically. The cost of creating CSF is
therefore 𝑂 (nnz ∗ log(nnz)) where nnz is the number of nonzero
elements. Furthermore, to obtain a nonzero value, this approach
needs lookups in 2 × 𝑛 arrays where 𝑛 is the order of the tensor.

3.2 Contraction-Middle (CM) Scheme
The input tensors are first placed in hash tables as follows:

HL : L→ P(C × V)
HR : C→ P(R × V)

Algorithm 3: Contraction-Middle (CM)
for 𝑙 ∈ L do

WS ← ∅
for ⟨𝑐, lv⟩ ∈ HL(𝑙) do

for ⟨𝑟, rv⟩ ∈ HR(𝑐) do
WS.upsert (𝑟, lv ∗ rv)

for 𝑟 ∈ WS.keys do
Out .append (𝑙, 𝑟 ,WS(𝑟 ))

In Algorithm 3, the contraction index iterates in the middle loop.
For each index 𝑙 ∈ L, all nonzero elements 𝐿𝑙𝑐 with external index
𝑙 are extracted from the hash table HL. For each value 𝑐 , nonzero
elements 𝑅𝑐𝑟 are extracted from hash table HR by using 𝑐 as the
key. The product 𝐿𝑙𝑐𝑅𝑐𝑟 is a contribution to 𝑂𝑙𝑟 . Accumulations to
𝑂𝑙𝑟 must be performed for each extracted 𝑅𝑐𝑟 . This must be done
for all 𝑐 corresponding to nonzero elements 𝐿𝑙𝑐 . A workspaceWS
is used for performing the accumulations to the appropriate output
elements 𝑂𝑙∗:

WS : R→ V
Either a dense array (along with some auxiliary data structures
to keep track of which elements of the workspace are updated
and become nonzero) or a sparse accumulator (using a hash table)
may be used forWS. Update operationWS.upsert (𝑟, 𝑣) modifies the
workspace as follows: if 𝑟 ∉ WS.keys,WS(𝑟 ) is set to 𝑣 ; otherwise,
𝑣 is added toWS(𝑟 ).

3.3 Contraction-Outer (CO) Scheme
The input tensors are represented as follows:

HL : C→ P(L × V)
HR : C→ P(R × V)

In addition, a 2D workspace is used:
WS : (L × R) → V

The workspaceWS has keys that are pairs ⟨𝑙, 𝑟 ⟩ ∈ L × R.

Algorithm 4: Contraction-Outer (CO)
WS ← ∅
for 𝑐 ∈ C do

for ⟨𝑙, lv⟩ ∈ HL(𝑐) do
for ⟨𝑟, rv⟩ ∈ HR(𝑐) do

WS.upsert (𝑙, 𝑟 , lv ∗ rv)
for ⟨𝑙, 𝑟 ⟩ ∈ WS.keys do

Out .append (𝑙, 𝑟 ,WS(𝑙, 𝑟 ))

The CO scheme in Agorithm 4 has the contraction index as the
outer loop. Both input tensors have their nonzero elements inserted
into hash tables HL(𝑐) and HR(𝑐), indexed by the contraction index.
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For each value 𝑐 of the contraction index that has nonzero elements
in both HL(𝑐) and HR(𝑐), the product of each 𝐿𝑐𝑙 and 𝑅𝑐𝑟 must be
formed and accumulated for output element𝑂𝑙𝑟 . TheworkspaceWS
is used to perform the accumulations. Operation WS.upsert (𝑙, 𝑟 , 𝑣)
updates the workspace as expected: if (𝑙, 𝑟 ) ∉ WS.keys,WS(𝑙, 𝑟 ) is
set to 𝑣 ; otherwise, 𝑣 is added to WS(𝑙, 𝑟 ).

3.4 Comparative Analysis of Loop Orders
We next compare the three schemes with respect to data access
costs. For this analysis, we assume a dense workspace for per-
forming accumulations for output tensor elements. For the output
tensor, the number of accumulation operations is identical for all
three schemes, and the main difference is the size of the workspace
(which may in turn affect data access cost, if a small workspace can
fit within cache but a large workspace requires DRAM accesses).
Data Access for Input Tensors: The input tensors are stored and
accessed from hash tables. Each query incurs the cost of generating
a hash value from the key and an access into the hash table to
determine if the key exists. The payload for a successful query is
not uniform, being directly proportional to the number of nonzero
elements in the accessed slices of the tensor. We therefore sep-
arately quantify the number of hash table queries and the total
volume (number of nonzero elements) of data retrieved over the
full execution of the sparse tensor contraction.
CI: The CI scheme (Algorithm 2) computes the sparse inner product
between every pair of left tensor slice 𝑙 ∈ L and right tensor slice
𝑟 ∈ R. Thus, 𝑂 (𝐿 ∗ 𝑅) queries to the input hash tables are required,
where 𝐿 and 𝑅 are the extents of the respective index spaces of
L and R. For each such pair of slices from the left tensor and the
right tensor, their nonzero elements must be co-iterated to find
elements with matching values of the contraction index 𝑐 . This is
done efficiently if the nonzero elements are sorted in increasing
value of 𝑐 , but even so the volume of data access is very high:
each slice of the right tensor must be accessed for each slice of
the left tensor, with a total volume of 𝑂 (𝐿 ∗ nnz𝑅), and similarly
a volume of 𝑂 (𝑅 ∗ nnz𝐿) for the left tensor, where nnz𝐿 and nnz𝑅
denote the number of nonzero elements in the left and right tensor,
respectively.
CM: With the CM loop order (Algorithm 3), for each 𝑙 ∈ L for
the left tensor, the nonzero elements 𝐿𝑙𝑐 are accessed, along with
queries to slices 𝑅𝑐𝑟 from the right tensor. The number of queries
to the left tensor is 𝐿. Since each nonzero element in 𝐿 causes a
query to the right tensor, the total number of queries to the right
tensor is nnz𝐿 . The volume of data accessed for the left tensor
is nnz𝐿 because each nonzero element in the tensor is accessed
once. Each element 𝑅𝑐𝑟 of the right tensor will be extracted for
every nonzero 𝐿𝑐𝑙 . Therefore the total volume of data accessed
for the right tensor is

∑
𝑐∈C nnz𝐿 (𝑐) ∗ nnz𝑅 (𝑐), where nnz𝐿 (𝑐) and

nnz𝑅 (𝑐) denote the number of nonzero elements is the slices of the
tensors for contraction index 𝑐 . This sum can be approximated as
nnz𝐿
𝐶
∗∑𝑐∈C nnz𝑅 (𝑐) = nnz𝐿∗nnz𝑅

𝐶
.

CO:With the CO loop order (Algorithm 4), each slice 𝐿𝑐∗ and 𝑅𝑐∗
is only accessed once. The number of hash table queries for the
input tensors is 𝐶 +𝐶 = 2𝐶; the data volume is nnz𝐿 + nnz𝑅 .
Data Access for Output Tensor: For any of the loop orders, a
temporary workspace must be used to accumulate contributions to

Table 1: Comparison of data movement and space needed

Scheme Queries Data Volume Size_Acc
CI 𝑂 (𝐿 ∗ 𝑅) 𝑂 (𝐿 ∗ nnz𝑅 + 𝑅 ∗ nnz𝐿) 1
CM 𝐿 + nnz𝐿 𝑂 (nnz𝐿 + nnz𝑅∗nnz𝐿

𝐶
) 𝑅

CO 𝑂 (2 ∗𝐶) nnz𝐿 + nnz𝑅 𝐿 ∗ 𝑅

nonzero output elements. While the size of the required workspace
is affected by the loop order, the total number of accesses to the
output workspace is independent of the loop order and equals the
total number of multiply-accumulate operations.
Workspace Size:The three schemes impose very different demands
on the size of the dense workspace. We quantify the space required.
CI: The output elements are processed one at a time and therefore
only one scalar variable is needed for the workspace.
CM: If a dense workspace is used, a 1D array must be used, of size
R, i.e., 𝑅.
CO: With a dense workspace, a 2D array will be needed, whose
size is the product of the ranges of L and R, i.e., 𝐿 ∗ 𝑅.

From the description of the schemes for the three loop orders
and the analysis above, we can observe the following trade-offs:
• The Contraction-Inner (CI) scheme incurs the highest data access
overhead because of lower reuse of data elements of the input
tensors. However, the handling of the accumulations for the
sparse output tensor is very straightforward and the scheme can
be readily implemented for tensors of any dimensionality.
• The Contraction-Middle (CM) scheme is much more efficient with
respect to the number of queries and the volume of data move-
ment for input tensor elements than the CI scheme. However,
the handling of accumulations requires a work-space, whose size
depends on the extent 𝑅, for a dense workspace. In the case of
very sparse high-dimensional output tensors, a dense workspace
may be infeasible or inefficient to use if the product of the mode
extents corresponding to R is very high. Sparta [22] implements
the CM scheme as described in Section 7.2.
• The Contraction-Outer (CO) scheme is the most efficient in terms
of accesses to input tensors. However, the required size for a
dense output accumulator is problematic. Furthermore, even if
the dense accumulator could fit in DRAM, update operations
could be very slow due to the high latency to DRAM.

3.5 Tiled CO Scheme
From the above discussion, the CO loop order has the lowest num-
ber of data accesses but faces challenges with the output workspace.
This challenge can be overcome by using 2D tiling along the lin-
earized output tensor dimensions, so that the size of the output
accumulator can be controlled by the chosen tile sizes.

Algorithm 5: 2D-Tiled CO scheme
Create NL left hash tables: HLT [lt]
Create NR right hash tables: HRT [rt]
for lt ← 0 to NL − 1 do

for rt ← 0 to NR − 1 do
Execute_Tiled_CO(lt, rt)
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Figure 1: Intermediate steps of the FaSTCC contraction.

Algorithm 5 outlines the 2D-tiled CO scheme. The output ten-
sor’s index space L × R is partitioned into NL ∗ NR tiles, where
NL = ⌈|L|/TL⌉ and NR = ⌈|R|/TR⌉. Here TL and TR are tile sizes,
selected as described later in the paper. The elements of the left
input tensor are inserted from the input COO format into NL hash
tables, where an element with index ⟨𝑙, 𝑐⟩ is inserted into hash table
HLT [lt], where lt = ⌊ 𝑙

TL ⌋, and similarly for the right input tensor.
A total of NL ∗ NR parallel invocations of instances of the 2D-tiled
CO algorithm are dynamically scheduled on the available cores.
Details are presented in the next section.

4 FaSTCC Design and Implementation
In this section we present FaSTCC, an efficient parallel implemen-
tation of a 2D-tiled CO scheme for sparse tensor contractions. As
introduced in the previous section, the L×R index space of the out-
put tensor is partitioned into NL ∗ NR tiles, where NL = ⌈|L|/TL⌉
and NR = ⌈|R|/TR⌉.

4.1 Tiling and Workspace Design
Output tiles and input tiles. Consider an output data tile Out𝑖, 𝑗
where 0 ≤ 𝑖 < NL and 0 ≤ 𝑗 < NR. The tile is indexed by intra-tile
indices 𝑙 and 𝑟 such that 0 ≤ 𝑙 < TL and 0 ≤ 𝑟 < TR . Element
Out𝑖, 𝑗 (𝑙, 𝑟 ) corresponds to Out (𝑖 ∗ TL + 𝑙, 𝑗 ∗ TR + 𝑟 ).

To compute Out𝑖, 𝑗 , we need a 1D tile 𝐿𝑖 of the left tensor 𝐿 and
a 1D tile 𝑅 𝑗 of the right tensor 𝑅. Here 𝐿𝑖 corresponds to elements
𝐿(𝑐, 𝑙) such that 𝑖 ∗ TL ≤ 𝑙 < (𝑖 + 1) ∗ TL. Similarly, 𝑅 𝑗 corresponds
to elements 𝑅(𝑐, 𝑟 ) such that 𝑗 ∗ TR ≤ 𝑟 < ( 𝑗 + 1) ∗ TR . To reflect
this tiling of the inputs, we represent the left input tensor using NL
hash tables of the form

HL𝑖 : C→ P({0, . . . , TL − 1} × V)

and the right input tensor using NR hash tables of the form

HR 𝑗 : C→ P({0, . . . , TR − 1} × V)

Map HL𝑖 represents input tile 𝐿𝑖 while HR 𝑗 represents input tile
𝑅 𝑗 . The maps store intra-tile indices for the non-contraction data
dimensions, together with the corresponding non-zero data values.
For example, each ⟨𝑙, lv⟩ ∈ HL𝑖 (𝑐) corresponds to an input element
𝐿(𝑐, 𝑖 ∗ TL + 𝑙) with value lv.

FaSTCC algorithm. At the outermost level, Algorithm 6 iterates
over output tiles Out𝑖, 𝑗 . For every 𝑐 such that both HL𝑖 and HR 𝑗

contain some non-zero elements for 𝑐 , the workspace WS accu-
mulates the contributions to Out𝑖, 𝑗 due to 𝑐 . The output tile is
then “drained” to the output tensor, with appropriate remapping of
intra-tile indices 𝑙 and 𝑟 .

Algorithm 6: FaSTCC contraction
for 𝑖 ← 0 to NL − 1 do

for 𝑗 ← 0 to NR − 1 do
WS ← ∅
for 𝑐 ∈ HL𝑖 .keys do

if 𝑐 ∈ HR 𝑗 .keys then
for ⟨𝑙, lv⟩ ∈ HL𝑖 (𝑐) do

for ⟨𝑟, rv⟩ ∈ HR 𝑗 (𝑐) do
WS.upsert (𝑙, 𝑟 , lv ∗ rv)

for ⟨𝑙, 𝑟 ⟩ ∈ WS.keys do
Out .append (𝑖 ∗ TL + 𝑙, 𝑗 ∗ TR + 𝑟,WS(𝑙, 𝑟 ))

4.2 Implementation Details and Parallelization
Techniques

The FaSTCC contraction has four steps: (1) construction of maps
HL𝑖 and HR 𝑗 , (2) iteration over matching positions of HL𝑖 and
HR 𝑗 , (3) accumulation of partial results in the workspace, and (4)
draining the workspace into the output COO list. Next we describe
the parallel implementation of each of these steps individually.
Parallel construction of hash tables. Recall that non-zero ele-
ments of the left operand tensor 𝐿 are represented via hash tables
HL𝑖 : C→ P({0, . . . , TL−1}×V). Each element 𝐿(𝑙, 𝑐) with value lv
is represented in map HL𝑖 , where 𝑖 = ⌊𝑙/TL⌋, such that set HL𝑖 (𝑐)
contains a pair with the intra-tile index (e.g., 𝑙 mod TL) and the
value lv. The representation of the right operand 𝑅 is similar. This
is illustrated in Figure 1, step 2 (tile hash tables). The example shows
the computation of one output tile.

Construction of these hash tables is performed in parallel. Half
the threads work on HL while the other half works on HR. This
is implemented using OpenMP parallel regions with nested par-
allelism. Each thread in the left team reads the input tensor 𝐿 in
parallel, adding any points that are inside the thread’s tile spaces
to thread-local hash tables. For example, thread 0 in the left team is
responsible for constructing all HL𝑖 with 𝑖 mod num_threads = 0,
thread 1 builds all HL𝑖 with 𝑖 mod num_threads = 1, and so on.
Parallel co-iteration over HL𝑖 and HL𝑗 . We parallelize the co-
iteration using a task queue. Each tile-tile contraction (i.e., each
combination of 𝑖 and 𝑗 values that computes some output tile Out𝑖, 𝑗
in Algorithm 6) is defined as a separate task. These tasks are embar-
rassingly parallel, as each tile from the inputs is read-only, and each
pair of input tiles {𝑖 , 𝑗 } uniquely writes one tile of output. Further-
more, since tasks are mapped to threads at run time, load imbalance
is much lower than it would have been if we partitioned the index
space of the non-zero elements. We use Taskflow for implementing
this task queue [15].
Parallel accumulation of partial results. The result of this con-
traction is accumulated into a thread-local tile WS𝑡 . Based on an
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approach described later in Section 5.5, this can either be dense or
sparse workspace. At the end of the accumulation, WS𝑡 is drained
into a thread-local COO linked list.

A dense tile structure includes: (1) a buffer nnz of size TL ∗ TR
to hold non-zero elements of the tile, (2) a buffer apos of the same
size to hold integers corresponding to the active positions in the
tile, and (3) a bitmask bm with TL∗TR

8 bits. An update at position 𝑝

to this tile performs the following operations:
(1) Test and set bit 𝑝 of bitmask bm
(2) If the initial value of bm[p] was 0, append p to apos
(3) Update the non-zero element at nnz[p] with the new value

The update operation takes constant time, and requires three ran-
dom accesses to dense spaces. In case the accumulator is sparse,
we use an open addressed hash table and the update operation
lowers to an upsert operation on the hash table, which is expected
to execute in constant time. This is shown in Figure 1, step 3, where
the tile output data is computed from the input tile hash tables.
Parallel drain from tiles to COO output. Once the tile has been
filled with data, the thread that owns that tile has to write the data
to the COO list before working on the next tile. In case the tile is a
sparse accumulator, the thread simply iterates over the underlying
hash table and appends to the COO list each non-zero with key as
co-ordinate and value as the data.

For dense tiles, we use array apos to perform the drain faster.
The thread iterates over this array of active non-zero positions
within the tile. It reads the non-zero elements from array nnz with
positions as given in apos, i.e. nnz[apos[iter]], and appends them to
the COO list. Therefore, we iterate only over the non-zeros instead
of iterating over the entire dense tile area of size TL ∗ TR . This is
shown in Figure 1, step 4 (drain to output COO)where the non-zeros
from the tile are extracted and stored in the COO linked list.
COO representation for the output. With the above four steps,
we construct one COO list per thread that represents disjoint sets
of the sparse tensor data. The master thread concatenates these
disjoint thread-local lists using pointer movements (no data copies)
into one output COO result. We implement a memory pool layer to
make the COO construction faster. Each thread gets heap allocations
in chunks of 512MB as it pushes non-zeros to the thread-local COO.
As the threads complete, they free up their local heap allocations.

5 Selection of Dense/Sparse Accumulator and
Tile Size

In this section, we develop a modeling approach for (1) deciding
whether a dense or sparse accumulator should be used for a given
contraction, and (2) the size of the tile for the Tiled-CO scheme.

5.1 Estimation of Output Tensor Density
Chosing between dense and sparse accumulator, and the selection
of tile size (for sparse accumulator in Sec 5.4) are both based on
the density 𝛿 of the output sparse tensor. Exact computation of 𝛿
would essentially require as many operations as the actual tensor
contraction. Hence we first estimate this density as follows.

We first assume a uniform random distribution of the nonzeros
across the index spaces of input tensors 𝐿𝑙𝑐 and 𝑅𝑐𝑟 , 𝑙 ∈ L, 𝑟 ∈ R,
𝑐 ∈ C. An output element 𝑂𝑙𝑟 is nonzero if there exists at least one

𝑐 such that both 𝐿𝑙𝑐 and 𝑅𝑐𝑟 are nonzero. The probability 𝑝𝐿 that
element 𝐿𝑙𝑐 is nonzero is its density:

𝑝𝐿 =
nnz𝐿
𝐿 ∗𝐶

Similarly, the probability 𝑝𝑅 that element 𝑅𝑐𝑟 is nonzero is nnz𝑅
𝐶∗𝑅 .

For some contraction index 𝑐 , the probability that it contributes a
nonzero to 𝑂𝑙𝑟 is

𝑝overlap = 𝑝𝐿 ∗ 𝑝𝑅
The probability that none of the 𝐶 contraction indices contributes
a nonzero is

𝑃zero = (1 − 𝑝overlap)𝐶

Hence, the probability that an output element 𝑂𝑙𝑟 is nonzero is

𝑃nonzero = 1 − 𝑃zero = 1 − (1 − 𝑝𝐿 ∗ 𝑝𝑅)𝐶

This is also the probability density function (Φ𝑟𝑒𝑠 ) of the output
tensor.

5.2 Choice of Dense or Sparse Accumulator
Dense accumulators enable more efficient update operations than
sparse accumulators. However, from the analyses in Section 5.3 and
Section 5.4, much larger tile sizes can be used with a sparse accu-
mulator. If the output tensor is ultra-sparse, a significant fraction
of tiles may not have any nonzeros if dense accumulators are used,
because the tile size is limited by L3 cache capacity. However, with
sparse accumulators, the tile size can be adaptively made larger for
sparser output tensors. The analysis in Section 5.4 shows that the
optimal tile size is inversely proportional to the square root of the
density of the output tensor.

We compute the expected number of nonzeros in the output
tensor tile. This expected number is used to chose between dense
or sparse tiles. Based on the analysis in Section 5.1, the output
probability density function is:

𝑃nonzero = 1 − (1 − 𝑝𝐿 ∗ 𝑝𝑅)𝐶

Given the assumption of uniform random distribution of the input
nonzeros, this reduces to:

𝑃nonzero = 1 − (1 − 𝑛𝑛𝑧𝐿

|𝐿 | ∗ |𝐶 | ∗
𝑛𝑛𝑧𝑅

|𝑅 | ∗ |𝐶 | )
|𝐶 |

The expected number of nonzeros in a region of size 𝑇 ×𝑇 of
the output tensor is therefore:

𝐸𝑛𝑛𝑧 (𝑇 2) = 𝑃nonzero ∗𝑇 2 = (1 − (1 − 𝑛𝑛𝑧𝐿

|𝐿 | ∗ |𝐶 | ∗
𝑛𝑛𝑧𝑅

|𝑅 | ∗ |𝐶 | )
|𝐶 | ) ∗𝑇 2

Since we need all dense tiles (of data-type having 𝐷𝑇 bytes each)
to fit in last level cache (𝐿3), we set 𝑇 2 ∗ 𝑁𝑐𝑜𝑟𝑒𝑠 ∗ 𝐷𝑇 = 𝐿3. For
contractions with 𝐸𝑛𝑛𝑧 (𝑇 2) >= 1, we use dense tiles; if 𝐸𝑛𝑛𝑧 (𝑇 2) <
1, we use sparse tiles.

5.3 Tile Size for Dense Accumulator
First, we extend the analysis from Section 3 to model the number
of queries and accessed data volume from the input hash tables.
Recall from the earlier section that we use L, R, and C to denote
the extents of L, R, and C respectively. The analysis for each tile
with a dense accumulatorWS can be performed just as was done
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for the untiled CO algorithm in Section 3. For each tile, there would
be 2 ∗𝐶 queries, resulting in a total query count of

𝑁_queries = 2 ∗𝐶 ∗ NL ∗ NR =
2 ∗𝐶 ∗ 𝐿 ∗ 𝑅
TL ∗ TR

With Tiled-CO, each nonzero element in 𝐿 will be accessed once per
tile of 𝑅, i.e., NR = 𝑅/TR times in total across the entire execution.
Similarly, each nonzero element of 𝑅 will be accessed NL = 𝐿/TL
times. Thus the total data volume of data access is

Data_Vol = nnz𝐿 ∗ NR + nnz𝑅 ∗ NL = nnz𝐿 ∗
𝑅

TR
+ nnz𝑅 ∗

𝐿

TL

Thus, the number of queries as well as the total volume of data
accessed are inversely related to the tile size, with larger tile sizes
resulting in lower data access overhead.

Next, we discuss the impact of tile size on the accumulation
operations. The total number of accumulation operations (i.e., up-
dates to WS) is independent of the tile size. However, the access
pattern for updating nonzeros in the dense accumulator can be ex-
pected to be very random, without any spatial or temporal locality.
This is because we perform a sequence of outer products between
nonzero elements 𝐿∗𝑐 and 𝑅𝑐∗. For a given value of 𝑐 , the elements
𝑂𝑙𝑟 cannot be expected to have any spatial locality unless there is
pre-existing spatial locality among nonzeros in the input tensors.
Further, for successive values of 𝑐 , we do not expect any temporal
locality. Therefore, in order to avoid expensive random access from
DRAM, it is desirable to choose the tile size of a dense accumulator
so that it can fit within cache. Since larger tile sizes reduce access
overheads from the hash tables for the input tensors, we choose
tile sizes to be as large as possible but still fit within cache.

The parallelization strategy is to have different threads concur-
rently operate on different tiles, and therefore we set the tile size
T = TL = TR such that𝑇 ∗𝑇 ∗𝑁_cores = 𝐿3words , i.e.,𝑇 =

√︃
𝐿3words
𝑁 _cores ,

where 𝐿3words is the capacity of the L3 cache in double-precision
words (cache capacity in bytes divided by eight). We demonstrate
via experimental evaluation that such a choice is often the best or
close to the best, with much smaller or larger tile sizes resulting in
lower performance.

5.4 Tile Size for Sparse Accumulator
As described in Section 4, a hash table can be used as a sparse accu-
mulator WS with the Tiled-CO scheme. The main benefit of using
a sparse accumulator is that much larger tile sizes than

√︃
𝐿3words
𝑁 _cores

can be used. Our main consideration is that the space occupied by
the entries in the hash table stays within cache. If the density of
the output sparse tensor is 𝛿 , the expected number of nonzeros in
a T ∗ T region of the index space of the output tensor is T ∗ T ∗ 𝛿 .
Each hash table entry occupies 16 bytes: 8 bytes for a 64-bit key
and 8 bytes for the double-precision data element. Aiming for 90%
utilization of the hash table to avoid significant spills into DRAM
gives 16 ∗ T 2 ∗ 𝛿 = 0.9 ∗ 𝐿3bytes , i.e., 𝑇 =

√︃
𝐿3_bytes
17.7∗𝛿∗𝑁 .

5.5 Summary of Modeling Approach
Algorithm 7 describes the overall modeling approach. The output
of this algorithm is (1) a choice whether to use a dense accumulator

or a sparse accumulator, and (2) selection for tile size 𝑇 . In the next
section, we provide an experimental evaluation of this modeling.

Algorithm 7: Algorithm to determine whether to use
sparse or dense tiles and the tile size. Inputs are number of
cores (𝑁cores), last level cache size (𝐿3) and floating point
width (DT )
pL =

nnzL
|L |∗|C | , pR =

nnzR
|R |∗|C |

Pres = 1 − (1 − pL ∗ pR) |C |

T 2 =
L3

Ncores∗DT
Ennz (T 2) = Pres ∗ T 2

if Ennz (T 2) < 1 then

return ⟨sparse,
√︃

𝐿3_bytes
17.7∗𝛿∗𝑁 ⟩

else
return ⟨dense, T ⟩

The algorithm selects between dense and sparse tile accumu-
lators based on an estimate of the number of nonzeros that the
tile may have. It computes this estimate with the assumption that
nonzeros in the two sparse inputs follow a uniform random distri-
bution. Given Φ𝐿 and Φ𝑅 as the density functions of the left and
right operands, it computes Φres , the density function of the sparse
result. The expected number of nonzeros in a tile is simply the
product of Φres and per-core cache size.

If this expected number is less than 1, it means such a dense
tile would likely be empty if constructed. In this scenario we use a
sparse tile. Since this sparse tile is a hash table, its size is not simply
the span of the co-ordinates that it indexes, but rather a function
of the expected number of tile elements.

6 Experimental Evaluation
Our experiments compare performance on two machines, using
two state-of-the-art baselines, and 16 benchmark datasets:
Baselines: We compare our implementation FaSTCC against state-
of-the-art compiler-generated code for sparse tensor contractions
by TACO [19, 39] as well as Sparta [22], the state-of-the-art manu-
ally developed code for sparse tensor contractions.
Platforms: We evaluated performance on an 8-core Intel desktop
system (Intel i7-11700F with 512KiB per-core L2 cache and a shared
16MiB L3 cache) and a 64-core AMD server (Ryzen Threadripper
3990X with 512KiB per-core L2 cache and shared 256MB L3 cache).
Datasets:We used the same sparse tensor benchmarks from the
FROSTT [34] suite used by Li et al. [22] in evaluating Sparta. We
further extended the benchmarking datasets by including sparse
tensors arising with the state-of-the-art DLPNO (Domain Localized
Pair Natural Orbital) method [30] from quantum chemistry.

6.1 Benchmarks
FROSTT benchmark suite. The FROSTT [34] benchmark suite
is among the most commonly used datasets for evaluation of al-
gorithms with sparse tensors. Table 2 shows the dimensionality,
shape, and nonzero count of the tensors. Tensors from the FROSTT
collection were used in experimental evaluation of the Sparta al-
gorithm [22]. With each tensor, Liu et al. [22] performed two or
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Table 2: FROSTT tensor dimensions and size.

Tensor Modes NNZs
0 1 2 3 4

nips publications 2482 2862 14K 17 3.1M
chicago crime 6K 24 77 32 5.3M
vast 2015 mini challenge 165K 11.3K 2 100 89 26M
uber pickups 183 24 1140 1717 3.3M

three sparse tensor contraction evaluations, where the tensor was
contracted with itself along one or more of its modes. For example,
the 4D Chicago tensor was used in three evaluations, Chicago 0,
Chicago 01, and Chicago 123, where the digits denote the modes
that were contracted over. Since Chicago is a 4-mode tensor, the
output tensor for these three cases would have 3+3=6 modes, 2+2=4
modes, and 1+1=2 modes, respectively. In our experiments, we use
the same tensor contractions used by Liu et al. [22].
Sparse tensor contractions in quantum chemistry. In addition
to the FROSTT benchmarks, we performed an evaluation on sparse
tensor contractions that arise in linear scaling methods in quantum
chemistry. Coupled cluster methods (CC) have traditionally been
used in quantum chemistry to predict properties of large molecules.
Recent efforts in computational chemistry have sought to reduce
the asymptotic complexity of this method by considering only
domain-localized (nearby) interactions of electron pairs. This is
known as the DLPNO-CCSD method [3]. The bottleneck for scaling
the DLPNO-CCSD method is in computing four-centered integrals
from three-centered integrals. Specifically, we have the contractions:

𝐼𝑛𝑡𝑜𝑣𝑜𝑣 (𝑖, 𝜇, 𝑗, 𝜈) = 𝑇𝐸𝑜𝑣 (𝑖, 𝜇, 𝑘) ×𝑇𝐸𝑜𝑣 ( 𝑗, 𝜈, 𝑘)
𝐼𝑛𝑡𝑣𝑣𝑜𝑜 (𝜇, 𝜈, 𝑖, 𝑗) = 𝑇𝐸𝑣𝑣 (𝜇, 𝜈, 𝑘) ×𝑇𝐸𝑜𝑜 (𝑖, 𝑗, 𝑘)
𝐼𝑛𝑡𝑣𝑣𝑜𝑣 (𝜇, 𝜈, 𝑖, 𝜇1) = 𝑇𝐸𝑣𝑣 (𝜇, 𝜈, 𝑘) ×𝑇𝐸𝑜𝑣 (𝑖, 𝜇1, 𝑘)

The inputs are two 3D sparse tensors, which have to be contracted
over one contraction index to produce a sparse 4D tensor.

In the following experiments, we benchmark these three con-
tractions on two large molecules (Caffeine and Guanine) obtained
using the TAMM system [25]. The first contraction is labeled ovov,
the second vvoo and the third vvov in all the graphs that follow.

6.2 Tile Size Selection for Dense Accumulators
For experiments with dense accumulators, we select tile sizes as
described in Section 5.3. The desktop system has a private 512KiB
cache per core and a shared 16MiB L3 cache. Thus, each core has a
share of 2MiB of the L3 cache.With awordsize of 8 bytes per double-
precision word, the maximum tile size to stay within L3 cache is√︃

2∗1024∗1024
8 = 512. The 64-core server system has a 256 MiB shared

L3 cache, giving each core a 4MiB share. Hence, the maximum tile
size with dense accumulator for this system is

√︃
4∗1024∗1024

8 = 724.
We round this down to 512 since we need a power of 2 for the
bitmask in the drain operation.

6.3 Estimating Density of Output Tensors
Based on the analysis in Section 5.2, we compute the expected
number of nonzeros in the output tile for each contraction in the
FROSTT tensor suite and the DLPNO contractions. The expected

counts, model output, and running times are shown in Table 3. The
times for dense and sparse accumulators are shown to compare
the impact of the accumulator (the correct model decision) on the
performance. For all contractions other than NIPS mode 2 and NIPS
modes 2 and 3, the dense accumulator is selected by the model
because the expected number of nonzeros in a dense tile is > 1. We
therefore run FaSTCC with sparse tile accumulator for NIPS 2 and
NIPS 23, and use a dense tile accumulator for all other cases.

Table 3: Model output for each experiment. First column
is tensor name and contraction mode (in subscript). Time
(seconds) for dense contraction is shown as Time𝐷 , similarly
for sparse. Model prediction for dense vs sparse accumulator
is shown in column (D/S).

Tensor pL(%) pR(%) Ennz (T 2 ) Time𝐷 Time𝑆 D/S

chic0 1.46 1.46 4.79E+04 9.21 9.36 D
chic01 1.46 1.46 65536 0.33 0.54 D
chic123 1.46 1.46 6.55E+04 1.23 2.06 D
uber02 0.04 0.04 2.00E+03 0.55 0.73 D
uber123 0.04 0.04 6.55E+04 0.34 0.38 D
vast01 7.78E-06 7.78E-06 7.38E+00 4.23 4.26 D
vast014 7.78E-06 7.78E-06 6.54E+02 4.36 4.45 D
NIPS2 1.83E-04 1.83E-04 3.08E-03 DNF 2.44 S
NIPS23 1.83E-04 1.83E-04 5.24E-02 0.73 0.259 S
NIPS013 1.83E-04 1.83E-04 2.65E+01 1.44 1.48 D
G-ovov 0.63 0.63 1.98E+04 0.315 0.566 D
G-vvoo 18.36 0.17 6.16E+04 11.28 12.12 D
G-vvov 18.36 0.63 6.55E+04 36.09 85.91 D
C-ovov 3.66 3.66 6.50E+04 0.219 0.566 D
C-vvoo 41.90 1.03 6.55E+04 3.79 4.305 D
C-vvov 41.90 3.66 65536 16.03 107.4 D

For sparse accumulators, we select the tile size as described in
Section 5.4. These are rounded up to the next power of two. For
NIPS 2, the resulting tile contains 1048576×1048576 elements, while
for NIPS 23 the tile contains 262144 × 262144 elements.

6.4 Comparison with Sparta
Figure 2 shows the performance comparison with Sparta. TACO
cannot generate code for parallel contraction of two sparse tensors
with multi-threaded accumulation, and thus is not included in this
comparison.

For most benchmarks, FaSTCC achieves significant speedups
over Sparta. The Vast and Uber contractions have highly dense out-
puts with small dimensionality (order of 10K 𝐿 ×𝑅). The bottleneck
for these contractions is creating hash tables HL𝑖 and HR 𝑗 , which is
the reason our approach does not show performance improvements
over Sparta. Furthermore, Sparta uses a chaining-based hash table,
which has fast insertions, while we use open addressing which is
more expensive due to resizing costs at insertion.

6.5 Impact of Tile Sizes
Figure 4 compares execution times with different choices of tile
sizes. As these measurements show, many benchmarks exhibit U-
shaped patterns, implying that tile sizes that are too small or too
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(b) FROSTT comparison on server machine with 64 threads
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(c) Quantum chemistry comparison on desktop machine with 8
threads.
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(d) Quantum chemistry comparison on server machine with 64
threads.

Figure 2: Speedups over Sparta, with the best and model-chosen tile sizes on the FROSTT and quantum chemistry benchmarks.

large are not likely to achieve high performance. This highlihght the
importance of selecting good tile sizes, which is the motivation for
our modeling approach. As shown earlier in Figure 2a and Figure 2b,
our modeling selects tile sizes that typically achieve performance
close to that achieved with the best possible tile sizes.

6.6 Comparison with TACO
Figure 5 compares the performance of TACO and FaSTCC on a
single thread of the desktop machine, since TACO does not gen-
erate parallel code when the output tensor is sparse. The speedup
achieved over TACO-generated code is shown on the𝑦 axis. FaSTCC
is executedwith the best tile configuration for the tensor. For several
contractions, we can observe more than two orders of magnitude
speedup over TACO-generated code.
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Figure 3: Factor improvement in run-time over single thread
execution for the FaSTCC kernel from 1 to 64 threads.

NIPS-013 Chicago-0 Chicago-01 Chicago-123
Vast-5d-01 Vast-5d-014 Uber-02 Uber-123

32 64 128 256 362 512 724102
4

204
8

100

101

Tile Size

Ex
ec
ut
io
n
tim

e
(S
)

(a) Execution time variation with tile size: FROSTT

Caffeine-vvoo Caffeine-vvov Caffeine-ovov
Guanine-vvoo Guanine-vvov Guanine-ovov

32 64 128 256 512 102
4

204
8

100

101

Tile Size

Ex
ec
ut
io
n
tim

e
(S
)

(b) Execution time variation with tile size: quantum chemistry

Figure 4: Execution time as a function of tile size.

7 Related Work
The approaches to efficient sparse tensor contractions fall into two
categories: code generation and manual (library) implementations.
Code generators [13, 19, 26, 41] such as TACO [19] perform ahead-
of-time (AOT) compilation to produce kernels optimized for each
instance of use of tensor contractions in an application program.
On the other hand, library solutions [6, 8, 10, 16, 21, 22, 36] such
as Sparta [22] expose pre-compiled library functions for sparse
tensor contraction that are linked with programs that call those
functions. FaSTCC falls in the second category and can be invoked
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(b) Quantum chemistry benchmarks.

Figure 5: Speedups of FaSTCC for sequential execution.

by a client program that passes input tensors in multi-dimensional
COO format and returns the computed tensor product in COO
format. The implementation of FaSTCC is publicly available in the
associated SC artifact, available at [31].

Sparse tensor contractions are only targeted by a subset [8, 10, 14,
19, 21, 22] of Tensor Algebra compilers and libraries, but have im-
portant applications in chemistry [1, 20] and quantum physics [11].
Sparse tensor contractions are also utilized in evaluating sparse
tensor networks [17], where a sequence of contractions must be
performed to contract a set of tensors [7, 32].

7.1 Compiler-Based Code Generation
The work of Bik et al. represented the earliest attempt to auto-
matically generate code for sparse matrix primitives [2]. The Ten-
sor Algebra Compiler (TACO) [19] was the first compiler effort to
combine dense and sparse linear algebra code generation. TACO
generates efficient code for complex sparse tensor expressions that
involve multiple operands and operators. It defines an abstraction
of iteration graphs that determines how to co-iterate the hierarchi-
cal layout structures of multiple tensor operands. For the binary
tensor contractions that are the focus of our work, TACO allows
the programmer to insert a temporary dense workspace in which
slices of the input tensors are contracted. Using a dense workspace
provides constant-time reads and writes to the accumulator at the
cost of increased space usage. The sparse polyhedral framework
[44] optimizes the co-iteration between a pair of tensors for a tensor
contraction using a Satisfiability Modulo Theory (SMT) solver.

Some recent efforts have introduced IR transformations for op-
timizing tensor product expressions with multiple sparse tensor
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contractions (sparse tensor networks). CoNST [32] uses an SMT
solver to search over possible nested loop structures that imple-
ment a given binarization of a sparse tensor network with CSF
(Compressed Sparse Fiber) tensors. It fuses common outer loops to
reduce dimensionality of intermediate results, leading to reduced
memory consumption. SparseLNR [7] splits the multi-term contrac-
tion of CSF tensors to pairwise contractions and also fuses loops to
reduce intermediate dimensionality. Both systems rely on TACO to
generate the C kernel that executes each pairwise tensor product.

7.2 Manual Implementations
Sparta [22] leverages the sparse accumulators and tables used in
Athena [21] to efficiently perform sparse contractions. Sparta uses
chaining hash tables to represent the tensors and implements the
Contraction-Middle scheme discussed in Section 3.2. Pseudocode
for Sparta’s tensor contraction scheme is shown in Algorithm 8.
Improvements over Sparta were reported by Feng et al. [9] by use
of more advanced hashing techniques.

Algorithm 8: Sparse Tensor Contraction in Sparta
for L in L_Table do

sparse_accumulator = []
contraction_indices = L_Table[𝐿]
for c, l_val in contraction_indices do

R_values = R_table[𝑐]
for R, r_val in R_values do

sparse_accumulator[𝐿,𝑅] += l_val ∗ r_val
accumulators.push_back(sparse_accumulator)

Swift [8] and SpGETT [33] are two recently developed systems
that implement hashmap-based sparse tensor contraction kernels
on CPUs. While they improve upon the hashing scheme in com-
parison to Sparta, they do not explore other possible loop orders
for the contraction. Furthermore, the accumulation is performed
over the entire span of external indices and tiled execution is not
considered.

7.3 Custom Accelerators
Gamma [43] and Matraptor [38] are custom accelerators for sparse
matrix operations. Gamma is an accelerator for multiplication of
two sparse matrices. It uses a novel cache design and parallel pro-
cessing elements to execute Gustavson’s algorithm for inner-outer
matrix multiplication [12]. Matraptor [38] uses a row-wise product
and a novel data format called cyclic channel sparse row to perform
sparse matrix-matrix multiplication efficiently.

8 Conclusion
This paper introduces FaSTCC, a library for fast sparse tensor
contractions. By employing a novel 2D tiling scheme within the
Contraction-Outer (CO) loop order, FaSTCC achieves reductions
in memory overhead while enhancing data locality and computa-
tional efficiency. The developed adaptive approach for choosing
between dense and sparse accumulators, based on a predictive mod-
eling technique, enables high performance across diverse sparsity
patterns and hardware platforms.

Experimental results show that FaSTCC outperforms state-of-
the-art implementations, delivering improvements in running time
and scalability across a variety of datasets. The contributions of
this work, including a systematic analysis of loop orders together
with the first (to our knowledge) contraction-outer sparse tensor
contraction scheme using a tiling-based implementation, provide
a strong foundation for further advancements in sparse tensor
computation. Future work could extend these techniques to GPUs
and heterogeneous systems, further broadening the applicability
of FaSTCC to emerging computational challenges in fields such as
machine learning, quantum chemistry, and physics.
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