
Aeris Filter: A Strongly andMonotonically Adaptive

Range Filter

YUVARAJ CHESETTI,Northeastern University, USA
NAVID ESLAMI, University of Toronto, Canada
HUANCHEN ZHANG, Tsinghua University, China
NIV DAYAN, University of Toronto, Canada
PRASHANT PANDEY,Northeastern University, USA

Range filters are probabilistic data structures used to efficiently perform range emptiness queries, with applica-

tions in databases, big data analytics, and key-value stores. Modern range filters are compact and can guarantee

a bounded false positive rate irrespective of the spatial skew in queries. However, existing range filters are still

susceptible to temporal skew: in skewed workloads where a few queries are repeated disproportionately more

often, the false positive rate of a range filter may be unbounded.

We introduce the Aeris filter, an adaptive expandable range filter that guarantees a robust false positive rate

irrespective of spatial or temporal skew. The Aeris filter achieves this by dynamically resolving and adapting to

false positives. More specifically, the Aeris filter is monotonic adaptive, i.e., it never forgets a previously encoun-

tered false positive. The Aeris filter introduces a novel encoding scheme to implement adaptivity in a range filter

with no additional space or operational overhead. Furthermore, theAeris filter deamortizes the I/O cost to expand

monotonic adaptive filters by utilizing on-disk adaptivity structures, resulting in fewer system disruptions.

Experimental results demonstrate that the Aeris filter achieves up to a 10× reduction in false positive rates

on skewed query distributions compared to other non-adaptive range filters. When integrated into a database,

the Aeris filter delivers 1.5−8× higher throughput for adversarial workloads, and is able to deliver this high

throughput using a cache of smaller size. The Aeris filter also reduces expansion overhead by up to 3× compared

to the Memento filter, a spatially-robust expandable range filter. These improvements ensure scalable, efficient,

and adaptive range query handling in dynamic environments.

CCSConcepts: •Theoryofcomputation→Sketchingandsampling;Datastructuresdesignandanalysis;
Bloomfilters and hashing; • Information systems→Unidimensional range search.

Additional KeyWords and Phrases: Range Filter; Adaptive; Dictionary data structure; Databases

ACMReference Format:
YuvarajChesetti, Navid Eslami,HuanchenZhang,NivDayan, andPrashant Pandey. 2026.Aeris Filter:A Strongly

andMonotonically Adaptive Range Filter . Proc. ACMManag. Data 4, 1 (SIGMOD), Article 7 (February 2026),

26 pages. https://doi.org/10.1145/3786621

1 Introduction

Afilter is a compact data structure that approximately represents a set of keys and supports querying

whether a given key exists or not. Traditional filters like Bloom [5], Quotient [41], and Cuckoo

filters [23] only support point queries (i.e., for the existence of one key at a time). Recent range
filters [9, 14, 22, 28, 34, 47, 51] extend this capability to efficiently identify whether a given range of

Authors’ Contact Information: Yuvaraj Chesetti, Northeastern University, Boston, MA, USA, chesetti.y@northeastern.edu;

Navid Eslami, University of Toronto, Toronto, ON, Canada, navideslami@cs.toronto.edu; Huanchen Zhang, Tsinghua

University, Beijing, China, huanchen@tsinghua.edu.cn; Niv Dayan, University of Toronto, Toronto, ON, Canada,

nivdayan@cs.toronto.edu; Prashant Pandey, Northeastern University, Boston, MA, USA, p.pandey@northeastern.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2026 Copyright held by the owner/author(s).

ACM 2836-6573/2026/2-ART7

https://doi.org/10.1145/3786621

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

https://doi.org/10.1145/3786621
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3786621

7:2 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

keys is empty or nonempty. Similarly to traditional filters, a range filter cannot return a false negative

(i.e., reporting that a nonempty range is empty). However, it may return a false positive (i.e., that

an empty range is nonempty). Formally, a range filter represents a key set 𝑆 from a universe𝑈 and

answers range emptiness queries of the form [𝑎,𝑏]∩𝑆 =∅while striving to maintain a bounded false

positive rate (FPR) 𝜖 [26].

As a range filter is much smaller than the full set of keys that it represents, it can be stored at a

higher layer of the memory hierarchy than the full data set, which typically resides on a storage

device or over a network. As such, a range filter obviates redundant computations, storage I/Os

and/or network hops over parts of the data that do not contain the keys being searched for. Range

filters have been an active area of research over the past decade and are finding applications in social

networks [13], replication in distributed key-value stores [46], search engines [25], databases [32, 42],

time series [27, 29], scientific spatial models [50], bioinformatics [10], etc.

Existing rangefilters offerweakguarantees.Withmost existing range filters [9, 24, 28, 38, 47, 51],

the FPR varies significantly depending on the degree of spatial skew in the data set and queries. The

reason is that such filters effectively store the keys’ prefixes while truncating their least significant

bits to save space. Hence, queries to empty ranges with end points picked from the same key distri-

bution tend to collide with the prefixes of existing keys. In contrast, a robust range filter guarantees
a bounded FPR 𝜖 independently of spatial skew. A well-known lower bound states that a spatially

robust range filter over intervals of length at most 𝑅 keys must use at least Ω(log(𝑅/𝜖)) bits per
key [26]. To date, three spatially robust range filters have been proposed [14, 22, 34].

However, theexisting spatially robust rangefilters are still not robust to temporal skew.Forexample,

considermonitoringapplications that employfilters to identify agiven subset of events for furtherpro-

cessing. Such applications include packet tracking in routers [36], vehicle or people tracking in smart

cities [8, 31], and event tracking in industrial distributedmonitoring [6]. In such applications, an event

with an attributewithin a given rangemay occur repeatedlywithin a short time span, potentially lead-

ing to repeated false positives and thus multiple redundant system checks. Worse, an adversary can

identify which queries lead to false positives as such queries tend to incur higher latency. Such an ad-

versarycan then issue thesequeries atwill to trigger I/Osand/orpollute thecache [44].Theunderlying

cause for this vulnerability is that existing rangefilters are constructed onlywith respect to the dataset

butnotwith respect to thequeryworkload.Hence, theobservedFPRcanexceed𝜖 andevenapproach1.

Adaptive filters. Adaptive filters are a new family of filters that modify their internal structure

in response to queries to prevent false positives from repeating [3, 30, 33, 36, 43, 48]. For example,

the recent AdaptiveQF [48] stores a fingerprint (i.e., a hash digest) for each key in a compact hash

table [41]. In response to a false positive, it extends the fingerprint of the key that the query collided

with to prevent the same query from causing a false positive in the future.While adaptive filters offer

robustness to temporally skewed queries, they exhibit two shortcomings. (1) Existing adaptive filters

only support point queries. This leaves applications relying on range filters vulnerable to temporal

skew. (2) Adaptations add information into the filter, eventually filling it up and causing it to have to

expand. Existing adaptive filters do this by scanning the raw dataset and rebuilding the entire filter

from scratch. Expansion is therefore currently an expensive process. An adaptive filter must be able

to access the original keys over which a false positive occurred to allow adding information to the

filter to prevent the false positive from recurring. This is typically done using a disk-resident reverse
map that maps each fingerprint in the filter to the full key.

Research goal. Is it possible to design a range filter that simultaneously guarantees (1) a robust

FPR with respect to any spatial and/or temporal skew in queries, (2) efficient expandability without

scanning the original data, and (3) fast operations?

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:3

Most existing range filters are unable to achieve these goals at the same time. For example,

SuRF [51] constructs a succinct truncated trie over the key set. However, it cannot adapt to correct

false positives since the trie is static. Many other range filters hash each key to one or more bits in

a bitmap [9, 14, 24, 28, 28, 34, 38], setting them from 0s to 1s. As multiple keys may map to each bit,

there is no way to disambiguate which bits correspond to which keys. Hence, there is no natural

way to adapt the filter without introducing the possibility of false negatives [35].

Insights and challenges.The recentMemento filter [22] holds promisewith respect to our research

goal as it is the only range filter to date that supports spatial robustness, fast queries, and fast deletes

andupdates. It is also able to expandwithout rereading the original set of keys using recent techniques

on filter expansion [16, 17]. If we could also make the Memento filter temporally robust, we would

achieve our research goal. However, achieving temporal robustness, i.e., guaranteeing bounded false

positive rate for any arbitrary sequence of queries is non-trivial.

The Memento filter partitions the universe fromwhich keys are drawn and stores a fingerprint

within a compact hash table corresponding to every nonempty partition. Alongside each fingerprint,

it stores a sorted list of suffixes for all keys within that partition. Similarly to the AdaptiveQF,

this design is appropriate for the elimination of recurring false positives by extending fingerprints.

However, extending fingerprints in the Memento filter is challenging. Due to hash collisions, a

fingerprint may correspond tomultiple keys acrossmultiple partitions. This introduces the challenge

of efficiently splitting and merging entries within the filter without introducing false negatives.

This paper.We present theAeris filter , an adaptive range filter that provides fast operations and
a spatially and temporally robust FPR for any possible dataset and query workload. Built on top of

the Memento filter [22], the Aeris filter introduces a novel internal encoding scheme that allows

fingerprints to be extended when false positives occur. We show how to split and merge suffixes

within a partition without introducing false negatives while maintaining high performance.

The Aeris filter exhibits the property ofmonotonic adaptivity, meaning that a false positive that

occurs once can never repeat [48]. As a result, more information has to be added to the filter with

response to queries, eventually forcing thefilter to expand.TheAeris filter expands efficientlywithout

rereading theoriginal set of keys by reassigningbits fromexistingfingerprints to remapentries during

expansionwhile assigning longer fingerprints to newly inserted entries. However, efficiently support-

ing expandability can compromise the strong adaptivity—i.e., the number of false positives remains

tightly concentrated around 𝜖 ·𝑛 [48] , where𝑛 is the number of queries the filter has seen so far, even

if the queries are adversarially generated. In the Aeris filter, we demonstrate that by assigning a small

number of additional fingerprint bits—specifically, log
2
log

2

1

𝜖
—we can still maintain strong adaptivity.

Our results:
• We design and implement the Aeris filter, an adaptive range filter that supports monotonic adap-

tivity.

• TheAerisfilter employs anewencoding scheme that efficiently encodesvariable lengthfingerprints

for range queries using 1 extra bit per slot compared to the Memento filter.

• TheAeris filter enables databases tomaintain consistent throughput even for adversarialworkloads

and prevent throughput drops. When using the Aeris filter, WiredTiger [37] achieves 1.5×−2.5×
higher throughput compared to when using the Memento filter.

• We show how to adapt a fingerprint by retrieving the original key from a storage-based reverse

map and rehashing it. Unlike past work on adaptive filters, we structure this reverse map as a

write-optimized index to alleviate bottlenecks on the write path, and we exploit it to support

efficient expansions.

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:4 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

Symbol Definition

𝜖 The target false positive rate

𝑅 Maximum query range length

𝑛 Number of queries

𝑞 Size of quotient in bits

𝑟 Size of remainder in bits

𝑠 Size of slot in bits

𝛼 Load factor of the filter

ℎ(𝑥) General hash function

𝑃 Partition size

𝑝 (𝑘) Partition of key 𝑘

𝑚(𝑘) Memento of key 𝑘 (Offset of key within partition)

𝑘𝑝 Keepsake box of partition 𝑝 in filter

(identified by variable-length fingerprint)

𝑙 Initial length of fingerprint

𝜇 Average number of items per partition

ℎ(𝑝 (𝑘)) Partition hash of key 𝑘

ℎ0 (𝑝 (𝑘)) Canonical slot of fingerprint (First 𝑞 bits ofℎ(𝑝 (𝑘)))
ℎ1 (𝑝 (𝑘)) Remainder of fingerprint (Next 𝑟 bits ofℎ(𝑝 (𝑘)))

Table 1. A table of notations split into three sections: for the general range filtering problem, for the quotient
filter, and for the Aeris filter respectively.

• The Aeris filter achieves an order of magnitude lower false positive rate compared to the Memento

filter and the Grafite filter, two state-of-the-art range filters with robust guarantees, on skewed

workloads (Zipfian distribution).

• The Aeris filter has no overheads on query performance due to adaptivity and offers similar

performance as the Memento filter and Grafite for query workloads.

2 Preliminaries

Wenowdescribe the structures on top of whichwe build Aeris filter. Table 1 summarizes the symbols

used throughout the paper.

2.1 Quotient filters

The quotient filter (QF) [4, 18, 19, 40, 41]
1
is a point-query filter that represents a multiset of keys

while supporting dynamic insertions and deletes. It provides the common infrastructure for all other

filters described in this paper. At its core, it uses a hash function to map each key from the universe

to a 𝑙-bit fingerprint. A false positive occurs when the fingerprint of a queried key matches the

fingerprint of some other key stored in the filter.

The QF divides a Key 𝑥 ’s fingerprint ℎ(𝑥) into a q-bit quotient ℎ0 (𝑥) and an 𝑟 -bit remainder
ℎ1 (𝑥). It maintains a hash table of 2

𝑞
slots, each of which can hold one 𝑟 -bit remainder. When a key

𝑥 is inserted, the quotient filter attempts to store the remainderℎ1 (𝑥) at indexℎ0 (𝑥), which we call
𝑥 ’s canonical slot.

1
For simplicity, we refer to Pandey et al.’s [41] counting quotient filter as the quotient filter (QF) throughout the paper.

The counting quotient filter is the more space-efficient and performant version of the original quotient filter (QF) introduced

by Bender et al.’s [4].

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:5

0 1 2 3 4 5 6 7 8 9Hash

function

mapping a

b

c

d
e

f

g

0 1 1 0 1 0 0 0 1 0

0 0 0 1 1 0 1 0 1 0

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔

occupied
runend

slots

run

cluster

Fig. 1. The Quotient Filter [41] resolves hash collisions by storing colliding entries along contiguous runs
that push each other to the right to form clusters.

To resolve hash collisions caused bymultiple fingerprints beingmapped to the same canonical slot,

the QF uses Robin Hood hashing, a variant of linear probing that pushes items to the right to make

space. Robin Hood hashing effectively sorts keys based on their hashes by maintaining the invariant

that ifℎ(𝑎)<ℎ(𝑎′), then the fingerprint for Key 𝑎 will be stored to the left of the fingerprint for Key
𝑎′. All keys that share the same canonical slot are stored contiguously in a run. A sequence of runs

wherebyall but thefirsthavebeenpushed to the right away fromtheir canonical slot is called a cluster .
Figure 1 illustrates an example. As shown, three keys aremapped to Slot 1, forming a run consisting

of three slots. At the same time, one entry is mapped to Slot 2 and two entries are mapped to Slot 4.

The entries Slots 2 and 4 are pushed to the right by the Run from Slot 1 to form a cluster.

As runs may shift to the right, the QF must allow operations to identify the correct run associated

with a given canonical slot. It does this using 2 bits of additional metadata (occupied and runend) per
slot. The occupieds bit for a slot is set if there is at least one entry for which this slot is the canonical
slot. In Figure 1, for example, the occupieds bit is set to 1 only for Slots 1, 2, 4, and 8. The runends bit
is set for a given slot if it contains the last fingerprint in a given run. In Figure 1, the runends bit is
set to 1 for Slots 3, 4, 6 and 8.

To speed up queries, the QF divides the filter into 64 slot chunks and stores an 8-bit integer offset

for each chunk to indicate across howmany slots the contents of this chunk have been pushed to

the right. Within each chunk, we observe that the 𝑖th runend bit set to 1 corresponds to the end of
the run belonging to the 𝑖th slot for which the occupied bit is set to 1. This one-to-one correspondence
is used to find the start and end of a run using constant-time 𝑅𝐴𝑁𝐾 and 𝑆𝐸𝐿𝐸𝐶𝑇 primitives [41].

TheQF supports efficient insertions for a load factor𝛼 of up to 95%. Beyond this point, long clusters

make insertions prohibitively expensive. Thus, the QF uses (log
2

1

𝜖
+2.125)/𝛼 bits per key to provide

an FPR of 𝜖 and expected constant-time operations.

For all traditional point filters such as the QF, the FPR guarantee 𝜖 holds if queries are sampled ran-

domly. However, in real-world applications and/or in the presence of an adversary, the same keymay

be queriedmultiple timeswithin a short time span, thus potentially leading to repeated false positives.

We refer to this phenomenon as temporal skew, and it can cause the FPR to exceed 𝜖 and approach 1.

2.2 Adaptive Filters and the AdaptiveQF

Adaptive filters were designed to maintain a more robust FPR in the presence of temporal skew by

correcting false positives. In particular, if querying for a non-existing Key 𝑥 leads to a false positive

due to a collision with the fingerprint of some Key𝑦, then Key𝑦’s fingerprint is modified to resolve

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:6 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

the hash collision. Doing so prevents the false positive from repeating when Key 𝑥 is queried for

again. To modify Key𝑦’s fingerprint, Key𝑦 is retrieved from storage using a reverse map from each

key’s fingerprint to the original key. Key𝑦 is then rehashed to resolve the hash collision.

The first adaptive filter [36] uses multiple hash functions to generate remainders, and it records

which of these hash functions was used to generate each remainder. Adaptation to a false positive

takes place by regenerating the remainder over which the false positive occurred using one of the

different hash functions. However, since adaptation cycles across several known hash functions,

the filter is vulnerable to temporal skew if we query for multiple keys that collide with many of the

possible remainders for some Key𝑦. Hence, the FPRmay still exceed 𝜖 and approach 1.

Monotonic adaptivity.Monotonically adaptive filters ensure that the filter never “forgets” a false

positive. In other words, any query to Key 𝑥 that results in a false positive the first time will result in

a negative for all subsequent times that Key 𝑥 is queried for. Such filters ensure that every query has a

probability of atmost𝜖 of returning a false positive independently of the queryworkload [2]. They are

therefore robust to temporal skew. In addition, they are useful for applications such as URL blocklists,

where users are impacted negatively by the experience of an innocuous website being identified

repeatedly asmalicious andneeding to be repeatedly reverifiedby theuser as beingnon-malicious. [1].

The adaptive quotient filter. The AdaptiveQF [48] is a monotonically adaptive filter based on the

QF design. It adapts to false positives by extending a fingerprint over which a false positive occurred

to span multiple slots. It supports this by using one additional metadata bit with each slot (extension
bit) that marks whether the given remainder in the slot is a new remainder or an extension of the

remainder in the slot to the left. Since fingerprints monotonically grow over time in response to false

postives, the AdaptiveQF never forgets information and thus repeats a false positive.

Although every fingerprint extension takes up an additional slot in the filter, the rate at which

extensions are created is slow. The reason is that the set of non-existing queries that users issue is

typically small relative to the universe size (e.g., commonmisspellings of a website). The number

of extensions needed to eliminate false positives in such a case is moderate and manageable. Even

in an adversarial setting where non-existing queries are issued uniformly randomly, subsequent

adaptations after the first one occur exponentially less frequently. A given fingerprint is extended the

first time after an average of𝑛/𝜖 queries have taken place globally, The second adaptation occurs after
at least another 𝑛/𝜖2 queries since the fingerprint is now twice as long. In general, the 𝑖th adaptation

occurs after at least 𝑛/𝜖𝑖 queries. Hence, the rate at which adaptations fill up the filter in the worst
case slows down exponentially over time.

Despite its advantages, the AdaptiveQF still exhibits several core issues. First, adaptations still

add content to the filter, potentially causing it to have to expand. Expansions occur by traversing

and rehashing the entire dataset, and so it is an expensive process. Moreover, the AdaptiveQF does

not support range queries. It is therefore inapplicable to numerous applications that perform both

point and range queries [10, 29, 50].

2.3 Range Filters and theMemento filter

Range filters have been an active area of research over the past decade due to their use-cases in

KV-stores and beyond [25, 27, 32, 42, 51]. While all range filters to date are vulnerable to temporal

skew, earlier designs were also vulnerable to the equally important issue of spatial skew. The source
of this latter vulnerability is that many earlier range filters forgo the keys’ lower-order bits to save

space (e.g., by truncating keys [51] or mapping them based on their more significant bits to a smaller

domain [9, 47]). Hence, if the end points of many empty range queries are close to the keys in the

dataset, they are likely to match the prefixes of some existing keys and return false positives. The

FPRmay therefore exceed 𝜖 and approach 1.

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:7

Awell-known lower bound states that a range filter that is robust to spatial skewwhile supporting

range queries of up to length𝑅must use log
2
(𝑅/𝜖) bits per entry [26]. A few recent range filters meet

this lower bound while providing spatial robustness [14, 22, 34]. However, no range filter to date

provides spatial and temporal robustness simultaneously. Is it possible for a range filter to achieve

both properties so that the FPR is guaranteed to be at most 𝜖 for any possible dataset and workload?

If so, can it also maintain fast operations?

Memento filters. TheMemento filter [22] is the range filter that provides spatially robust queries

while meeting the aforementioned lower bound and providing fast queries, insertions, deletions. In

addition, it can expand and contract along with the dataset size. If we could also make the Memento

filter temporally robust, we would achieve our research goal. We therefore use the Memento filter

as the starting point for our design.

Partitions andmementos.TheMemento filter divides a finite universe of keys (e.g., 64-bit integers)

into equally-sized partitions of 𝑃 keys each, where 𝑃 is the largest power of 2 that is smaller than or

equal to the maximum range query size 𝑅 (i.e., 𝑃 =2⌈log2 (𝑅) ⌉). The binary representation of each key
is then divided into a prefix and a suffix. The prefix identifies the partition that the key belongs to,

while the suffix identifies the offset of the key within the partition. The suffix, referred to as the key’s

memento, comprises the least significant log
2
(𝑝) bits of the key. Figure 2 illustrates this partitioning.

Keepsakebox. For each insertion, theMementofilter hashes the prefixof the key to generate afinger-

print. It inserts thisfingerprint into aquotientfilter asdescribed inSection2.1 bymapping it to a canon-

ical slot andstoring the remainderof thefingerprint in that slot (andusingRobinHoodHashing toclear

space). Next to the fingerprint’s remainder, it stores the key’s memento. If more keys within the same

partition are inserted, they getmapped to the samefingerprint and stored as a contiguous list of sorted

mementos alongside the fingerprint’s remainder. This collection of a partition fingerprint and associ-

ated fingerprints is referred to as a keepsake box. Hence, the Memento filter preserves the locality of

nearby keyswithout sacrificing their lower-order bits. This is the key to achieving fast operations and

spatial robustness simultaneously. Partitions and keepsake boxes form a many-to-one-relationship,

and Figure 2 illustrates the mementos from different partitions being stored in a single keepsake box.

Range queries.A range query is handled by checking if there is an existing keepsake box in the filter

for each overlapping partition. Since the partitions are sized to approximately match the maximum

query length, at most two keepsake boxes need to be checked in the filter. For each keepsake box, we

check formementos that liewithin the query range. If there is at least one, the query returns a positive.

FPR & space. Since the Memento filter generates fingerprints based on the prefixes of keys, it is

possible for keys from different partitions to map to the same fingerprint and thus to the same

keepsake box. This can lead to false positives. The remainder is set to log
2
(1/𝜖) bits to guarantee

an FPR of 𝜖 . Overall, the Memento filter uses (log
2
(𝑅
𝜖
)+3.125)/𝛼 bits per key.

Example. Consider a set 𝑆 = {12,22,24,35,38,55,57,66}. We let the partition size be 𝑃 = 10 in this

example as decimals are easier for illustrative purposes, though in reality the partition size is always

a power of two. Given a Key 𝑘 , its partition 𝑝 (𝑘) is computed as ⌊𝑘/10⌋ and its memento𝑚(𝑘) as
𝑘 mod 10. Thus, Keys 55 and 57 both belong to Partition 5, and their respective mementos are 5 and

7. Suppose that the hash function generates the same fingerprint for Partitions 1 and 5. This is a hash

collision, and so the mementos from both of these partitions get stored within the same keepsake

box (i.e., 2, 5 and 7 corresponding to Keys 12, 55 and 57). In the figure, a query arrives targeting a part

of Partition 1. It visits the corresponding keepsake box, finds that both Mementos 1 and 5 overlap

with the specified range, and returns a positive. Note that this is a true positive since Key 12 actually

falls within the specified key range, thoughMemento 5 comes from an entirely different partition

and would have led to a false positive if Key 12 did not also exist.

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:8 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

Universe:

Keepsake box

𝑞

𝑞

𝑞 is true positive

Fig. 2. TheMemento filter partitions the universe and maintains a keepsake box for each non-empty partition.
A range query is answered by checking at most two keepsake boxes. The figure shows one keepsake box with
mementos highlighted and an example of a true positive query 𝑞.

2.4 Challenges

While the Memento filter provides a good foundation for supporting both spatially and temporally

robust queries, several technical challenges remain to be addressed.

Adaptivity for keepsake boxes. To build an adaptive range filter, we can extend the fingerprints
of the keepsake boxes in the Memento Filter to resolve false positives, similar to the AdaptiveQF.

The challenge is that each keepsake box also stores a list of mementos from potentially different

partitions due to hash collisions. Extending the fingerprint of a keepsake box naively could thus

result in future false negatives. How can we correctly fix false positives while ensuring that it is

impossible for false negatives to ever occur?

Space overhead. Since filters reside in memory, space efficiency is critical. As we have seen, the

QF uses (log
2
(1/𝜖)+2.125)/𝛼 bits per key while the AdaptiveQF uses one additional bit per key to

support adaptivity. Similarly, theMementofilteruses (log
2
(𝑅/𝜖)+3.125)/𝛼 bitsperkey.Canwematch

these space overheads for an adaptive range filter that provides both spatial and temporal robustness?

Stalls due to expansions.Monotonically adaptive filters accumulate information by extending fin-

gerprints. Eventually, thefilter runs out of space andmust expand to accommodatenewadaptations or

insertions. TheAdaptiveQFexpands by rereadingkeys fromstorage and rehashing them to construct

a 2× larger filter. Can we expand the filter without incurring prolonged I/O overheads and stalls?

Reverse map. Existing adaptive filters structure the reverse map as a flat on-disk hash map. For

every application insertion, the reverse map incurs a read I/O and a write I/O to read and add a new

entry to a hash bucket. The challenge is that keeping the reverse map up-to-date can become an I/O

bottleneck for insertion-heavy workloads. Can we alleviate the reverse map bottleneck on the write

path while still supporting adaptivity to cope with temporal query skew?

3 Aeris filter

This section describes Aeris filter and how it overcomes the technical challenges described in Sec-

tion 2.4. Similarly to theMementofilter, theAeris filter is built on top of a quotient filter and consists of

multiple keepsake boxes, each of which stores mementos from a set of partitions. The core difference

between the Aeris filter and theMemento filter is that the fingerprints in keepsake boxes of the Aeris

filter can be extended to support adaptivity.

Extendable fingerprints. The keepsake boxes in Aeris filter use extendable fingerprints to support
adaptivity. Each prefix 𝑝 (𝑘) is mapped to an 𝑙-bit fingerprint using hash function ℎ(𝑝 (𝑘)). The hash
functionℎ(𝑝 (𝑘)) generates a long hash and higher-order 𝑙 bits are extracted for the 𝑙-bit fingerprint.
Initially, a keepsake box in the Aeris filter has a fingerprint of length 𝑙 = (𝑞+𝑟) bits. The higher order
𝑞= ⌈log

2
(𝑛)⌉ bits form the quotient (canonical slot) and the remaining 𝑟 bits form the remainder.

When adapting in response to a false positive, the fingerprint of a keepsake box is extended to

a longer fingerprint of length 𝑙 ′ > 𝑙 . Since both the fingerprints are generated from the same long

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:9

key 𝑘

𝑝 (𝑘) 𝑚(𝑘)
ℎ(𝑝 (𝑘))

𝑞 𝑟 𝑒 ... (extra ext bits)

quotient remainder

Initial fingerprint of keepsake box

Fig. 3. Variable length fingerprints in the Aeris filter. The key is divided into a partition 𝑝 (𝑘) andmemento𝑚(𝑘)
bits. The fingerprint is generated by extracting the higher-order bits of a long hashℎ(𝑝 (𝑘)). The fingerprint
is initially (𝑞+𝑟) bits, where 𝑞 is the length of the quotient and 𝑟 the remainder. As the fingerprint is extended
for adaptivity, additional extension bits (denoted by 𝑒) are added.

Universe:

Keepsake

box

𝑞

𝑞

𝑞 is false positive

(a) Example of a false positive query in the Aeris filter. The query is a false positive due to mementos added
by partitions not in the query range lying in the keepsake box.

Universe:

Extended

keepsake box 1

𝑞

𝑞
𝑞 is true

negative

Extended

keepsake box 2

(b) After adapting, the keepsake boxes are split by extending their fingerprints. The mementos of the
corresponding partitions are moved to their new keepsake box.

Fig. 4. Range query adaptivity in the Aeris filter

hashℎ(𝑝 (𝑘)), the shorter fingerprint is a prefix of the longer one. Thus, extending a fingerprint does
not change its canonical slot and remainder. We refer to the additional bits added as extension bits.
Figure 3 illustrates how fingerprints that can be extended are generated in the Aeris filter.

Queries and falsepositives.Toanswer a range query [𝑎,𝑏] (i.e., is there anykey𝑘 in the dataset such
that𝑎≤𝑘 ≤𝑏), theAeris filter splits the range query into subqueries, generating one for each intersect-
ing partition. Since the partition size is chosen to be 2

⌈log
2
𝑅⌉
, there can be at most 2 such subqueries.

For ease of discussion, we will assume that [𝑎,𝑏] completely lie in a single partition , both the

endpoints of the query range 𝑎 and 𝑏 belong to partition 𝑝 . To answer the query [𝑎,𝑏], the Aeris
filter will check if the keepsake box corresponding to 𝑝 contains a memento𝑚 that lies between

[𝑚(𝑎),𝑚(𝑏)]. The query is a false positive if the dataset does not actually contain any key between
[𝑎,𝑏] but the keepsake box contains amemento in the query range. This can happen if there is another

partition 𝑝′≠𝑝 that also maps to the keepsake box of 𝑝 and contributes a memento within the query

range. Figure 4a illustrates an example of a false positive range query.

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:10 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

Adapting to false positives. To adapt to a false positive range query [𝑎,𝑏] (lying within a single
partition 𝑝 for ease of discussion), the Aeris filter splits the keepsake box corresponding to 𝑝 into

multiple keepsake boxes with extended fingerprints.

Let 𝑘𝑝 be the keepsake box corresponding to 𝑝 and that it currently has a 𝑙-bit length fingerprint.

The false positive arises from there being one or more non-empty partitions that also map to 𝑘𝑝 and

contribute a memento that lies within the query range. Each such partition 𝑝′ maps to 𝑘𝑝 due to a

hash collision — both 𝑝 and 𝑝′ have the same 𝑙 bit fingerprint.

To adapt to the false positive, the Aeris filter extends fingerprint length to 𝑙 ′ such that the colliding
partitions no longer map to the same keepsake box. The Aeris filter creates new keepsake boxes

with 𝑙 ′-bit length fingerprints for all partitions (including those that do not contribute mementos

in the query range) that currently map to 𝑘𝑝 . All the mementos of 𝑘𝑝 are then redistributed across

these new keepsake boxes. This adaptation prevents query [𝑎,𝑏] from being a false positive again

— any colliding partition 𝑝′ that contributed a memento in the query range is now part of a different

keepsake box. Figure 4 illustrates the process of adaptation in the Aeris filter.

3.1 Reversemap

Similarly to other adaptive filters, the Aeris filter maintains a reverse map on disk to map from each

fingerprint to the original key. The Aeris filter structures this reverse map as a write-optimized

𝐵𝜖 -tree [7] to avoid bottlenecks on the insertion path. We now describe the access patterns targeting

the reverse map, and howwe structure the reverse map to optimize for these access patterns.

Access patterns. Every time a key-value pair is inserted into or deleted from the filter, a correspond-

ing entry must be added to or removed from the reverse map to maintain the association between

the key’s fingerprint and the full key. Consequently, workloads with frequent insertions or deletions

generate many writes to the reverse map. Updates that modify only the value associated with an

existing key do not affect the reverse map.

In contrast, the reverse map is not accessed during most queries (i.e., true positives or true neg-

atives). It is only consulted on a false positive to retrieve the key corresponding to the colliding

fingerprint so that the filter can extend that fingerprint. Initially, a false positive is expected to occur

atmost once every 1/𝜖 queries. In fact, as discussed in Section 2.2, false positives become less frequent

over time as fingerprints grow longer. That is, after 𝑛/𝜖𝑖 queries, a false positive occurs at most once

every 1/𝜖𝑖 queries. Hence, accesses to the reverse map along the query path are infrequent to begin

with and become rarer over time.

Reversemap structure. We exploit the fact that queries to the reversemap are infrequent, whereas

insertions are comparatively frequent and costly. Accordingly, we implement the reverse map using

a write-optimized data structure, trading a modest increase in read latency for substantially higher

insertion throughput.

In particular, we structure the reverse map as a 𝐵𝜖 -tree [7]. A 𝐵𝜖 -tree is a B-tree [49] wherein each

internal node contains a write buffer for each of its children. Updates to a given child accumulate

within its parent’s buffer and only get flushed into the child when this buffer is full. As this approach

pushes multiple entries to the child at a time with one I/O, it amortizes write cost. Generally, a

𝐵𝜖 -tree supports insertions in amortized 𝑂

(
1

𝐵1−𝜖 ·log𝐵𝜖
𝑁
𝑀

)
I/Os and queries in 𝑂

(
log𝐵𝜖

𝑁
𝑀

)
I/Os. In

these expressions, 𝑁 is the number of entries in the dataset, 𝐵 is the fanout of the tree, 𝑀 is the

number of entries that fit in memory, and 𝜖 is a parameter that trades between the tree’s fanout and

the amount of buffering per node. Our 𝐵𝜖 -tree implementation uses SplinterDB [11], though other

write-optimized structures such as RocksDB [45] would have also been suitable.

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:11

In contrast, insertions in a B-tree cost𝑂
(
log𝐵

𝑁
𝑀

)
I/Os, which is asymptotically higher compared to

the 𝐵𝜖−tree. Therefore, the 𝐵𝜖−tree is the more appropriate choice for the reverse map compared to

the B-Tree, as theworkload typically consists of a higher proportion of updates compared to lookups.

Each entry in the 𝐵𝜖 -tree maps a fingerprint to a list containing a subset of the keys within its

corresponding keepsake box. Since insertions are performed out of place, multiple entries corre-

sponding to the same keepsake box may exist at multiple levels of the tree, but always along a single

root-to-leaf path. Together, these entries contain the full set of keys within the keepsake box. When

an entry is flushed into a node that already contains an entry with the same fingerprint, the entries

are merged by concatenating their key lists.

Handling a false positive involves a single root-to-leaf traversal of the 𝐵𝜖 -tree to retrieve all keys

in the affected keepsake box. We then insert a tombstone with the original fingerprint to mark the

mapping entries for eventual removal. Finally, we rehash the retrieved keys, potentially splitting

the keepsake box, and reinsert them along with their updated fingerprints.

Parameterization. Under typical parameter settings for a 𝐵𝜖 -tree, insertions are highly efficient.

Since a key is typically no larger than 16 bytes while a fingerprint is capped at 1-2 bytes, a 4 KB disk

page can hold roughly 256 fingerprints and keys (i.e., 𝐵≈256). We set𝑀 such that 𝑁≫𝑀≫𝐵 (e.g.,

𝑀 corresponds to several megabytes of entries), which further reduces the cost of both insertions

and queries. Substituting these parameters into the cost expression above, we find that insertions

into the reverse map consume as little as 1–2% of the system’s total write bandwidth. In contrast,

handling a false positive may require a few additional I/Os to traverse the 𝐵𝜖 -tree—an acceptable

trade-off given the rarity of such events.

Space. Aside from its small in-memory buffer, the reverse map is stored entirely on disk. Each entry

contains only a fingerprint and its corresponding key, without storing any values or rows, which are

typically much larger. In many practical settings, keys are 8 bytes, while values range from 64 bytes

to several kilobytes [13, 15, 39]. Consequently, the reverse map is typically one to two orders of

magnitude smaller than the primary dataset.

3.2 Implementation

We now describe how the quotient filter is extended to support range queries and adaptivity. We

describe the data layout and operations needed to support queries, updates and adaptivity.

High-level overview. The Aeris filter is an array of 𝑛=2𝑞 slots of size (𝑟+log
2
(𝑅)) bits, where 𝑟 is

the length of the fingerprint remainder and𝑅 is the maximum range query length that the Aeris filter

supports
2
. The Aeris filter maintains 3 metadata bits per slot: occupied, runend and extension bits.

Note that this is similar to structure of the AdaptiveQF, except that the slots in the AdaptiveQF

are of size 𝑟 bits. A keepsake box is stored as a single unit in the Aeris filter and can span multiple

slots. A group of keepsake boxes having the same canonical slot are referred to as a quotient run.
Keepsakeboxencoding. In theAeris filter, a keepsake box stores the remainder from thefingerprint,

metadata bits, and mementos sequentially. The extension bit is set to 1 in slots that store extension
bits, and the runend bit marks the end of a keepsake box. This differs from the standard quotient filter

encoding that uses the runend bit to mark the end of a quotient run. Instead, the Aeris filter reuses

the extension bit to mark the end of a quotient run: the last slot of a quotient run will have both its

extension and runend bit set. Since an extension slot can never be the last slot of a keepsake box, it
is always possible to determine whether an extension bit is marking an extension slot or the end of

quotient run by checking its corresponding runend bit. This encoding avoids introducing additional
metadata bits while supporting both keepsake boxes and extension slot information.

2
Similar to the Memento filter, the Aeris filter also supports queries of length greater than 𝑅 but cannot guarantee false

positive rate of 𝜖 .

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:12 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

occupied
runend

extension
Slot

1

0

1

0

1

0

0

1

1

𝑟1 𝑒1 𝑒2 𝑚1𝑚2𝑚3𝑚4

1

1

0

1

1

𝑟2 𝑚5 𝑟3 𝑚6

𝑞0 run

(1 keepsake box)

𝑞2 run:

(2 keepsake boxes)

0 1 2 3 4 5Index

Fig. 5. Keepsake box encoding in Aeris filter. The keepsake box stores the remainder, extension bits, and
mementos in contiguous slots. The above figure stores two quotient runs, 𝑞0 with one keepske box and 𝑞2 with
two keepsake boxes. Runend bits mark the end of a keepsake box (Slot 3, 4 and 5) and are used in conjunction
with the extension bit to mark the end of quotient runs (Slot 3 and 5).

Extension bits. To keep the extension bits consistent with the keepsake box encoding, fingerprints
are extended in discrete increments. The first extension is the size of a memento (⌈log

2
(𝑅)⌉) bits.

Subsequent extensions bits are added in increments of (⌈log
2
(𝑅)⌉+𝑟) bits, which is the size of one

full slot. Figure 5 illustrates the encoding of a keepsake box that has been extended twice.

Storing keepsake boxes. Similar to the quotient filter, the Aeris filter uses Robin Hood hashing

to store keepsake boxes. Robin Hood hashing maintains the invariant that items are stored in order

of their canonical slots — items having the same canonical slot are clustered together. The Aeris filter

will first attempt to store the keepsake box in contiguous slots starting at its canonical slot. If any of

the slots between the canonical slot and the last slot required to store the keepsake box are occupied,

the Aeris filter will shift move keepsake boxes according to the Robin Hood hashing scheme to make

space for the new incoming keepsake box. A group of keepsake boxes having the same canonical

slot are referred to as a run, while a group of runs with no empty slots in between them is referred

to as a cluster. Within a quotient run, keepsake boxes having the same canonical slot and remainder

are ordered lexicographically by their extension bits.

Locating keepsake boxes. The Aeris filter uses the quotient filter’s rank and select-based metadata

operations to locate the start of a keepsake box. The Aeris filter finds the start and end of a run using

constant-time 𝑅𝐴𝑁𝐾 and 𝑆𝐸𝐿𝐸𝐶𝑇 primitives [41]. It then scans the remainders and extension bits

of the keepsake box within the run to find the one with a matching fingerprint.

Queries. The Aeris filter divides a range query [𝑎,𝑏] (Is there any key 𝑘 in the dataset such that

𝑎 ≤𝑘 ≤𝑏?) into smaller subqueries that lie completely in a partition. For each subquery, the Aeris

filter locates their corresponding keepsake boxes and checks if it contains any mementos that lie

within the subquery mementos. Range queries of length up to 𝑅 can be divided into at most two

subqueries as the Aeris filter uses a partition size of 2
⌈log

2
(𝑅) ⌉

. Queries of length greater than 𝑅 will

be subdivided into multiple subqueries and answered in a similar fashion
2
.

Adaptations. The Aeris filter adapts a query when it receives feedback from the database that the

querywas a false positive. The query is adapted by extending the keepsake boxes of all the subqueries

the original query was divided into. For each keepsake box, the Aeris filter consults the reverse

map to retrieve all the keys the map to the keepsake boxes. Each keepsake box is split into multiple

keepsake boxes with extended fingerprints and the mementos are redistributed.

The fingerprints of the keys in the keepsake box are extended until they no longer collide with the

query partition. A subtle case arises when the query is a false positive, but the keepsake box contains

mementos from the query range. This occurs when the dataset includes keys from the query partition

but are not in query range. Extending these fingerprints to not collide with the query partition is not

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:13

possible as they represent the same partition. Instead, the fingerprints from the query partition must

be extended after all the other fingerprints have been extended, once the required extension length is

known. This case also highlights the complexity of supporting adaptivity for range queries compared

to point queries. The AdaptiveQF does not encounter this situation as it only supports point queries.

Inserts and deletes. The Aeris filter inserts a key by adding its memento to the keepsake box it

maps to, creating a new keepsake box if it does not exist. The case when the keepsake box already

exists but has extension bits is handled specially. If the extension bits match, the memento is added

to that keepsake box. Otherwise, a new keepsake box is created with distinguishing extension bits.

This is to prevent ambiguity in mapping keys to keepsake boxes as otherwise it is possible a key

might match both keepsake boxes. The Aeris filter deletes keys by removing its memento from the

keepsake box, removing the keepsake box if it becomes empty.

3.3 Expandability

In this section, we discuss how the Aeris filter expands while avoiding costly I/O stalls. As outlined

in Section 2.4, expandability is necessary to guarantee monotonicity in adaptive filters as the filter

cannot discard accumulated adaptivity information.

Expanding quotient filters. The easiest way to expand a filter is to reread the keys from storage

and reinsert them from scratch into a larger filter. However, this entails a full pass over the data and

is therefore expensive. A cheaper alternative is to sacrifice a bit from each remainder to become a

part of the slot address and remap all entries into a 2x larger filter. The issue with this approach is

that the remainders shrink across expansions, thus causing the false positive rate to linearly increase.

InfiniFilter. To address these issues, InfiniFilter [16] maintains fingerprints of variable length in

the filter. When a filter expands, existing fingerprints are shortened in the expanded filter. However,

fingerprints from new keys inserted after expanding have the full length remainder. The Memento

filter utilizes the InfiniFilter technique to support expandability.

Eventually, the oldest entries in the filter run out of bits, thus begging the question how to continue

expanding when some entries have no more bits to allow remapping an entry to a larger filter. This

problem can be addressed by storing such entries within auxiliary structures at the expense of query

cost [16] (InfiniFilter), to duplicate themwithin the filter at the expense of space and complicating

deletions [17] (Aleph filter), or by reconstructing the filter from scratch by rehashing the original

keys [22] (Memento filter). We now show that Aeris filter offers a fourth way out by virtue of having

a reverse map.

Expansions in the Aeris filter. The Aeris filter expands using the InfiniFilter technique. As in the
InfiniFilter, each keepsake fingerprint maintains a unary age counter of the form 00..1 to determine

howmany expansions ago the fingerprint was inserted. For example, a unary counter of 001 indicates

that the fingerprint was inserted 2 expansion cycles ago. New fingerprints into the filter are always

inserted with an age counter of 1, indicating the fingerprint was inserted after the most recent

expansion. Keepsake boxes are transferred to the expanded filter by transferring one bit from the

remainder to the canonical slot and incrementing the unary counter. Figure 6 illustrates how the

Aeris filter implements the InfiniFilter expansion technique.

The Aeris filter overcomes the drawback of Memento Filter needing a full scan of the dataset

despite only a fraction of the fingerprints running out of remainder bits. It does so by utilizing the

reverse map to selectively rejuvenate only those fingerprints that have run out of bits. When the

Aeris filter expands, it iterates over the filter to find all fingerprints that were inserted 𝑟 expansion

cycles ago by inspecting the unary counter of the fingerprint. For each of these fingerprints, the

Aeris filter queries the reverse map to retrieve the keys mapping to this fingerprint. The keepsake

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:14 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

Before & after expansion

𝑙−𝑟 𝑟

Home Slot: 𝑞 00..1

Age counter

𝑅= 𝒓0𝑟1𝑟2 ... 𝑒0𝑒1 ...𝑚1𝑚2...

Home Slot: 𝑞𝒓0

𝑙−𝑟+1

000..1

𝑟−1
𝑅=𝑟1𝑟2... 𝑒0𝑒1 ...𝑚1𝑚2...

Inserts 1 𝑙−1

Home Slot: 𝑞 1 𝑅=𝑟0𝑟1𝑟2... 𝑒0𝑒1 ...𝑚1𝑚2...

Fig. 6. The Aeris filter expands using variable-length fingerprints that encode how many expansion cycles
ago a partition run was inserted. Partition runs are transferred to the expanded filter by moving one bit from
the remainder to the quotient and incrementing the unary counter by appending a 0 bit to the start. Insertions
always insert a full length fingerprint with an age counter of 1.

boxes for these fingerprints are not transferred to the new filter. Instead, new keepsake boxes with

rejuvenated fingerprints are created and inserted into the new filter.

The Aeris filter deamortizes the I/O cost across expansions and avoids read amplification. Instead

of incurring significant I/O every 𝑟 expansions to perform a full scan of the dataset, the Aeris filter

utilizes the reverse map to spread the I/O cost into smaller parts across 𝑟 expansions, eliminating

periodic long stalls in Memento filter’s expansions.

Queries and adaptations. In the expandable Aeris filter, a partition canmatch keepsake boxes from

different expansion cycles. More specifically, a partition can match at most one keepsake box from

each expansion cycle. Queries in the expandable Aeris filter therefore check for matching keepsake

boxes from each expansion cycle within the relevant partitions.

To adapt to a false positive query, all keepsake boxes that match the query’s target partition are

merged and adapted into a new partition run with age counter set to 1. This approach opportunisti-

cally rejuvenates fingerprints and maximizes the utility of the I/O performed in querying the reverse

map to adapt.

4 Theoretical analysis

In this section, we analyze the false positive rate and space usage of the Aeris filter. We show that

the Aeris filter is strongly and monotonically adaptive, while requiring only one extra bit compared

to the Memento filter, which was already near space-optimal.

Static false positive rate. For a fingerprint of size 𝑓 , the Aeris filter and the Memento filter have

the same static false positive rate, i.e., the probability that the filter returns a positive result for an
empty query. This holds because given the same hash function, both filters store the same set of

fingerprints, and adaptations only decrease the overall false positive rate.

Aquery [𝑎,𝑏] lyingentirely inpartition𝑝 is a falsepositive if there exists anotherpartition𝑝′ having
the same fingerprint, and 𝑝′ also has keys with at least onememento in the query range [𝑚(𝑎),𝑚(𝑏)].
Since these two events — partition hash collision and partition memento overlap — occur indepen-

dently, the probability of a false positive follows from the product of their independent probabilities.

Given that the partitions are mapped to 𝑙-bits fingerprints, the probability of two partitions colliding

is 2
−𝑙
. Given 𝑛 items and an average of 𝜇 items per partition, the overall probability can be bounded

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:15

by (𝑛/𝜇) (2−𝑙) ≤𝑛 ·2−𝑙 . Since partitionmementos overlapping is dependent on the dataset, the overall

false positive rate of this query is bounded by 𝑛 ·2−𝑙 . By setting the partition size (𝑃) to be equal to
2
⌈𝑙𝑜𝑔2 (𝑅) ⌉

, any query𝑄 not contained in a single partition can be subdivided into atmost 2 sub-queries

that do lie within a partition, bounding the overall maximum false positive rate as 𝜖 =𝑛 ·21−𝑙 .
Strong adaptivity. The Aeris filter improves the Memento filter by also guaranteeing strong adap-
tivity [3]: the probability of an empty query being a false positive is 𝜖 , including adversarial ones

that has access to results of prior queries. We show that the false positive probability of for an empty

query [𝑎,𝑏] in partition 𝑝 is 𝜖 . Since the Aeris filter store mementos exactly, the false positive rate

can be bounded by the probability of partition hash collisions. If query [𝑎,𝑏] is a false positive, then it
must be due to a partition 𝑝′ that never collided with 𝑝 in previous queries. This is because if 𝑝′ had
collided with 𝑝 before, then the filter would have adapted and resolved this collision. The probability

that a user (including adversarial users) chose a partition 𝑝′ that collides with a partition 𝑝 containing
items in the dataset is𝑛 ·2−𝑙 . Given that any general query𝑄 can be divided into atmost 2 sub-queries,

the overall sustained false positive rate is bounded by 𝜖 ≤𝑛 ·21−𝑙 .
Space usage. The Aeris filter allocates 𝑁 =2𝑞 slots to store 𝑛 items with load factor 𝛼 =𝑛/𝑁 . Each

slot size is 𝑟 +𝑚 bits, where 𝑟 is the size of remainder of the fingerprint and𝑚 = log
2
𝑃 is the space

required to store a memento. To guarantee a false positive rate of 𝜖 ≤𝑛 ·21−𝑓 , the Aeris filter needs
to use fingerprints of size of at least 𝑙 = log

2
(𝑛/𝜖)+1 bits. The first 𝑞 bits of the fingerprint are stored

implicitly as the home slot index in the Aeris filter, thus needing 𝑟 to be at least log
2
(𝛼/𝜖) +1 bits.

Thus, each slot in the Aeris filter occupies 𝑟 +𝑚 = log
2
(𝑅𝛼/𝜖) +1 bits. Each slot also an overhead

of 3.125 bits for the metadata bits. Putting everything together, for a false positive rate of 𝜖 and

maximum query length 𝑅, the Aeris filter requires 𝛼𝑛
(
log

2

𝑅𝛼
𝜖
+4.125

)
bits.

Without any adaptions, at least 1−𝛼 fraction of the 𝑁 slots will be free after 𝑛 insertions. During

adaptions, we re-purpose the empty slots to store extension bits to resolve collisions. This approach

is similar to the variable-length counter encoding technique in the counting quotient filter [41]. In

expectation, only 2 bits are required to resolve collisions [3] to support strong adaptivity. However,

the Aeris filter over-adapts by growing the extension first by𝑚 = log
2
𝑅 bits and subsequently in

increments of 𝑟+𝑚 bits.

Monotonic adaptivity.Herewe consider anAeris filter instance that has expanded 𝑟 times. Observe

that, by rejuvenating its fingerprints, at most a fraction of 2
−1

of the Aeris filter’s non-empty slots

have remainders of length 𝑟 , at most a fraction of 2
−2

of the non-empty slots have remainders of

length (𝑟−1), and so on. Note that the oldest remainders are of length 0, and constitute a fraction

of 2
−𝑟

of all non-empty slots. As such, the probability that a negative query matches one of these

remainders is at most 𝛼 ·2−𝑟 +∑𝑟
𝑖=1𝛼 ·2−𝑟+𝑖−1 ·2−𝑖 =𝛼 · (𝑟+2) ·2−𝑟−1. Here, 𝛼 is Aeris filter’s load factor,

i.e., the fraction of non-empty slots. Since range queries check at most two keepsake boxes, their

false positive rate can be bounded by 2·𝛼 · (𝑟+2) ·2−𝑟−1.
The above expression implies that using 𝑟 = log

2

1

𝜖
bit remainders similarly to a standard QF yields

an FPR of (log
2

1

𝜖
+2) ·𝜖 . This resulting FPR is higher than the desired FPR of𝜖 by a factor of (log

2

1

𝜖
+2).

To counteract this extra multiplicative factor and achieve monotonic adaptivity, we slightly enlarge

the remainders by an additional log
2
log

2

1

𝜖
+1 bits, resulting in 𝑟 = log

2

1

𝜖
+log

2
log

2

1

𝜖
+1 bit remainders.

The added log
2
log

2

1

𝜖
bits shrinks the exponential term at the end of the FPR expression and turns

the extra multiplicative factor into a constant. The final additional bit ensures that this constant is

smaller than 1, resulting in a total FPR of

log
2

1

𝜖
+log

2
log

2

1

𝜖
+3

2log
2

1

𝜖

·𝜖 which is always at most 𝜖 for reasonably

small 𝜖 , i.e., 𝜖 ≤ 2%.

The Aeris filter guarantees both strong and monotonic adaptivity. Strong adaptivity is

inherently guaranteed by extending fingerprints to completely eliminate collisions that lead to false

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:16 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

positives similar to theAdaptiveQF.Monotonic adaptivity is achieved through infinite expansionand

rejuvenation of old fingerprints, ensuring that a false positive never repeats again. As demonstrated

in the previous paragraph, these expansions maintain the maximum false positive rate by utilizing

an asymptotically small number of additional fingerprints bits.

Supporting variable-length queries and keys. As Aeris filter is spatially robust and meets

Goswami’s lower bound [26], it uses at least log(𝑅/𝜖) bits per entry to handle range queries of size
up to𝑅 while guaranteeing an FPR of 𝜖 . The implication is that the FPR guarantee does not hold with

a larger than expected range size. For Aeris andMemento filter, for instance, the the FPR deteriorates

linearly with respect to a range query length larger than the preconfigured value of 𝑅. In addition,

the lower bound implies that a spatially robust range filter cannot support variable-length keys, as

this would imply an infinite number of keys within any possible query range. By plugging infinity

for 𝑅 in the lower bound expression, we find that supporting var-length keys and/or queries would

require infinite memory. For these reasons, spatially robust range filters [14, 22, 34] cannot support

variable-length queries and variable-length keys with a bounded false positive rate.

The recent Diva range filter [21] overcomes these limitations by offering a relaxed semi-robust
FPR guarantee that holds for smooth data distributions (e.g., Normal, Zipfian, Uniform, etc.). It

approximates the data distribution through sampling and stores infixes of keys in-between two

samples within an order preserving quotient filter. We observe that the techniques proposed in this

paper, to elongate fingerprints of colliding keys on the query path, are applicable to Diva as well

by elongating its infixes in response to false positives. In fact, since Diva is order-preserving, it can

allow to identify colliding keys without the use of a reverse map and thereby thus simplifying the

system and reduce I/O overheads. It would make for intriguing and impactful future work to make

Diva adaptive and thus temporally robust as well.

5 Evaluation

In this section, we evaluate the accuracy and performance of the Aeris filter and compare it with

state-of-the-art range filters, all of which are non-adaptive. We perform full system benchmarks

by integrating the filters withWiredTiger [37], a production key-value store (Section 5.1). We also

compare the performance of filters on microbenchmarks in a standalone setting (Section 5.2).

We compare the Aeris filter against four range filters: SuRF [51], SNARF [47], Grafite [14], and

Memento filter [22]. The Succinct Range Filter (SuRF) is a trie-based range filter that stores

the shortest unique prefix and suffix bits for each key in a succinct trie. The Sparse Numerical
Array-Based Range Filter (SNARF) is a learning-based filter that learns a linear spline model of

the key distribution, which is then used to map the keys to a bitmap.Grafite is a bitmap-based filter

that provides robust guarantees against spatial skew. It uses a locality-preserving hash function to

map each key to a bit in a bitmap. The resulting bitmap is then compressed using using Elias-Fano

coding [20]. Finally, the Memento filter is a fingerprint-based range filter that also has robust

guarantees against spatial skew. We use the open-source C/C++ implementations of the above filters.

All the filters are compiled with gcc-9.4.
For inserts, we only compare against the Memento filter and SNARF, as these are the sole

baselines supporting inserts. For expansions, we only compare against theMemento filter as it is
the only other expandable range filter apart from the Aeris filter.

Our code and experimental setup is available as an open source repository.
3

System specification.All experiments were run on a server with a 64-core 2-way hyperthreaded

Intel Xeon Gold 6338 CPU@ 2.00GHz with 1008 GB of memory and a 96 MiB L3 cache. The machine

has a 4TB KIOXI KXG80ZN84T09 NVME drive and runs Linux kernel version 5.4.0-155.

3
https://github.com/saltsystemslab/AerisFilter

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:17

1 5 10

0

0.5

1

1.5

C
a
c
h
e
S
i
z
e
:
1
%

T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
e
c
)

Point Queries

1 5 10

0

0.5

1

1.5

Short Range Queries

Aeris filter Memento filter Grafite SuRF SNARF

1 5 10

0

0.5

1

1.5

Long Range Queries

1 5 10

0

0.5

1

1.5

C
a
c
h
e
S
i
z
e
:
5
%

T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
e
c
)

1 5 10

0

0.5

1

1.5

1 5 10

0

0.5

1

1.5

1 5 10

0

0.5

1

1.5

Adversarial Rate (%)

C
a
c
h
e
S
i
z
e
:
1
0
%

T
h
r
o
u
g
h
p
u
t

(
M
O
p
s
/
s
e
c
)

1 5 10

0

0.5

1

1.5

Adversarial Rate (%)

1 5 10

0

0.5

1

1.5

Adversarial Rate (%)

Fig. 7. Throughput on adversarial-queryworkload. All the filters are configuredwith a false positive rate of 2−9.

5.1 Application benchmarks

Inourapplicationbenchmarks,weevaluate the impactof thefiltersontheperformanceofWiredTiger [37],

a B-Tree-based key-value store. The range filters, being small in size, are kept in memory and help

avoid unnecessary disk accesses. Similar to the benchmarks fromWen et al. [48], we evaluate the

effectiveness of the filters against adversarial workloads. To evaluate the effectiveness of the deamor-

tized I/O approach for expandability, we compare the Aeris filter with the Memento filter. Finally,

we study the overhead on inserts incurred due to supporting adaptivity.

Setup.Our system consists of aWiredTiger instance on disk and an in-memory range filter. Range

queries first consult the filter and then proceed to the on-diskWiredTiger instance if the filter returns

a positive result. The Aeris filter employs SplinterDB [12], a disk-resident and write-optimized key

value store, with a 64 MB cache as its reverse map. To offset the additional memory used by the

reverse map cache, we reduce the memory allocated to theWiredTiger cache in the Aeris filter setup

by the same amount.

Adversarial workloads.Wemeasure the impact of an adversarial query workload on the database.

This workload simulates an attacker aiming to degrade database performance by repeatedly issuing

false positive queries that will induce redundant false disk accesses. The attacker collects false

positives by randomly issuing queries and then measuring the difference in response latencies to

determinewhich ones accessed the disk. A slow response to a negative query indicates that the query

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:18 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

was a false positive. The attacker then attempts to degrade the system performance by repeating

the collected false positive queries to force the database to access the disk. To prevent false positive

from being served from the cache, the attacker continues issuing random queries while periodically

injecting false positives.

We setup the test by loading the system (database and filter) with 100 million 64-bit keys drawn

uniformly at random. For each key, we also generate a random 504 byte value, resulting in the

database storing 512-byte key-value pairs. The database is stored on disk, while the filter is kept in

memory. For the query workload, we generate 200 million queries of the form [𝑥,𝑥+𝑅−1] for the
query workload, where 𝑥 is chosen uniformly at random and 𝑅 is the length of the range query.

We run the test across different cache sizes. The cache size is measured as the ratio of the available

memory to the dataset size, andwe test for cache sizes of 1%, 5% and 10%. For theAeris filter, the cache

size includes the cache allocated to the database (WiredTiger) and the reverse map (SplinterDB),

while for the other filters, the space is entirely allocated to WiredTiger’s cache. We run our tests

on three separate query lengths: point queries(𝑅 = 1), short range queries (𝑅 = 32) and long range

queries (𝑅 =1024). We also vary the rate at which adversarial queries are injected from 1% to 10%.

We configure all the range filters to have the same false positive rate of 𝜖 =2−9 (roughly 0.1%).
The workload proceeds in two phases: a warm-up phase and an adversarial phase. In the warm-

up phase, we perform the first half (100 million queries) of the query workload and record all the

false positive results. In the adversarial phase, we perform the second half of the query workload

while periodically replacing queries with the previously recorded false positives, according to the

adversarial frequency.

Figure 7 shows the overall application throughput for varying range query lengths, cache sizes, and

adversarial query rates. As shown, an adversarial query rate of 1% is enough to cause performance

degradation in databases using a non-adaptive range filter. On the other hand, the Aeris filter adapts

to false positive queries in the warm-up phase, allowing the Aeris filter-based database to maintain

high performance regardless of the percentage of adversarial queries in the workload.

With a cache size of 1%, an adversarial rate of 1% results in a 1.5× loss in performance for the

non-adaptive filters. Increasing the adversarial rate results in further loss of performance — 4× at

5% and 8× at 10% adversarial frequency. Although increasing the cache size mitigates performance

degradation in the database using a non-adaptive filter, a larger adversarial-query rate still over-

whelms the system. In contrast, using the Aeris filter helps maintains a stable throughput that is

1.5−8× higher, even with the smaller cache.

Table 2 reports the overall I/O (measured from /proc/self/io), for the adversarial test (5% cache

size, 10% adversarial rate, 𝑅=32). The Aeris filter transfers almost 8−14× fewer bytes compared to

the other non-adaptive range filters, including the cost of accessing the reverse map to adapt to false

positives.

Table 2 also reports the memory and disk usage of the filters. The reverse map of the Aeris filter

occupies 5.1 GB on disk, a 10% overhead on theWiredTiger database consisting of 100 million pairs

of 8-byte keys and 504-byte values occupying 50 GB of disk space. The Aeris filter uses slightly more

main memory space compared to robust range filters: 6% over the Memento filter and 14% over the

Grafite filter. The load factor of the Aeris filter increases from 90.0% to 90.2% over the course of the

adversarial workload. The 0.2% increase in the load factor is from the slots used to store adaptivity

bits. The Aeris filter adapts 390K false positives (200 million queries at a FPR of 𝜖 =2−9). Since the
Aeris filter was initialized with 110 million slots (100 million items at 90% load factor), this is roughly

0.2% of the overall slots in the Aeris filter.

Expansions.We evaluate the time taken to expand the filter and the resulting false positive rate for

the Aeris filter and theMemento filter across several expansion cycles. Asmore keys are inserted into

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:19

Aeris filter Aeris filter (Full) Memento

1 2 3 4 5 6 7 8 overall

10
8

10
10

Expansion cycle

D
u
r
a
t
i
o
n
(
n
s
)

(a) Time to expand for filters. (Log scale, lower is
better)

1 2 3 4 5 6 7 8

0

0.1

0.2

Expansion cycle

F
a
l
s
e
p
o
s
i
t
i
v
e
r
a
t
e

(b) False positive rate across expansions. (Lower
is better). The theoretical maximum false positive
rate is plotted as a dashed line.

Fig. 8. Filter expansion duration and false positive rate.

a filter with fixed initial capacity, it eventually runs out of space and must expand. These expansions

are required to maintain a bounded false positive rate as the dataset grows.

For this workload, we initialize the filters with an initial capacity of
100

2
8
million slots, and insert a

total of 100million keys. Each expansion doubles the filter capacity, resulting in a total of 8 expansions.

We configure the filters to have a maximum false positive rate of 𝜖 = 2
−3
. To guarantee this false

positive rate, the Memento filter uses fingerprint remainders of size log
2
(1
𝜖
)+1=4 bits, while Aeris

filter uses log
2
(1
𝜖
) +1+ log

2
log

2
(1
𝜖
) = 5 bits. The extra one bit in the remainder enables Aeris filter

to guarantee strong adaptivity across expansions as explained in Section 3.3.

We compare the Aeris filter against the Memento filter as a baseline. The Memento filter uses

InfiniFilter [16], a state-of-the-art filter expansion technique that uses variable-length fingerprints

to achieve a good balance between expansion speed and false positive rate. In this method, the

fingerprints from older expansions will eventually run out of bits, at which point the Memento filter

will rebuild the filter by retrieving all the keys from the database.

To measure the impact of the deamortized expansion technique in the Aeris filter, we evaluate

the Aeris filter in two variants. The first variant we refer to as Aeris filter (Full) expands the filter

by rejuvenating all fingerprints using the reverse map. This variant is a baseline to demonstrate how

the reverse map can also be employed to speed up the naïve expansion technique. It offers a lower

false positive rate at the cost of slightly increased expansion time compared to the Memento filter.

The other variant, which we refer to simply as the Aeris filter, deamortizes the I/O cost of expanding

by rejuvenating only those fingerprints (approximately 2
−𝑟

fraction of keys, where 𝑟 is remainder

size) that have run out of bits as described in Section 3.3. The Aeris filter variants use the reverse map

to rejuvenate the fingerprints, while the Memento filter usesWiredTiger to rejuvenate fingerprints.

Figure 8a plots the expansion time for the filters. For the first three expansion cycles, the Aeris

filter andMemento filter take similar time to expand. Both these filters expand completely inmemory

using the InfiniFilter’s [16] technique. None of the fingerprints in the filters have run out of bits. As

a result, no I/O is needed to expand the filter. In contrast, the Aeris filter (Full) reads all the keys from

the reverse map, resulting in a longer time to expand.

From cycle 4 onward, the Aeris filter uses the reverse map to selectively rejuvenate only those

fingerprints (approximately 2
−𝑟

fraction of the fingerprints) that have run out of bits. In comparison,

the Memento filter rejuvenates all fingerprints by performing a full database scan periodically (cycle

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:20 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

I/O Space Usage

Filter Read (MB) Write (MB) Memory (MB) Disk (GB)

Aeris filter 15989.49 1058.33 227.06 5.1

Memento filter 129490.26 0 213.80 0

Grafite 129834.26 0 198.18 0

SuRF 118160.27 0 135.53 0

SNARF 238315.10 0 174.03 0

Table 2. Total I/O and space used by the filters in the adversarial test (5% cache size, 10% adversarial frequency,
short range length queries (𝑅=32)).

4 and 7 in Figure 8a) to retrieve all keys. A drawback of this approach is that it also requires reading

the values associated with the keys, which amplifies the I/O cost to read keys. The Aeris filter (Full)

rejuvenates all fingerprints using the reverse map, but avoids the read-amplifiaction problem faced

by the Memento filter.

The Aeris filter completes all expansions in 3× less time compared to theMemento filter. Addition-

ally, the Aeris filter deamortizes the I/O cost across expansions while the Memento filter periodically

pays the full I/O cost of reading all keys every few expansion cycles. It is also worth pointing out

that while the Aeris filter (Full) reads all keys from the reverse map on every expansion, it is is still

only overall 1.47× slower compared to the Memento filter. The key difference is that the Aeris filter

reads keys from the reverse map to rejuvenate fingerprints resulting in lower read-amplification

while the Memento filter uses the underlying database.

Figure 8b plots the instantaneous false positive rate for the filters. The false positive rate is mea-

sured using queries drawn from a uniform distribution. The horizontal line in the plots the theoretical

maximum false positive rate (𝜖 =2−3 in our experiment) guaranteed by the filters. The Aeris filter

(Full) is able to achieve a (2−4×) lower and stable false positive rate with the trade-off of requiring

more time for expansions. The Aeris filter, which is the deamortized I/O variant, has a lower false

positive rate and lower expansion time compared to the Memento filter. While the Aeris filter has

a higher false positive rate compared to the Aeris filter (Full) variant, it offers a balanced trade-off

between false positive rate and expansion time. Note that, the Aeris filter still guarantees strong

adaptivity with the overall false positive rate bounded by 𝜖 =2−3 across expansions.

Insertion.Wemeasure the overhead on inserts of using a reverse map for adaptivity by measuring

the throughput of insertions from a uniform random dataset. On a single thread, we measure a

throughput of 3483.85 ops/sec for the Memento filter and 3456.85 ops/sec for the Aeris filter. In

addition to inserting keys in the in-memory filter and the database, the Aeris filter also updates the

reversemap.However, theAeris filter employs the SplinterDBas the reversewhich iswrite-optimized

and results in negligible overhead (1% drop) in the insertion throughput compared to the database

employing a non-adaptive filter.

5.2 Microbenchmarks

We now evaluate the Aeris filter against other range filters as a standalone in-memory data structure

to determine the CPU overheads of supporting adaptivity.

Query workloads.We generate workloads consisting of 200 million empty queries of the form

[𝑥,𝑥+𝑅−1] using the following methods:

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:21

8 12 16 20

10
−1

10
−3

10
−5

10
−7

10
−9

F
a
l
s
e
p
o
s
i
t
i
v
e
r
a
t
e

(
L
o
w
e
r
i
s
b
e
t
t
e
r
)

Point Queries

8 12 16 20

10
−1

10
−3

10
−5

10
−7

10
−9

Short Range Queries

Aeris filter Memento filter Grafite SuRF SNARF

8 12 16 20

10
−1

10
−3

10
−5

10
−7

10
−9

Long Range Queries

Workload: CorrelatedQueries

(a) False positive rate for a Zipfian distributionwith queries drawn from a correlatedworkload (query endpoints
are close topoints in thedataset). TheAeris filter has the lowest false positive rate as it is able to adapt to repeated
false positives. SuRF and SNARF have a high false positive rate (close to 1) as they are not robust to spatial skew.

8 12 16 20

10
−1

10
−3

10
−5

10
−7

10
−9

F
a
l
s
e
p
o
s
i
t
i
v
e
r
a
t
e

(
L
o
w
e
r
i
s
b
e
t
t
e
r
)

Point Queries

8 12 16 20

10
−1

10
−3

10
−5

10
−7

10
−9

Short Range Queries

8 12 16 20

10
−1

10
−3

10
−5

10
−7

10
−9

Long Range Queries

Workload: Uncorrelatedqeries

(b) False positive rate for a Zipfian distribution with queries drawn from a uncorrelated workload (query
endpoints are uniform randomly chosen; no spatial skew). The Aeris filter has a the lowest false positive rate
among filters that guarantee a robust false positive rate against spatial skew.

Fig. 9. False positive rate versus space usage of filters on Zipfian query workloads. (Log scale, lower is better)

8 12 16 20
10

6

10
7

10
8

Q
u
e
r
y
(
o
p
s
/
s
e
c
)

(
H
i
g
h
e
r
i
s
b
e
t
t
e
r
)

Point

8 12 16 20
10

6

10
7

10
8

Short range

Aeris filter Memento filter Grafite SuRF SNARF

8 12 16 20
10

6

10
7

10
8

Long range

Fig. 10. Microbenchmark for query throughput on the filters on Zipfian distribution query workload (Log
scale, higher is better).

• Correlated:We first choose 𝑥 ′ by sampling with replacement from a Zipfian distribution using

𝛼 =1.5 , and then choosing 𝑥 by uniform randomly sampling from [𝑥 ′, 𝑥 ′+230(1−𝐷)], where,𝐷 =0.8

is the correlation degree.

• Uncorrelated:𝑥 is chosen by samplingwith replacement from aZipfian distribution using𝛼 =1.5.

All benchmarks are repeated with three types of queries: point queries (𝑅=1), short-range queries

(𝑅=32) and long-range queries (𝑅=1024). The Memento filter and Aeris filter use a memento size of

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:22 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

Aeris filter Memento filter Grafite SuRF SNARF

10
5

10
6

10
7

10
8

0

10

20

30

of Keys

T
h
r
o
u
g
h
p
u
t

(
M

k
e
y
s
/
s
e
c
)

Bulk load

10
5

10
6

10
7

10
8

0

10

20

30

of Keys

Insert

Fig. 11. Bulk load and insert microbenchmark performance. (Higher is better)

2 bits for point queries, short-range queries use a memento size of 5 bits and long-range queries use

a memento size of 10 bits. All the workloads are run on a dataset of 100 million 64-bit keys chosen

uniformly at random. The filters are constructed with a load factor of 90%.

False positive rate vs. memory for skewedworkloads. In this benchmark, we evaluate the false

positive rate and space usage trade-off for the filters. The false positive rate of the filters is evaluated

by varying the memory budget per key from 8 to 20 bits/key.

Figure 9a plots the false positive rate and space usage trade-off for the filters on a Zipfianworkload

consisting of correlated queries (queries with spatial skew). Among the filters evaluated, the Aeris

filter, Memento filter and Grafite provide robust false positive guarantees while SuRF and SNARF

have no such guarantees. SuRF and SNARF have a false positive rate close to 1 on this workload for

range queries. In most practical filter configurations, where 8-16 bits are allocated per key, the Aeris

filter has an order of magnitude lower false positive rate for similar space usage compared to the

non-adaptive filters. This is due to the Aeris filter’s ability to adapt to repeated false positives in a

workload with a skewed distribution such as a Zipfian distribution.

Figure 9b plots the same false positive rate and space usage trade-off on a Zipfian workload con-

sisting of uncorrelated queries (no spatial skew). SuRF and SNARF have a lower false positive rate

in the absence of spatial skew, which is consistent with prior evaluation [14, 22]. Among the filters

that provide robust guarantees the Aeris filter has the lowest false positive rate that is an order of

magnitude lower than Grafite and Memento filter. Thus, the Aeris filter is the only range filter
that is robust against both spatial skew and temporal skew.
Query performance.We also measure the query throughput of the filters and show the results

in Figure 10. We only plot the throughput for the correlated workload as they are similar to the

results from the uncorrelated workload. The Aeris filter matches the best performing range filters

on queries such as the Memento filter and Grafite, showing that the Aeris filter supports adaptivity

without any loss in filter query performance. SNARF and SuRF have lower query performance

throughput compared to the other filters.

Bulk construction and insert performance. Figure 11 shows the average bulk-load construction
and insertion throughput of the filters. The throughput is measured as the median of multiple runs

made with different memory budgets and datasets. The bulk-load construction throughput measures

the rate atwhich thefilter canbe constructedwhenall keys areknown inadvanceand sorted. Insertion

throughput measures the rate at which keys can be inserted into the filter when they arrive dynami-

cally and are not known in advance. Among the filters being evaluated, theAeris filter,Memento filter

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:23

and SNARF are dynamic filters, while Grafite and SuRF are static filters. The Aeris filter matches the

performance of the state of the art range filters on both bulk-load and dynamic insertion performance.

6 Conclusion

The Aeris filter introduces a novel approach to adaptive range filtering, addressing key limitations

of existing methods by ensuring strong and monotonic adaptivity while maintaining high perfor-

mance. By leveraging variable-length fingerprints and integrating a reverse map, the Aeris filter

significantly reduces false positives, improves query efficiency, and optimizes filter expansions. Our

evaluation demonstrates that Aeris filter achieves up to a 10× reduction in false positive rates on

skewed workloads while maintaining minimal memory overhead. Moreover, its integration with a

production database results in 1.5×–8× higher throughput under adversarial conditions, highlighting

its robustness in real-world applications.

A key insight from our work is that most traditional range filters struggle with adaptability due to

their static structures and fixed-length fingerprints. The Aeris filter overcomes this by dynamically

extending fingerprints only when needed while ensuring correctness. Additionally, our novel expan-

sion strategy deamortizes I/O costs using the reverse map, reducing the overhead of filter growth by

up to 3×. These contributions position the Aeris filter as an efficient and scalable solution for modern

databases, search engines, and large-scale analytics systems that require adaptive range filtering.

With its strong and robust theoretical guarantees and practical efficiency, we expect Aeris fil-

ter to become the go-to filter data structure in modern databases. As we show in our evaluation,

databases can offer robust performance guarantees even against skewed and adversarial workloads

by employing the Aeris filter.

7 Acknowledgments

This research was funded in part by NSF grant OAC 2517201, 2513656 and NSERC grant RGPIN-2023-

03580.

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

7:24 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

References

[1] Mangadevi Atti and Manas Kumar Yogi. 2024. Review of Variants of Bloom Filters for Detection of Malicious URL.

Journal of Intelligent Decision Technologies and Applications 1, 1 (2024), 6–12.
[2] Michael A. Bender, Rathish Das, Martin Farach-Colton, Tianchi Mo, David Tench, and Yung PingWang. 2021. Mitigating

False Positives in Filters: to Adapt or to Cache?. In 2nd Symposium on Algorithmic Principles of Computer Systems, APOCS
2020, Virtual Conference, January 13, 2021, Michael Schapira (Ed.). SIAM, 16–24. doi:10.1137/1.9781611976489.2

[3] Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson, Samuel McCauley, and Shikha Singh.

2018. Bloom Filters, Adaptivity, and the Dictionary Problem. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, Mikkel Thorup (Ed.). IEEE Computer Society, 182–193.

doi:10.1109/FOCS.2018.00026

[4] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo

Montes, Pradeep Shetty, Richard P. Spillane, and Erez Zadok. 2012. Don’t Thrash: How to Cache Your Hash on Flash.

Proc. VLDB Endow. 5, 11 (2012), 1627–1637. doi:10.14778/2350229.2350275
[5] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun. ACM 13, 7 (1970),

422–426. doi:10.1145/362686.362692

[6] Gedare Bloom, Gianluca Cena, Ivan Cibrario Bertolotti, Tingting Hu, and Adriano Valenzano. 2017. Optimized event

notification in CAN through in-frame replies and Bloom filters. In 2017 IEEE 13th International Workshop on Factory
Communication Systems (WFCS). IEEE, 1–10.

[7] Gerth Stolting Brodal and Rolf Fagerberg. 2003. Lower bounds for external memory dictionaries. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (Baltimore, Maryland) (SODA ’03). Society for
Industrial and Applied Mathematics, USA, 546–554.

[8] AlexCarluccio. 2023. Anonymous People FlowMonitoring SystemLeveraging Bloom Filters. Ph. D. Dissertation. Politecnico
di Torino.

[9] Guanduo Chen, Zhenying He, Meng Li, and Siqiang Luo. 2024. Oasis: An Optimal Disjoint Segmented Learned Range

Filter. Proc. VLDB Endow. 17, 8 (may 2024), 1911–1924. doi:10.14778/3659437.3659447

[10] Rayan Chikhi, Jan Holub, and Paul Medvedev. 2021. Data Structures to Represent a Set of k-long DNA Sequences. ACM
Comput. Surv. 54, 1, Article 17 (March 2021), 22 pages. doi:10.1145/3445967

[11] Alex Conway, Martín Farach-Colton, and Rob Johnson. 2023. SplinterDB and Maplets: Improving the Tradeoffs in

Key-Value Store Compaction Policy. Proceedings of the ACM onManagement of Data 1, 1 (2023), 1–27.
[12] Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton, Richard P. Spillane, Amy Tai, and Rob

Johnson. 2020. SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores. In Proceedings of the 2020 USENIX
Annual Technical Conference, USENIX ATC 2020, July 15-17, 2020, Ada Gavrilovska and Erez Zadok (Eds.). USENIX

Association, 49–63. https://www.usenix.org/conference/atc20/presentation/conway

[13] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)
(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154. doi:10.1145/1807128.1807152

[14] Marco Costa, Paolo Ferragina, and Giorgio Vinciguerra. 2024. Grafite: Taming Adversarial Queries with Optimal Range

Filters. Proc. ACMManag. Data 2, 1 (2024), 3:1–3:23. doi:10.1145/3639258
[15] TransactionProcessingPerformanceCouncil. 2011. TPCBenchmarks. http://www.tpc.org/information/benchmarks.asp.

[16] Niv Dayan, Ioana Bercea, Pedro Reviriego, and Rasmus Pagh. 2023. InfiniFilter: Expanding Filters to Infinity and Beyond.

Proc. ACMManag. Data 1, 2, Article 140 (jun 2023), 27 pages. doi:10.1145/3589285
[17] Niv Dayan, Ioana-Oriana Bercea, and Rasmus Pagh. 2024. Aleph Filter: To Infinity in Constant Time. Proc. VLDB Endow.

17, 11 (Aug. 2024), 3644–3656. doi:10.14778/3681954.3682027

[18] Peter C. Dillinger and Panagiotis (Pete) Manolios. 2009. Fast, All-Purpose State Storage. In Proceedings of the 16th
International SPINWorkshop on Model Checking Software (Grenoble, France). Springer-Verlag, Berlin, Heidelberg, 12–31.
doi:10.1007/978-3-642-02652-2_6

[19] Gil Einziger and Roy Friedman. 2016. Countingwith TinyTable: Every Bit Counts!. In Proceedings of the 17th International
Conference on Distributed Computing and Networking (Singapore, Singapore) (ICDCN ’16). Association for Computing

Machinery, New York, NY, USA, Article 27, 10 pages. doi:10.1145/2833312.2833449

[20] Peter Elias. 1974. Efficient Storage and Retrieval by Content and Address of Static Files. J. ACM 21, 2 (1974), 246–260.

doi:10.1145/321812.321820

[21] Navid Eslami, Ioana O. Bercea, and Niv Dayan. 2025. Diva: Dynamic Range Filter for Var-Length Keys and Queries.

Proc. VLDB Endow. 18, 11 (Sept. 2025), 3923–3936. doi:10.14778/3749646.3749664
[22] Navid Eslami and Niv Dayan. 2024. Memento Filter: A Fast, Dynamic, and Robust Range Filter. Proc. ACM Manag.

Data 2, 6 (2024), 244:1–244:27. doi:10.1145/3698820
[23] Bin Fan, David G. Andersen, Michael Kaminsky, and Michael Mitzenmacher. 2014. Cuckoo Filter: Practically Better

Than Bloom. In Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

https://doi.org/10.1137/1.9781611976489.2
https://doi.org/10.1109/FOCS.2018.00026
https://doi.org/10.14778/2350229.2350275
https://doi.org/10.1145/362686.362692
https://doi.org/10.14778/3659437.3659447
https://doi.org/10.1145/3445967
https://www.usenix.org/conference/atc20/presentation/conway
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3639258
http://www.tpc.org/information/benchmarks.asp
https://doi.org/10.1145/3589285
https://doi.org/10.14778/3681954.3682027
https://doi.org/10.1007/978-3-642-02652-2_6
https://doi.org/10.1145/2833312.2833449
https://doi.org/10.1145/321812.321820
https://doi.org/10.14778/3749646.3749664
https://doi.org/10.1145/3698820

Aeris Filter: A Strongly andMonotonically Adaptive Range Filter 7:25

Technologies, CoNEXT 2014, Sydney, Australia, December 2-5, 2014, Aruna Seneviratne, Christophe Diot, Jim Kurose,

Augustin Chaintreau, and Luigi Rizzo (Eds.). ACM, 75–88. doi:10.1145/2674005.2674994

[24] Zhuochen Fan, Bowen Ye, ZiweiWang, Zheng Zhong, Jiarui Guo, YuhanWu, Haoyu Li, Tong Yang, Yaofeng Tu, Zirui

Liu, and Bin Cui. 2024. Enabling space-time efficient range queries with REncoder. The VLDB Journal (07 Aug 2024).
doi:10.1007/s00778-024-00873-w

[25] Bob Goodwin, Michael Hopcroft, Dan Luu, Alex Clemmer, Mihaela Curmei, Sameh Elnikety, and Yuxiong He. 2017.

BitFunnel: Revisiting Signatures for Search. In Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR ’17). Association for Computing Machinery,

New York, NY, USA, 605–614. doi:10.1145/3077136.3080789

[26] Mayank Goswami, Allan Grønlund Jørgensen, Kasper Green Larsen, and Rasmus Pagh. 2015. Approximate Range

Emptiness in Constant Time and Optimal Space. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, Piotr Indyk (Ed.). SIAM, 769–775.

doi:10.1137/1.9781611973730.52

[27] T. Kahveci and A. Singh. 2001. Variable Length Queries for Time Series Data. In Proceedings 17th International Conference
on Data Engineering (2001-04). 273–282. doi:10.1109/ICDE.2001.914838

[28] Eric R. Knorr, Baptiste Lemaire, Andrew Lim, Siqiang Luo, Huanchen Zhang, Stratos Idreos, and Michael Mitzenmacher.

2022. Proteus: A Self-Designing Range Filter. In Proceedings of the 2022 International Conference on Management of
Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Machinery, New York, NY, USA, 1670–1684.

doi:10.1145/3514221.3526167

[29] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas. 2019. Coconut Palm: Static and Stream-

ing Data Series Exploration Now in Your Palm. In Proceedings of the 2019 International Conference onManagement of Data
(SIGMOD ’19). Association for Computing Machinery, New York, NY, USA, 1941–1944. doi:10.1145/3299869.3320233

[30] Tsvi Kopelowitz, Samuel McCauley, and Ely Porat. 2021. Support Optimality and Adaptive Cuckoo Filters. In

Algorithms and Data Structures - 17th International Symposium, WADS 2021, Virtual Event, August 9-11, 2021, Proceedings
(Lecture Notes in Computer Science, Vol. 12808), Anna Lubiw andMohammad R. Salavatipour (Eds.). Springer, 556–570.

doi:10.1007/978-3-030-83508-8_40

[31] Mandeep Kumar and Amritpal Singh. 2024. Anomalous vehicle recognition in smart cities using persistent bloom

filter: Memory efficient and intelligent monitoring. Transactions on Emerging Telecommunications Technologies 35,
1 (2024), e4896.

[32] Cockroach Labs. 2015. https://github.com/cockroachdb/cockroach

[33] David J. Lee, Samuel McCauley, Shikha Singh, andMax Stein. 2021. Telescoping Filter: A Practical Adaptive Filter. In

29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference)
(LIPIcs, Vol. 204), Petra Mutzel, Rasmus Pagh, and Grzegorz Herman (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 60:1–60:18. doi:10.4230/LIPICS.ESA.2021.60

[34] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin, and Stratos Idreos. 2020. Rosetta: A

Robust Space-Time Optimized Range Filter for Key-Value Stores. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New

York, NY, USA, 2071–2086. doi:10.1145/3318464.3389731

[35] Yuxin Meng and Lam-for Kwok. 2014. Adaptive blacklist-based packet filter with a statistic-based approach in network

intrusion detection. J. Netw. Comput. Appl. 39 (2014), 83–92. doi:10.1016/J.JNCA.2013.05.009
[36] Michael Mitzenmacher, Salvatore Pontarelli, and Pedro Reviriego. 2020. Adaptive Cuckoo Filters. ACM J. Exp.

Algorithmics 25, Article 1.1 (March 2020), 20 pages. doi:10.1145/3339504

[37] MongoDB. [n. d.]. WiredTiger. https://github.com/wiredtiger/wiredtiger.

[38] Bernhard Mößner, Christian Riegger, Arthur Bernhardt, and Ilia Petrov. 2023. bloomRF: On Performing Range-Queries

in Bloom-Filters with Piecewise-Monotone Hash Functions and Prefix Hashing. In Proceedings 26th International
Conference on Extending Database Technology, EDBT 2023, Ioannina, Greece, March 28-31, 2023, Julia Stoyanovich, Jens
Teubner, Nikos Mamoulis, Evaggelia Pitoura, Jan Mühlig, Katja Hose, Sourav S. Bhowmick, and Matteo Lissandrini

(Eds.). OpenProceedings.org, 131–143. doi:10.48786/EDBT.2023.11

[39] Pat O’Neil, Betty O’Neil, and Xuedong Chen. 2007. The Star Schema Benchmark. http://www.cs.umb.edu/~poneil/

StarSchemaB.PDF.

[40] Anna Pagh, Rasmus Pagh, and S Srinivasa Rao. 2005. An optimal Bloom filter replacement. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 823–829. doi:10.5555/1070432.1070548

[41] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. 2017. A General-Purpose Counting Filter: Making

Every Bit Count. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu

(Eds.). ACM, 775–787. doi:10.1145/3035918.3035963

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1007/s00778-024-00873-w
https://doi.org/10.1145/3077136.3080789
https://doi.org/10.1137/1.9781611973730.52
https://doi.org/10.1109/ICDE.2001.914838
https://doi.org/10.1145/3514221.3526167
https://doi.org/10.1145/3299869.3320233
https://doi.org/10.1007/978-3-030-83508-8_40
https://github.com/cockroachdb/cockroach
https://doi.org/10.4230/LIPICS.ESA.2021.60
https://doi.org/10.1145/3318464.3389731
https://doi.org/10.1016/J.JNCA.2013.05.009
https://doi.org/10.1145/3339504
https://github.com/wiredtiger/wiredtiger
https://doi.org/10.48786/EDBT.2023.11
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
https://doi.org/10.5555/1070432.1070548
https://doi.org/10.1145/3035918.3035963

7:26 Yuvaraj Chesetti, Navid Eslami, Huanchen Zhang, Niv Dayan, and Prashant Pandey

[42] Prashant Pandey, Shikha Singh, Michael A. Bender, JonathanW. Berry, Martin Farach-Colton, Rob Johnson, Thomas M.

Kroeger, and Cynthia A. Phillips. 2020. Timely Reporting of Heavy Hitters using External Memory. In Proceedings of the
2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA],
June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q.

Ngo (Eds.). ACM, 1431–1446. doi:10.1145/3318464.3380598

[43] Pedro Reviriego, Jim Apple, Álvaro Alonso, Otmar Ertl, and Niv Dayan. 2024. Cardinality Estimation Adaptive Cuckoo

Filters (CE-ACF): Approximate Membership Check and Distinct Query Count for High-Speed Network Monitoring.

IEEE/ACM Trans. Netw. 32, 2 (2024), 959–970. doi:10.1109/TNET.2023.3302306
[44] Pedro Reviriego, Miguel González, Niv Dayan, Gabriel Huecas, Shanshan Liu, and Fabrizio Lombardi. 2024. On the

Security of Quotient Filters: Attacks and Potential Countermeasures. IEEE Trans. Computers 73, 9 (2024), 2165–2177.
doi:10.1109/TC.2024.3371793

[45] RocksDB 2013. https://rocksdb.org/, Last Accessed Sept. 7, 2025.

[46] Russell Sears, Mark Callaghan, and Eric Brewer. 2008. Rose: compressed, log-structured replication. Proc. VLDB Endow.
1, 1 (Aug 2008), 526–537. doi:10.14778/1453856.1453914

[47] Kapil Vaidya, Subarna Chatterjee, Eric Knorr, Michael Mitzenmacher, Stratos Idreos, and Tim Kraska. 2022. SNARF:

A Learning-Enhanced Range Filter. Proc. VLDB Endow. 15, 8 (apr 2022), 1632–1644. doi:10.14778/3529337.3529347
[48] RichardWen, Hunter McCoy, David Tench, Guido Tagliavini, Michael A. Bender, Alex Conway, Martin Farach-Colton,

Rob Johnson, and Prashant Pandey. 2024. Adaptive Quotient Filters. Proc. ACM Manag. Data 2, 4, Article 192 (Sept.
2024), 28 pages. doi:10.1145/3677128

[49] Helen Xu, Amanda Li, Brian Wheatman, Manoj Marneni, and Prashant Pandey. 2023. BP-tree: Overcoming

the Point-Range Operation Tradeoff for In-Memory B-trees. Proc. VLDB Endow. 16, 11 (2023), 2976–2989.

doi:10.14778/3611479.3611502

[50] Eleni Tzirita Zacharatou, Darius Šidlauskas, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2019. Efficient

Bundled Spatial Range Queries. In Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems (SIGSPATIAL ’19). Association for Computing Machinery, New York, NY, USA, 139–148.

doi:10.1145/3347146.3359077

[51] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael Kaminsky, Kimberly Keeton, and Andrew

Pavlo. 2018. SuRF: Practical Range Query Filtering with Fast Succinct Tries. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam Das,

Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM, 323–336. doi:10.1145/3183713.3196931

Received July 2025; revised October 2025; accepted November 2025

Proc. ACMManag. Data, Vol. 4, No. 1 (SIGMOD), Article 7. Publication date: February 2026.

https://doi.org/10.1145/3318464.3380598
https://doi.org/10.1109/TNET.2023.3302306
https://doi.org/10.1109/TC.2024.3371793
https://rocksdb.org/
https://doi.org/10.14778/1453856.1453914
https://doi.org/10.14778/3529337.3529347
https://doi.org/10.1145/3677128
https://doi.org/10.14778/3611479.3611502
https://doi.org/10.1145/3347146.3359077
https://doi.org/10.1145/3183713.3196931

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Quotient filters
	2.2 Adaptive Filters and the AdaptiveQF
	2.3 Range Filters and the Memento filter
	2.4 Challenges

	3 Aeris filter
	3.1 Reverse map
	3.2 Implementation
	3.3 Expandability

	4 Theoretical analysis
	5 Evaluation
	5.1 Application benchmarks
	5.2 Microbenchmarks

	6 Conclusion
	7 Acknowledgments
	References

