
Small Refinements to the DAM Can Have Big Consequences for
Data-Structure Design

Michael A. Bender

Stony Brook University

bender@cs.stonybrook.edu

Alex Conway

Rutgers University and

VMware Research

alexander.conway@rutgers.edu

Martín Farach-Colton

Rutgers University

martin@farach-colton.com

William Jannen

Williams College

jannen@cs.williams.edu

Yizheng Jiao

The University of North Carolina at

Chapel Hill

yizheng@cs.unc.edu

Rob Johnson

VMware Research

robj@vmware.com

Eric Knorr

Rutgers University

eric.r.knorr@gmail.com

Sara McAllister

Harvey Mudd College

smcallister@g.hmc.edu

Nirjhar Mukherjee

The University of North Carolina at

Chapel Hill

nirjhar@unc.edu

Prashant Pandey

Carnegie Mellon University

ppandey2@cs.cmu.edu

Donald E. Porter

The University of North Carolina at

Chapel Hill

porter@cs.unc.edu

Jun Yuan

Pace University

jyuan2@pace.edu

Yang Zhan

The University of North Carolina at

Chapel Hill

yzhan@cs.unc.edu

ABSTRACT
Storage devices have complex performance profiles, including costs

to initiate IOs (e.g., seek times in hard drives), parallelism and bank

conflicts (in SSDs), costs to transfer data, and firmware-internal

operations.

The Disk-Access Machine (DAM) model simplifies reality by

assuming that storage devices transfer data in blocks of size B and

that all transfers have unit cost. Despite its simplifications, the

DAM model is reasonably accurate. In fact, if B is set to the half-

bandwidth point, where the latency and bandwidth of the hardware

are equal, the DAM approximates the IO cost on any hardware to

within a factor of 2.

Furthermore, the DAM explains the popularity of B-trees in

the 70s and the current popularity of B
ε
-trees and log-structured

merge trees. But it fails to explain why some B-trees use small

nodes, whereas all B
ε
-trees use large nodes. In a DAM, all IOs, and

hence all nodes, are the same size.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6184-2/19/06. . . $15.00

https://doi.org/10.1145/3323165.3323210

In this paper, we show that the affine and PDAM models, which

are small refinements of the DAM model, yield a surprisingly large

improvement in predictability without sacrificing ease of use. We

present benchmarks on a large collection of storage devices showing

that the affine and PDAM models give good approximations of the

performance characteristics of hard drives and SSDs, respectively.

We show that the affine model explains node-size choices in B-

trees and B
ε
-trees. Furthermore, the models predict that the B-tree

is highly sensitive to variations in the node size whereas B
ε
-trees

are much less sensitive. These predictions are born out empirically.

Finally, we show that in both the affine and PDAM models, it

pays to organize data structures to exploit varying IO size. In the

affine model, B
ε
-trees can be optimized so that all operations are

simultaneously optimal, even up to lower order terms. In the PDAM

model, B
ε
-trees (or B-trees) can be organized so that both sequential

and concurrent workloads are handled efficiently.

We conclude that the DAM model is useful as a first cut when

designing or analyzing an algorithm or data structure but the affine

and PDAM models enable the algorithm designer to optimize pa-

rameter choices and fill in design details.

ACM Reference Format:
Michael A. Bender, Alex Conway, Martín Farach-Colton, William Jannen,

Yizheng Jiao, Rob Johnson, Eric Knorr, Sara McAllister, Nirjhar Mukherjee,

Prashant Pandey, Donald E. Porter, Jun Yuan, and Yang Zhan. 2019. Small

Refinements to the DAM Can Have Big Consequences for Data-Structure

https://doi.org/10.1145/3323165.3323210

Design. In 31st ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA ’19), June 22–24, 2019, Phoenix, AZ, USA. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3323165.3323210

1 INTRODUCTION
Storage devices have complex performance profiles, including costs

to initiate IO (e.g., seek times in hard drives), parallelism and bank

conflicts (in SSDs), costs to transfer data, and firmware-internal

operations.

The Disk-Access Machine (DAM) model [2] simplifies reality

by assuming that storage devices transfer data in blocks of size B
and that all transfers have unit cost. Despite its simplifications, the

DAM has been a success [4, 64], in part because it is easy to use.

The DAM model is also reasonably accurate. If B is set to the

hardware’s half-bandwidth point, i.e., the IO size where the la-

tency and bandwidth of the hardware are equal, then the DAM

model predicts the IO cost of any algorithm to within a factor of 2

on that hardware. That is, if an algorithm replaces all its IOs with

IOs of the half-bandwidth size, then the cost of the IOs increase by

a factor of at most 2.

Furthermore, the DAM explains some choices that software ar-

chitects havemade. For example, the DAMmodel gives an analytical

explanation for why B-trees [6, 27] took over in the 70s and why

B
ε
-trees [13, 21], log-structured merge trees [11, 47], and external-

memory skip lists [8, 15, 55] are taking over now.

But the DAM model has its limits. For example, the DAM does

not explain why B-trees in many databases and file systems use

nodes of size 16KiB [1, 44, 45, 49, 50], which is well below the

half-bandwidth point on most storage devices, whereas B-trees

optimized for range queries use larger node sizes, typically up to

around 1MB [51, 53]. Nor does it explain why TokuDB’s [62] B
ε
-tree

uses 4MiB nodes and LevelDB’s [36] LSM-tree uses 2MiB SSTables

for all workloads. In a DAM, all IOs, and hence all nodes, are the

same size.

How can a optimization parameter that can vary by over three

orders of magnitude have escaped algorithmic recognition? The

answer is that the DAMmodel is too blunt an instrument to capture

these design issues.

In this paper, we show that the affine [3, 57] and PDAM [2]

models, which are small refinements of the DAM model, yield a

surprisingly large improvement in predictivity without sacrificing

ease of use.

The affine and PDAM models explicitly account for seeks (in

spinning disks) and parallelism (in solid-state storage devices). In

the affine model, the cost of an IO of k words is 1+αk , where α ≪ 1

is a hardware parameter.
1
In the PDAM model, an algorithm can

perform P IOs of size B in parallel.

Results
We show that the affine and PDAM models improve upon the DAM

in three ways.

The affine and PDAMmodels improve the estimate of the IO
cost. In §4, we present microbenchmarks on a large collection of

1
In reality, storage systems have a minimumwrite size, but we ignore this issue because

it rarely makes a difference in the analysis of data structures and it makes the model

cleaner.

storage devices showing that the affine and PDAMmodels are good

approximations of the performance characteristics of hard drives

and SSDs, respectively. We find that, for example, the PDAM is able

to correctly predict the run-time of a parallel random-read bench-

mark on SSDs to within an error of never more than 14% across a

broad range of devices and numbers of threads. The DAM, on the

other hand, overestimates the completion time for large numbers

of threads by roughly P , the parallelism of the device, which ranges

from 2.5 to 12. On hard drives, the affine model predicts the time

for IOs of varying sizes to within a 25% error, whereas, as described

above, the DAM is off by up to a factor of 2.

Researchers have long understood the underlying hardware ef-

fects motivating the affine and PDAM models. Nonetheless, it was

a pleasant surprise to see how accurate these models turn out to

be, even though they are simple tweaks of the DAM.

The affine and PDAM models explain software design
choices. In §5 and §6, we reanalyze the B-tree and the B

ε
-tree

in the affine and PDAM models. The affine model explains why

B-trees typically use nodes that are much smaller than the half-

bandwidth point, whereas B
ε
-trees have nodes that are larger than

the half-bandwidth point. Furthermore, the models predict that the

B-tree is highly sensitive to variations in the node size whereas

B
ε
-trees are much less sensitive. These predictions are borne out

empirically.

The affine and PDAM models enable better data-structure
designs. In a B

ε
-tree, small nodes optimize point queries and large

nodes optimize range queries and insertions. In §6, we show that

in the affine model, nodes can be organized with internal structure

(such that nodes have subnodes) so that all operations are simulta-

neously optimal, up to lower order terms. Since the DAM model

looses a factor of 2, it is blind to such fine-grained optimizations.

The PDAM allows us to organize nodes in a search tree so that

the tree achieves optimal throughput both when the number of

concurrent read threads are large and small. A small number of

read threads favors large nodes, and a large number favors small

nodes. In §8, we show how to organize nodes so that part or all of

them can be read, which allows the data structure to handle both

work loads obliviously and optimally.

Discussion. Taking a step back, we believe that the affine and

PDAM models are important complements to the DAM model.

The DAM is useful as a first cut when designing or analyzing an

algorithm or data structure but the affine and PDAMmodels enable

the algorithm designer to optimize parameter choices and fill in

design details.

2 THE PDAM AND AFFINE MODELS
We present the affine model (most predictive of hard disks) and the

PDAM (most predictive of SSDs). The DAM simplifies analysis by

assuming all IOs have the same size and cost, which is a reasonable

approximation for IOs that are large enough. The affine and PDAM

models capture what happens for small and medium IO sizes.

We show that these models are accurate across a range of hard-

ware even though they do not explicitly model most hardware

effects. Since they are minor refinements of the DAM, when design-

ing data structures, we can reason in the DAM and then optimize

in the affine/PDAM models.

https://doi.org/10.1145/3323165.3323210

2.1 Disk Access Machine (DAM) Model
The disk-access machine (DAM) model [2] assumes a two-level

cache hierarchy with a cache of sizeM words and a slower storage

device that transfers data to and from cache in blocks of size B.
The model applies to any two adjacent levels of a cache hierarchy,

such as RAM versus disk or L3 versus RAM. Performance in the

DAMmodel is measured by counting the number of block transfers

performed during an algorithm’s or data structure’s execution.

Note that B is distinct from the block size of the underlying

hardware. It is a tunable parameter that determines the amount

of contiguous data transferred per IO: a bigger B means each IO

transfers more data but takes more time.

The DAMmodel counts IOs but does not assign a cost to each IO.

On devices with bounded boundwidth and IO setup time, we can

ensure that the number of IOs is within a constant factor of the wall-

clock time spent performing IO by setting B to the half-bandwidth

point of the device.

The DAM model’s simplicity is a strength in terms of usability

but a weakness in terms of predictability. On HDDs, it does not

model the faster speeds of sequential IO versus random IO. On SSDs

and NVMe devices, it does not model internal device parallelism

nor the incremental cost of larger IOs.

Inaccuracies of DAM. These inaccuracies limit the effectiveness

of the DAM model for optimizing data structures. As we will show,

there are asymptotic consequences for these performance approxi-

mations.

For example, in the DAM model, the optimal node size for an

index such as a B-tree, B
ε
-tree, or buffered repository tree is B [13,

22, 27]. There is no advantage to growing smaller than B, since B
is the smallest granularity at which data is transferred in the data

structure. But using nodes larger than B also does not help.

Could the DAM be right? Maybe the right solution is to pick the

best B as an extra-model optimization, and from then on use B in

all data-structure design. Alas no. The best IO size is workload and

data-structure dependent [13, 16].

2.2 SSDs and the PDAM
The PDAM model improves performance analysis in SSDs and

NVMe over the DAM model by accounting for the IO parallelism.

In its original presentation [2], the external-memory model in-

cluded one more parameter, P , to represent the number of blocks

that can be transferred concurrently. This parameter was originally

proposed tomodel the parallelism available from RAID arrays. How-

ever, P is largely ignored in the literature, and almost all theoretical

work has been for P = 1.

We argue for reviving P to model the parallelism of SSDs and

NVMe devices. Flash storage performs IOs at page granularity, typi-

cally 512B–16KB, but has parallelism in terms of multiple channels,

packages per channel, and even dies per package [32, 37]. This

parallelism is why applications must maintain deep queues in order

to get full bandwidth out of an SSD or NVMe device [25, 35].

Definition 1 (PDAM model). In each time step, the device can
serve up to P IOs, each of size B. If the application does not present
P IOs to the device in a time step, then the unused slots are wasted.
Within a time step, the device can serve any combination of reads and

writes. Performance is measured in terms of time steps, not the total
number of IOs.

Thus, in the PDAM a sequential scan of N items, which uses

O(N /B) IOs, can be performed in O(N /PB) time steps.

For the purposes of this paper, IOs are concurrent-read-exclusive-

write (CREW) [65] (i.e., if there is a write to location x in a time

step, then there are no other concurrent reads or writes to x .)

2.3 Hard Disks and the Affine Model
When a hard drive performs an IO, the read/write head first seeks,

which has a setup cost of s seconds, and then reads data locally off

the disk at transfer cost of t seconds/byte, which corresponds to a

bandwidth cost.
Parameters s and t are approximate, since the setup cost can

vary by an order of magnitude. E.g., a track-to-track may be ∼1ms

while a full seek is ∼10ms. Nonetheless, it is remarkably predictive

to view these as fixed [57].

Definition 2 (affine model). IOs can have any size. An IO of
size x costs 1 + αx , where the 1 represents the normalized setup cost
and α ≤ 1 is the normalized bandwidth cost.

Thus, for a hard disk, α = t/s .

Lemma 1. An affine algorithm with cost C can be transformed
into a DAM algorithm with cost 2C , where blocks have size B = 1/α .
A DAM algorithm with cost C and blocks of sizes B = 1/α can be
transformed into an affine algorithm with cost 2C .

Thus, if losing a factor of 2 on all operations is satisfactory, then

the DAM is good enough.

What may be surprising is how many asymptotic design effects

show up when optimizing to avoid losing this factor of 2. A factor

of 2 is a lot for an external-memory dictionary. For example, even

smaller factors were pivotal for a subset of authors of this paper

when we were building and marketing TokuDB [62]. In fact, losing

a factor of 2 on large sequential write performance was a serious

setback on making BetrFS a general-purpose file system [28, 41, 67–

69].

3 BACKGROUND ON B-TREES AND Bε -TREES
A dictionary data structure maintains a set of key-value pairs

and supports inserts, deletes, point queries, and range queries. Here

we review some common external-memory dictionaries.

B-trees. The classic dictionary for external storage is the B-tree [6,

27]. A B-tree is a balanced search tree with fat nodes of size B, so
that a node can have Θ(B) pivot keys and Θ(B) children. All leaves
have the same depth, and key-value pairs are stored in the leaves.

The height of a B-tree is Θ(logB+1 N).

Lemma 2 (folklore). In a B-tree with size-B nodes, point queries,
inserts, and deletes take O(logB+1(N /M)) IOs. A range query scan-
ning ℓ elements takes O(⌈ℓ/B⌉) IOs plus the point-query cost.

The systems community often evaluates data structures in terms

of their write amplification, which we define below [56].

Definition 3. The write amplification of an update is the
amortized amount of data written to disk per operation divided by
the amount of data modified per update.

Write amplification is the traditional way of distinguishing be-

tween read IOs and write IOs. Distinguishing between reads and

writes makes sense because with some storage technologies (e.g.,

NVMe) writes are more expensive than reads, and this has algo-

rithmic consequences [7, 18, 19, 40]. Moreover, even when reads

and writes have about the same cost, other aspects of the system

can make writes more expensive. For example, modifications to the

data structure may be logged, and so write IOs in the B-tree may

also trigger write IOs from logging and checkpointing.

In the DAM model, the write amplification of a dictionary is just

B times the amortized number of write IOs per insertion.

Lemma 3. The worst-case write-amplification of a B-tree is Θ(B).

Proof. We give a bad example for write amplification. Consider

sufficiently large N where N = Ω(BM). Assume that nodes are

paged to and from RAM atomically. Then a workload comprised of

random insertions and deletions achieves this write amplification.

On average, a (sized B) node is written back to disk after there have

been O(1) (unit-sized) elements written to/deleted from that node.

The upper bound on write amplification follows because the

modifications that take place on the tree are dominated by the

modifications at the leaves. □

Bε -trees. The B
ε
-tree [21, 22, 42] is a write-optimized general-

ization of the B-tree. (A write-optimized dictionary (WOD) is a
searchable data structure that has (1) substantially better insertion

performance than a B-tree and (2) query performance at or near

that of a B-tree.)

The B
ε
-tree is used in some write-optimized databases and file

systems [28, 33, 41, 41, 43, 52, 60, 61, 67–69]. A more detailed de-

scription of the B
ε
-tree is available in the prior literature [13].

As with a B-tree, the B
ε
-tree is a balanced search tree with fat

nodes of size B. A B
ε
-tree leaf looks like a B-tree leaf, storing key-

value pairs in key order. A B
ε
-tree internal node has pivot keys

and child pointers, like a B-tree, but it also has space for a buffer .
The buffer is part of the node and is written to disk with the rest

of the node when the node is evicted from memory. Modifications

to the dictionary are encoded as messages, such as an insertion or

a so-called tombstone message for deletion. These messages are

stored in the buffers in internal nodes, and eventually applied to

the key-value pairs in the leaves. A query must search the entire

root-to-leaf path, and logically apply all relevant messages in all of

the buffers.

Buffers are maintained using the flush operation. Whenever a

node u’s buffer is full (“overflows”), then the tree selects (at least

one) childv , and moves all relevant messages from u tov . Typically
v is chosen to be the child with the most pending messages. Flushes

may recurse, i.e., when a parent flushes, it may cause children and

deeper decedents to overflow.

The B
ε
-tree has a tuning parameter ε (0 ≤ ε ≤ 1) that con-

trols the fanout F = Bε + 1. Setting ε = 1 optimizes for point

queries and the B
ε
-tree reduces to a B-tree. Setting ε = 0 opti-

mizes for insertions/deletions, and the B
ε
-tree reduce to a buffered

repository tree [22]. Setting ε to a constant in between leads to

point-query performance that is within a constant factor a B-tree,

but insertions/deletions that are asymptotically faster. In practice,

F is chosen to be in the range [10, 20]; for example, in TokuDB, the

target value of F is 16.

Theorem 4 ([13, 21]). In a Bε -tree with size-B nodes and fanout
1 + Bε , for ε ∈ [0, 1],

(1) insertions and deletions take O(1

B1−ε logBε+1(N /M)) IOs,
(2) point queries take O(logBε+1(N /M)) IOs, and
(3) a range query returning ℓ elements takes O(⌈ℓ/B⌉) IOs plus

the cost of a point query.
(4) The write amplification is O(Bε logBε+1(N /M)).

4 MICROBENCHMARKS TO VALIDATE THE
AFFINE AND PDAMMODELS

We now experimentally validate the accuracy of the affine model

for hard disks and the PDAM for SSDs. We show that the models

are remarkably accurate, even though they do not explicitly model

most hardware effects.

One of the messages of this section is that even though the affine

and PDAM models are only tweaks to the DAM, they have much

more predictive power. We can even make predictions and reason

about constants. As we will see in the next section, optimizing the

constant for various operations will cause some design parameters

to change asymptotically.

Unless noted otherwise, all experiments in this paper were col-

lected on a Dell PowerEdge T130 with a 3.0GHz Intel E3-1220 v6 pro-

cessor, 32GiB of DDR4 RAM, two 500GiB TOSHIBA DT01ACA050

HDDs and one 250GiB Samsung 860 EVO SSD.

4.1 Validating the PDAMModel
The PDAM ignores some issues of real SSDs, such as bank conflicts,

which can limit the parallelism available for some sets of IO requests.

Despite its simplicity, we verify below that the PDAM accurately

reflects real SSD and NVMe performance.

Interestingly, the PDAM predates commercial SSDs [2], but, as

we verify, the PDAM fits the performance of a wide range of SSDs.

The goodness of fit is particularly striking because SSDs have many

complications that are not captured by the PDAM.

To test the PDAM model, we ran many rounds of IO read ex-

periments with different numbers of threads. In each round of the

experiment, we spawned p = {1, 2, 4, 8, . . . , 64} OS threads that

each read 10 GiB of data. We selected 163, 840 random logical block

address (LBA) offsets and read 64KiB starting from each. Thus, there

were always p outstanding IO requests, and the total data read was

p × 10GiB per round.

The PDAM predicts that the time to complete the experiment

should be the same for all p ≤ P and should increase linearly in

p for p > P . Figure 1 shows the time in seconds taken to perform

each round of IO read experiments. As Figure 1 shows, the time is

relatively constant until around p = 2 or 4, depending on the device,

and it increases linearly thereafter. The transition is not perfectly

sharp. We suspect this is do to bank conflicts within the device.

We used segmented linear regression to estimate P and B for each

device. Segmented linear regression is appropriate for fitting data

that is known to follow different linear functions in different ranges.

Segmented linear regression outputs the boundaries between the

different regions and the parameters of the line of best fit within

Device P ∝ PB R2

Samsung 860 pro 3.3 530 0.999

Samsung 970 pro 5.5 2500 0.986

Silicon Power S55 2.9 260 0.999

Sandisk Ultra II 4.6 520 0.993

Table 1: Experimentally derived PDAM values for real hard-
ware.Weused segmented linear regression to calculate P . Af-
ter P threads, throughput remains nearly constant at ∝ PB.

1 2 4 8 16 32 64

10
1

10
2

10
3

Number of Threads (p)

T
i
m
e
(
s
e
c
)

Samsung 860 pro

Samsung 970 pro

Silicon Power S55

Sandisk Ultra II

Figure 1: Time to read 10GiB per thread on each SSD tested.
The DAM model predicts that the time would increase lin-
early with the number of LBAs read. However, for a small
number of threads the time stays relatively constant.

each region. Table 1 shows the experimentally derived parallelism,

P , and the device saturation, ∝ PB, for a variety of flash devices.

To verify the goodness of fit, we report the R2 value. An R2

value of 1 means that the regression coefficients perfectly predicted

the observed data. Our R2 values are all within 0.1% of 1, and we

conclude that the PDAM is an excellent fit for SSDs.

4.2 Validating the Affine Model
In this section, we empirically derive α = t/s for a series of com-

modity hard disks, and we confirm that the affine model is highly

predictive of hard disk performance.

For our experiments, we chose an IO size, I , and issued 64 I -
sized reads to block-aligned offsets chosen randomly within the

device’s full LBA range. We repeated this experiment for a variety

of IO sizes, with I ranging from 1 disk block up to 16MiB. Table 2

shows the experimentally derived values for each HDD. To verify

the goodness of fit, we report the R2 value; a value of 1 indicates
that the regression coefficients perfectly predict the observed data.

R2 values are all within 0.1% of 1, and we conclude that the affine

model is an excellent fit for hard disks.

5 B-TREE NODES IN THE AFFINE MODEL
In this section, we use the affine model to analyze the effect of

changing the size of B-tree nodes. In the next section, we will

perform the analysis for B
ε
-trees.

Disk Year s (s) t (s/4K) α R2

2 TB Seagate 2002 0.018 0.000021 0.0012 0.9994

250 GB Seagate 2006 0.015 0.000033 0.0022 0.9997

1 TB Hitachi 2009 0.013 0.000041 0.0031 0.9999

1 TB WD Black 2011 0.012 0.000035 0.0029 0.9997

6 TB WD Red 2018 0.016 0.000026 0.0017 0.9972

Table 2: Experimentally derived α values for commodity
HDDs. We issued 64 random block-aligned reads with IO
sizes ranging from 1 disk block to 16MiB. We conducted lin-
ear regression to get the setup cost s and bandwidth cost t .
We calculated α by t/s.

Insertion/Deletion Query

B-trees Θ
(
1+αB
log B log

N
M

)
Θ
(
1+αB
log B log

N
M

)
B
ε
-tree (F =

√
B) Θ

(
1+αB√
B log B

log
N
M

)
Θ
(
1+α

√
B

log B log
N
M

)
B
ε
-tree Θ

(
F (1+αB)
B log F log

N
M

)
Θ
(
F+αF 2+αB
F log F log

N
M

)
Table 3: A sensitivity analysis of node sizes for Bε -trees
and B-trees. The cost of B-tree update operations grows
nearly linearly as a function of B—specifically 1+αB

logB . Bε -

trees should optimize F (1+αB)
B log F for inserts, deletes, and up-

serts and 2F +α F 2+αB
F log F for queries. The cost for inserts and

queries increases more slowly in Bε -trees than in B-trees as
the node size increases.

5.1 Large Nodes Optimize Lookups, Updates,
and Range Queries

The following lemma follows immediately from the definition of a

B-tree and the definition of the affine model.

Lemma 5. The affine IO cost of a lookup, insert, or delete in a B-tree
with sized-B nodes is (1 + αB) logB+1(N /M)(1 + o(1)). The affine IO
cost of a range query returning ℓ items is O(1 + ℓ/B)(1 + αB) plus
the cost of the query.

Proof. A B-tree node has size B and the cost to perform an IO

of size B is 1 + αB. The height of the B-tree is logB+1(N)(1 + o(1)),
since the target fanout is B, and the fanout can vary by at most a

constant factor. The top Θ(logB+1M) levels can be cached so that

accesses to nodes within the levels are free. Thus, the search cost

follows from the structure of the tree.

During the course of N inserts/deletes, there are O(N /B) node
splits or merges. Thus, the tree-rebalance cost during inserts/deletes

is a lower-order term, and so the insert/delete cost is the same as

the search cost.

A range query returning ℓ items fits in Θ(⌈ℓ/B⌉) leaves and each
block access costs 1 + αB. □

Corollary 6. In the affine IO model, search, insert/delete, and
range queries are asymptotically optimized when B = Θ(1/α).

Proof. Setting the node size to B = 1/α achieves the half-

bandwidth point. □

Corollary 6 seems definitive because it says that there is a pa-

rameter setting such that both point queries and range queries run

within a constant factor of optimal. It is not.

It may be surprising that the half-bandwidth point is not what

people usually use to optimize a B-tree. In particular, B-trees in

many databases and file systems use nodes of size 16KiB [1, 44, 45,

49, 50], which is too small to amortize the setup cost. As a result,

range queries run slowly, under-utilizing disk bandwidth [28, 29,

59]. In contrast, B-trees in databases that are more focused on

analytical workloads use larger block sizes, typically up to around

1MB [51, 53], to optimize for range queries.

B-tree nodes are often small. The rest of this section gives an-

alytical explanations for why B-tree nodes are generally smaller

than their half-bandwidth point.

Our first explanation is simply that even small constant factors

can matter.

The following corollary shows that in the affine model, when we

optimize for point queries, inserts, and deletes, then the B-tree node

size is smaller than indicated in Corollary 6—that is, B = o(1/α).
For these smaller node sizes, range queries run asymptotically

suboptimally. In contrast, if range queries must run at near disk

bandwidth, then point queries, inserts, and deletes are necessarily

suboptimal in the worst case.

Corollary 7. Point queries, inserts, and deletes are optimized
when the node size is Θ(1/(α ln(1/α))). For this node size, range
queries are asymptotically suboptimal.

Proof. From Lemma 5, finding the optimal node size for point

queries means finding the minimum of the function

f (x) =
1 + αx

ln(x + 1)
.

Taking the derivative, we obtain

f ′(x) =
α

ln(x + 1)
−

1

ln
2(x + 1)

1 + αx

1 + x
.

Setting f ′(x) = 0, the previous equation simplifies to

1 + αx = α ln(x + 1)(1 + x).

Given that α < x < 1, we obtain x lnx = Θ(1/α), which means

that x = Θ(1/(α ln(1/α))). Second derivatives confirm that we have

a minimum. □

A straightforward information-theoretic argument shows that

Corollary 7 is optimal not just for B-trees, but also for any

comparison-based external-memory dictionary.

As Corollary 7 indicates, the optimal node size x is not large

enough to amortize the setup cost. This means that as B-trees age,

their nodes get spread out across disk, and range-query performance

degrades. This is borne out in practice [28, 29, 31, 59].

A second reason that B-trees often use small nodes has to do

with write amplification, which is large in a B-tree; see Lemma 3.

Since the B-tree write amplification is linear in the node size, there

is downward pressure towards small B-tree nodes. A third reason

is that big nodes pollute the cache, making it less effective.

As mentioned above, database practice has lead to a dichotomy in

B-tree uses: Online Transaction Processing (OLTP) databases favor

point queries and insertions; Online Analytical Processing (OLAP)

databases favor range quieres. As predicted by the analysis in this

section, OLTP databases use small leaves and OLAP databases use

large leaves.

We believe that the distinction between OLAP and OLTP

databases is not driven by user need but by the inability of B-

trees to keep up with high insertion rates [30], despite optimiza-

tions [5, 9, 12, 14, 17, 23, 24, 38, 39, 46, 48, 58, 63, 66].

We next turn to the B
ε
-tree, which can index data at rates that

are orders of magnitude faster than the B-tree.

6 Bε -TREE NODES IN THE AFFINE MODEL
In this section, we use the affine model to analyze B

ε
-trees. We first

perform a naïve analysis of the B
ε
-tree [13, 21] in the affine model,

assuming that IOs only read entire nodes—effectively the natural

generalization of the DAM analysis.

The analysis reveals that B
ε
-trees are more robust to node-size

choices than B-trees. In the affine model, once the node size B
becomes sufficiently large, transfer costs grow linearly in B. For a
B
ε
-tree with ε = 1/2, the transfer costs (and write amplification)

of inserts grow proportionally to

√
B. This means B

ε
-trees can

use much larger nodes than B-trees, and that they are much less

sensitive to the choice of node size.

However, the transfer costs of queries in a B
ε
-tree still grow

linearly in B, which means that, in the affine model and with a

standard B
ε
-tree, designers face a trade-off between optimizing for

insertions versus optimizing for queries. We then describe three

optimizations to the B
ε
-tree that eliminate this trade-off.

This latter result is particularly exciting because, in the DAM

model, there is a tight tradeoff between reads and writes [21]. In

the DAM model, a B
ε
-tree (for 0 < ε < 1) performs inserts a factor

of εB1−ε faster than a B-tree, but point queries run a factor of 1/ε
times slower. While this is already a good tradeoff, the DAM model

actually underestimates the performance advantages of the B
ε
-tree.

The B
ε
-tree has performance advantages that cannot be understood

in the DAM.

We first give the affine IO performance of the B
ε
-tree:

Lemma 8. Consider a Bε -tree with nodes of size B, where the fanout
at any nonroot node is within a constant factor of the target fanout F .
Then the amortized insertion cost is

O
((

F
B + αF

)
logF (N /M)

)
.

The affine IO cost of a query is

O
(
(1 + αB) logF (N /M)

)
.

The affine IO cost of a range query returning ℓ items isO(1+ℓ/B)(1+
αB) plus the cost of the query.

Proof. We first analyze the query cost. When we perform a

query in a B
ε
-tree, we follow a root-to-leaf path. We need to search

for the element in each buffer along the path, as well as in the target

leaf. The cost to read an entire node is 1 + αB.
We next analyze the amortized insertion/deletion cost. The affine

IO cost to flush the Θ(B) messages in one node one level of the tree

is Θ(F + αFB). This is because there are Θ(F) IOs (for the node and

all children). The total amount of data being flushed to the leaves is

Θ(B), but the total amount of data being transferred from the IOs

is Θ(FB), since nodes that are modified may need to be completely

rewritten. Thus, the amortized affine IO cost to flush an element

down one level of the tree is Θ(F/B + αF). The amortized flushing

cost follows from the height of the tree.

The impact of tree rebalancing turns out to be a lower-order ef-

fect. If the leaves are maintained between half full and full, then in

total, there are only O(N /B) modifications to the B
ε
-tree’s pointer

structure in Θ(N) updates. Thus, the amortized affine IO contribu-

tion due to rebalances isO(α + 1/B), which is a low-order term. □

We now describe three affine-model optimizations of the B
ε
-tree.

These optimizations use variable-sized IOs to improve the query

cost of the B
ε
-tree without harming its insertion cost, and will

enable us to get our robustness and B-tree dominance theorems.

Theorem 9. There exist a Bε -tree with nodes of size B and target
fanout F with the following bounds. The amortized insertion cost is

O
((

F
B + αF

)
logF (N /M)

)
.

The affine IO cost of a query is at most(
1 + α B

F + αF
)
logF (N /M) (1 + 1/log F).

The affine IO cost of a range query returning ℓ items isO((1+ℓ/B)(1+
αB)) plus the cost of the query.

Proof. We make three algorithmic decisions to obtain the target

performance bounds.

(1) We specify an internal organization of the nodes, and in

particular, how the buffers of the nodes are organized.

(2) We store the pivots of a node outside of that node—

specifically in the node’s parent.

(3) We use a rebalancing scheme in which the nonroot fanouts

stay within (1 ± o(1))F .

Our objective is to have a node organization that enables large IOs

for insertions/deletions and small IOs for queries—and only one

per level.

We first describe the internal node/buffer structure. We organize

the nodes/buffer so that all of the elements destined for a particular

child are stored contiguously. We maintain the invariant that no

more than B/F elements in a node can be destined for a particular

child, so the cost to read all these elements is only 1 + αB/F .
Each nodeu has a set of pivots. However, we do not store nodeu’s

pivots in u, but rather in u’s parent. The pivots for u are stored next

to the buffer that stores elements destined for u. When F = O(
√
B),

storing a nodes pivots in its parent increases node sizes by at most

a constant factor.

Finally, we describe the rebalancing scheme. Define the weight
of a node to be the number of leaves in the node’s subtree. We

maintain the following weight-balanced invariant. Each nonroot

node u at height h satisfies

Fh (1 − 1/log F) ≤ weight(u) ≤ Fh (1 + 1/log F).

The root just maintains the upper bound on the weight, but not the

lower bound.

Whenever a node u gets out of balance, e.g., u’s weight grows
too large or small, then we rebuild the subtree rooted at u’s parent
v from scratch, reestablishing the balancing invariant.

We next bound the minimum and maximum fanout that a node

can have. Consider a node u and parent node v of height h and

h + 1, respectively. Then since weight(v) ≤ Fh (1 + 1/log F) and

weight(u) ≤ Fh (1−1/log F), the maximum number of children that

v can have is

F
(
1+1/log F
1−1/log F

)
= F +O

(
F

log F

)
.

By a similar reasoning, if v is a nonroot node, then the minimum

fanout that v can have is F −O
(

F
log F

)
.

As in Lemma 8, the amortized affine IO cost to flush an element

down one level of the tree is O(F/B + αF), and so the amortized

insert/delete cost follows from the height of the tree.

The amortized rebalance cost is determined as follows. The IO

cost to rebuild the subtree rooted at u’s parent v is O(weight(v)) =
O(F weight(u)), since nodes have size Θ(1/α) and the cost to access
any node is O(1). The number of leaves that are added or removed

before v needs to be rebuilt again is Ω(weight(u)/log F). There are
Ω(1/α) inserts or deletes into a leaf before a new leaf gets split

or merged. Thus, the number of inserts/deletes into u’s subtree
between inserts/deletes is Ω(α weight(u)/log F). Consequently, the
amortized cost to rebuild, per element insert/delete is O(α log F),
which is a low order cost.

The search bounds are determined as follows. Because the pivot

keys of a node u are stored in u’s parent, we only need to perform

one IO per node, and each IO only needs to read one set of pivots

followed by one buffer—not the entire node. Thus, the IO cost per

node for searching is 1 + αB/F + αF , and the search cost follows

directly. □

Theorem 9 can be viewed as a sensitivity analysis for the node

size B, establishing that Bε -trees are less sensitive to variations in

the node size than B-trees. For B
ε
-trees, insertion are much less

sensitive to changes in node size than insertions. This is particularly

easy to see when we take F =
√
B.

Corollary 10. When B > 1/α , the B-tree query cost increases
nearly linearly in B, whereas the B1/2-tree (F = Θ(

√
B)) increases

nearly linearly in
√
B.

We now give a more refined sensitivity analysis, optimizing B,
given F and α .

Corollary 11. When B = Ω(F 2) and B = o(F/α), there exists
Bε -trees where the affine IO cost to read each node is 1+ o(1), and the
search cost is (1 + o(1)) logF (N /M).

Proof. For a search, the IO cost per node is

1 + αB/F + αF = 1 + o(1).

This means that the search cost is (1 + o(1)) logF (N /M). □

We can now optimize the fanout and node size in Corollary 11.

In particular, say that F =
√
B. Then it is sufficient that B < o(1/α2).

What is interesting about this analysis is that an optimized B
ε
-

tree node size can be nearly the square of the optimal node size

for a B-tree for reasonable parameters choices. In contrast, in the

DAM, B-trees and B
ε
-trees always have the same size, which is the

block-transfer size. Small subconstant changes in IO cost can have

asymptotic consequences in the data structure design.

This analysis helps explain why the TokuDB B
ε
-tree has a rela-

tively large node size (∼4MB), but also has sub-nodes (“basement

nodes”), which can be paged in and out independently on searches.

It explains the contrast with B-trees, which have much smaller

nodes. It is appealing how much asymptotic structure that you see

just from optimizing the constants and how predictive it is of real

data-structure designs.

Finally, we show that even in the affine model we can make a

B
ε
-tree whose search cost is optimal up to low-order terms and

whose insert cost is asymptotically faster than a B-tree.

Corollary 12. There exists a Bε -tree with fanout F =

Θ(1/α log(1/α)) and node size B = F 2 whose query cost is optimal
in the affine model up to low order terms over all comparison-based
external-memory dictionaries. The Bε -tree’s query cost matches the
B-tree up to low-order terms, but its amortized insert cost is a factor
of Θ(log(1/α)) times faster.

7 EMPIRICAL VALIDATION OF B-TREE AND
Bε -TREE NODE SIZE

We measured the impact of node size on the average run time

for random queries and random inserts on HDDs. We used Berke-

leyDB [50] as a typical B-tree and TokuDB [60] as a typical B
ε
-tree.

We first inserted 16GB of key-value pairs into the database. Then,

we performed random inserts and random queries to about a thou-

sandth of the total number of keys in the database. We turned off

compression in TokuDB to obtain a fairer comparison. We limited

the memory to 4 GiB to ensure that most of the databases were

outside of RAM.

Figure 2 presents the query and insert performance of Berke-

leyDB on HDDs. We see that the cost of inserts and queries starts to

grow once the nodes are larger than 64 KiB, which is larger than the

default node size. After the optimal node size of 64 KiB for inserts,

the insert and query costs start increasing roughly linearly with

the node size, as predicted.

Figure 3 gives performance numbers for TokuDB, which are

consistent with Table 3 where F =
√
B. The optimal node size is

around 512 KiB for queries and 4 MiB for inserts. In both cases, the

next few larger node sizes decrease performance, but only slightly

compared to the BerkeleyDB results.

8 CONCLUSIONS AND PDAM ALGORITHM
DESIGN

We conclude with some observations on how the PDAM model can

inform external-memory dictionary design.

Consider the problem of designing a B-tree for a database that

serves a dynamically varying number of clients. We want to exploit

the storage device’s parallelism, regardless of how many clients are

currently performing queries.

If we have P clients, then the optimal strategy is to build our

B-tree with nodes of size B and let each client perform one IO

per time step. If the database contains N items, then each client

requires Θ(logB N) time steps to complete a query (Technically

Θ(logB+1 N), but we use Θ(logB N) in this section in order to keep

4KiB 16KiB 64KiB 256KiB 1MiB

20

40

60

80

BerkeleyDB Node Size

M
i
l
l
i
s
e
c
o
n
d
s
p
e
r
O
p
e
r
a
t
i
o
n

BerkeleyDB Query

BerkeleyDB Insert

BerkeleyDB Affine

Figure 2: Microseconds per query/insert with increasing
node size for BerkeleyDB. The fitted line (black) has an al-
pha of 1.58357435× 10−04 and a root mean squared (RMS) of
8.4.

the math clean). We can answer P queries every Θ(logB N) time-

steps, for an amortized throughput of Θ(P/logB N) queries per

time-step.

Now suppose that we have a single client performing queries.

Since walking the tree from root to leaf is inherently sequential,

a B-tree with nodes of size B is unable to use device parallelism.

The client completes one query each Θ(logB N) time steps, and all

device parallelism goes to waste. Now the B-tree performs better

with nodes of size PB. The client loads one node per time step, for

a total of Θ(logPB N) time-steps per query, which is a significant

speed-up when P = ω(B).
In summary, to optimize performance, we want nodes of size B

when we have many clients, and nodes of size PB when we have

only one client. But B-trees have a fixed node size.

The point is that the amount of IO that can be devoted to a query

is not predictable. Dilemmas like this are common in external-

memory dictionary design, e.g., when dealing with system prefetch-

ing [16, 26].

64KiB 256KiB 1MiB 4MiB

20

40

60

80

100

120

TokuDB Node Size

M
i
l
l
i
s
e
c
o
n
d
p
e
r
O
p
e
r
a
t
i
o
n
(
Q
u
e
r
y
) TokuDB Query

0

2

4

6

8

10

12

M
i
l
l
i
s
e
c
o
n
d
p
e
r
O
p
e
r
a
t
i
o
n
(
I
n
s
e
r
t
)

TokuDB Query

TokuDB Query Affine

TokuDB Insert

TokuDB Insert Affine

Figure 3: Number of microseconds per query/insert with in-
creasing node size for TokuDB. The fitted lines have an al-
pha value of 1.58357435 × 10−03 and the RMS is 18.7.

One way to resolve the dilemma uses ideas from cache-oblivious

data-structures [10, 34]. Cache-oblivious data structures are univer-

sal data structures in that they are optimal for all memory-hierarchy

parameterizations. Most cache-oblivious dictionaries are based on

the van Emde Boas layout [10, 54].

In the B-tree example, we use nodes of size PB, but organize
each node in a van Emde Boas layout. Now suppose there are

k ≤ P clients. Each client is given P/k IOs per time slot. Thus, a

client can traverse a single node in Θ(logPB/k PB) time steps, and

hence traverses the entire root-to-leaf path in Θ(logPB/k N) time

steps. When k = 1, this matches the optimal single-threaded B-tree

design described above. When k = P , this matches the optimal

multi-threaded client throughput given above. Furthermore, this

design gracefully adapts when the number of clients varies over

time.

Lemma 13. In the PDAM model, a B-tree with nodes of size PB

has query throughput Ω
(

k
logPB/k N

)
for any k ≤ P concurrent query

threads.

This strategy also fits well into current caching and prefetching

system designs. In each time step, clients issue IOs for single blocks.

Once the system has collected all the IO requests, if there are any

unused IO slots in that time step, then it expands the requests to

perform read-ahead. So in our B-tree example with a single client,

there is only one IO request (for the first block in a node), and the

system expands that to P blocks, effectively loading the entire node

into cache. As the client accesses the additional blocks of the same

B-tree node during its walk of the van Emde Boas layout, the blocks

are in cache and incur no additional IO. If, on the other hand, there

are two clients, then the system sees two one-block IO requests,

which it will expand into two runs of P/2 blocks each.
This basic strategy extends to other cache-oblivious data struc-

tures; see e.g., [11, 20] for write-optimized examples. The PDAM

explains how these structures can always make maximal use of de-

vice parallelism, even as the number of concurrent threads changes

dynamically.

As this and earlier examples illustrate, seemingly small changes

in the DAM model have substantial performance and design impli-

cations. The more accurate computational models that we consider

are more predictive of software practice. We posit that these models

are an essential tool for algorithmists seeking to design new algo-

rithms for IO-bound workloads. The simplicity of the DAM model

has let important design considerations slip through the cracks for

decades.

ACKNOWLEDGMENTS
We gratefully acknowledge support from NSF grants CCF 805476,

CCF 822388, CNS 1408695, CNS 1755615, CCF 1439084, CCF 1725543,

CSR 1763680, CCF 1716252, CCF 1617618, IIS 1247726, and from

VMware and a Netapp Faculty Fellowship.

REFERENCES
[1] [n. d.]. mkfs.btrfs Manual Page. https://btrfs.wiki.kernel.org/index.php/Manpage/

mkfs.btrfs, Last Accessed Sep. 26, 2018.

[2] Alok Aggarwal and Jeffrey Scott Vitter. 1988. The Input/Output Complexity

of Sorting and Related Problems. Commun. ACM 31, 9 (Sept. 1988), 1116–1127.

https://doi.org/10.1145/48529.48535

[3] Matthew Andrews, Michael A. Bender, and Lisa Zhang. 2002. New Algorithms

for Disk Scheduling. Algorithmica 32, 2 (2002), 277–301. https://doi.org/10.1007/

s00453-001-0071-1

[4] Lars Arge. 2002. External Memory Geometric Data Structures. Lecture notes of
EEF Summer School on Massive Data Sets, Aarhus (2002).

[5] Microsoft Azure. 2016. How to use batching to improve SQL Database ap-

plication performance. https://docs.microsoft.com/en-us/azure/sql-database/

sql-database-use-batching-to-improve-performance.

[6] Rudolf Bayer and Edward M. McCreight. 1972. Organization and Maintenance

of Large Ordered Indexes. Acta Informatica 1, 3 (Feb. 1972), 173–189. https:

//doi.org/10.1145/1734663.1734671

[7] Naama Ben-David, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan

Gu, Charles McGuffey, and Julian Shun. 2016. Parallel Algorithms for Asymmetric

Read-Write Costs. In Proceedings of the 28th ACM on Symposium on Parallelism in
Algorithms and Architectures (SPAA). 145–156. https://doi.org/10.1145/2935764.

2935767

[8] Michael A. Bender, Jon Berry, Rob Johnson, Thomas M. Kroeger, Samuel Mc-

Cauley, Cynthia A. Phillips, Bertrand Simon, Shikha Singh, and David Zage. 2016.

Anti-Persistence on Persistent Storage: History-Independent Sparse Tables and

Dictionaries. In Proceedings of the 35th ACM Symposium on Principles of Database
Systems (PODS). 289–302.

[9] Michael A. Bender, Jake Christensen, Alex Conway, Martin Farach-Colton, Rob

Johnson, and Meng-Tsung Tsai. 2019. Optimal Ball Recycling. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
2527–2546. https://doi.org/10.1137/1.9781611975482.155

[10] Michael A. Bender, Erik Demaine, and Martin Farach-Colton. 2005. Cache-

Oblivious B-Trees. 35, 2 (2005), 341–358.

[11] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel,

Bradley C. Kuszmaul, and Jelani Nelson. 2007. Cache-Oblivious Streaming B-

trees. In Proceedings of the 19th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA). 81–92. https://doi.org/10.1145/1248377.1248393

[12] Michael A Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson,

Samuel McCauley, and Shikha Singh. 2018. Bloom filters, adaptivity, and the

dictionary problem. In Proceedings to the IEEE 59th Annual Symposium on Foun-
dations of Computer Science (FOCS). 182–193.

[13] Michael A. Bender, Martin Farach-Colton, William Jannen, Rob Johnson,

Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and Yang Zhan. 2015. An

Introduction to B
ε
-Trees and Write-Optimization. :login; magazine 40, 5 (October

2015), 22–28.

[14] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C.

Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane,

and Erez Zadok. 2012. Don’t Thrash: How to Cache Your Hash on Flash. In
Proceedings of the Very Large Data Bases (VLDB) Endowment 5, 11 (2012), 1627–
1637.

[15] Michael A. Bender, Martin Farach-Colton, Rob Johnson, Simon Mauras, Tyler

Mayer, Cynthia A. Phillips, and Helen Xu. 2017. Write-Optimized Skip Lists. In

Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS). 69–78. https://doi.org/10.1145/3034786.3056117

[16] Michael A. Bender, Martin Farach-Colton, and Bradley Kuszmaul. 2006. Cache-

Oblivious String B-Trees. In Proceedings of the 25th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS). 233–242.

[17] Michael A. Bender, Martín Farach-Colton, and William Kuszmaul. 2019. Achiev-

ing Optimal Backlog in Multi-Processor Cup Games. In Proceedings of the 51st
Annual ACM Symposium on the Theory of Computing (STOC).

[18] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian

Shun. 2016. Efficient Algorithms with Asymmetric Read and Write Costs. In

Proceedings of the 24th Annual European Symposium on Algorithms (ESA). 14:1–
14:18. https://doi.org/10.4230/LIPIcs.ESA.2016.0

[19] Guy E. Blelloch, Phillip B. Gibbons, Yan Gu, Charles McGuffey, and Julian Shun.

2018. The Parallel Persistent Memory Model. In Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures (SPAA). 247–258. https:

//doi.org/10.1145/3210377.3210381

[20] Gerth S. Brodal, Erik D. Demaine, Jeremy T. Fineman, John Iacono, Stefan Langer-

man, and J. Ian Munro. 2010. Cache-Oblivious Dynamic Dictionaries with Up-

date/Query Tradeoffs. In Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). 1448–1456.

[21] Gerth S. Brodal and Rolf Fagerberg. 2003. Lower Bounds for External Memory

Dictionaries. In Proceedings of the 14th Annual ACM-SIAM symposium on Discrete
Algorithms (SODA). 546–554.

[22] Adam L. Buchsbaum, Michael H. Goldwasser, Suresh Venkatasubramanian, and

Jeffery Westbrook. 2000. On External Memory Graph Traversal. In Proceedings
of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
859–860.

[23] Mark Callaghan. 2011. Something awesome in InnoDB – the in-

sert buffer. https://www.facebook.com/notes/mysql-at-facebook/

something-awesome-in-innodb-the-insert-buffer/492969385932/.

[24] Mustafa Canim, Christian A. Lang, George A. Mihaila, and Kenneth A. Ross.

2010. Buffered Bloom filters on solid state storage. In International Workshop

https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs
https://btrfs.wiki.kernel.org/index.php/Manpage/mkfs.btrfs
https://doi.org/10.1145/48529.48535
https://doi.org/10.1007/s00453-001-0071-1
https://doi.org/10.1007/s00453-001-0071-1
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-use-batching-to-improve-performance
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-use-batching-to-improve-performance
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/2935764.2935767
https://doi.org/10.1145/2935764.2935767
https://doi.org/10.1137/1.9781611975482.155
https://doi.org/10.1145/1248377.1248393
https://doi.org/10.1145/3034786.3056117
https://doi.org/10.4230/LIPIcs.ESA.2016.0
https://doi.org/10.1145/3210377.3210381
https://doi.org/10.1145/3210377.3210381
https://www.facebook.com/notes/mysql-at-facebook/something-awesome-in-innodb-the-insert-buffer/492969385932/
https://www.facebook.com/notes/mysql-at-facebook/something-awesome-in-innodb-the-insert-buffer/492969385932/

on Accelerating Data Management Systems Using Modern Processor and Storage
Architectures - (ADMS).

[25] Feng Chen, Binbing Hou, and Rubao Lee. 2016. Internal Parallelism of Flash

Memory-Based Solid-State Drives. Transactions on Storage (TOS) 12, 3, Article 13
(May 2016), 39 pages. https://doi.org/10.1145/2818376

[26] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gary Valentin. 2002.

Fractal Prefetching B
∗
-Trees: Optimizing Both Cache and Disk Performance. In

Proceedings of the 2002 ACM SIGMOD International Conference on Management of
Data. 157–168.

[27] Douglas Comer. 1979. The Ubiquitous B-Tree. 11, 2 (June 1979), 121–137.

[28] Alexander Conway, Ainesh Bakshi, Yizheng Jiao, William Jannen, Yang Zhan, Jun

Yuan, Michael A. Bender, Rob Johnson, Bradley C. Kuszmaul, Donald E. Porter,

and Martin Farach-Colton. 2017. File Systems Fated for Senescence? Nonsense,

Says Science!. In 15th USENIX Conference on File and Storage Technologies (FAST).
45–58.

[29] Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan, Michael A. Bender,

William Jannen, Rob Johnson, Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan,

and Martin Farach-Colton. 2017. How to Fragment Your File System. ;login: 42, 2
(2017). https://www.usenix.org/publications/login/summer2017/conway

[30] Alexander Conway, Martin Farach-Colton, and Philip Shilane. 2018. Optimal

Hashing in External Memory. In Proceedings of the 45th International Colloquium
on Automata, Languages and Programming (ICALP). 39:1–39:14. https://doi.org/

10.4230/LIPIcs.ICALP.2018.39

[31] Alex Conway, Eric Knorr, Yizheng Jiao, Michael A. Bender, William Jannen, Rob

Johnson, Donald E. Porter, and Martin Farach-Colton. 2019. Filesystem Aging:

ItâĂŹs more Usage than Fullness. In 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage).

[32] Peter Desnoyers. 2013. What Systems Researchers Need to Know about NAND

Flash. In Proceedings of the 5th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage).

[33] John Esmet, Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul.

2012. The TokuFS Streaming File System. In Proceedings of the 4th USENIX
Conference on Hot Topics in Storage and File Systems (HotStorage). 14.

[34] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.

2012. Cache-Oblivious Algorithms. ACM Transactions on Algorithms (TALG) 8, 1
(2012), 4.

[35] Pedram Ghodsnia, Ivan T. Bowman, and Anisoara Nica. 2014. Parallel I/O Aware

Query Optimization. In Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data. 349–360. https://doi.org/10.1145/2588555.2595635

[36] Google, Inc. [n. d.]. LevelDB: A fast and lightweight key/value database library

by Google. https://github.com/google/leveldb, Last Accessed Sep. 26, 2018.

[37] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2017. The Unwritten Contract of Solid State Drives. In Proceedings of
the Twelfth European Conference on Computer Systems (EuroSys). 127–144.

[38] IBM. 2017. Buffered inserts in partitioned database environments.

https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.

luw.apdv.embed.doc/doc/c0061906.html.

[39] IBM Informix. [n. d.]. Understanding SQL insert cursors. https:

//www.ibm.com/support/knowledgecenter/en/SSBJG3_2.5.0/com.ibm.gen_

busug.doc/c_fgl_InsertCursors_002.htm

[40] Riko Jacob and Nodari Sitchinava. 2017. Lower Bounds in the Asymmetric

ExternalMemoryModel. In Proceedings of the 29th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 247–254. https://doi.org/10.1145/3087556.

3087583

[41] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng

Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, Michael A.

Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.

Porter. 2015. BetrFS: A Right-Optimized Write-Optimized File System. In Pro-
ceedings of the 13th USENIX Conference on File and Storage Technologies (FAST).
301–315.

[42] Chris Jermaine, Anindya Datta, and Edward Omiecinski. 1999. A Novel In-

dex Supporting High Volume Data Warehouse Insertion. In Proceedings of 25th
International Conference on Very Large Data Bases (VLDB). 235–246. http:

//www.vldb.org/conf/1999/P23.pdf

[43] Bradley C. Kuszmaul. 2009. How Fractal Trees Work. In OpenSQL Camp. Portland,
OR, USA. An expanded version was presented at the MySQL User Conference,

Santa Clara, CA, USA April 2010.

[44] Amanda McPherson. [n. d.]. A Conversation with Chris Mason on Btrfs: the next

generation file system for Linux. https://www.linuxfoundation.org/blog/2009/

06/a-conversation-with-chris-mason-on-btrfs/, Last Accessed Sep. 26, 2018.

[45] MySQL 5.7 Reference Manual. [n. d.]. Chapter 15 The InnoDB Storage Engine.

http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html.

[46] NuDB. 2016. NuDB: A fast key/value insert-only database for SSD drives in

C++11. https://github.com/vinniefalco/NuDB.

[47] Patrick O’Neil, Edward Cheng, Dieter Gawlic, and Elizabeth O’Neil. 1996. The

Log-Structured Merge-Tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.
https://doi.org/10.1007/s002360050048

[48] Oracle. 2017. Tuning the Database Buffer Cache. https://docs.oracle.com/

database/121/TGDBA/tune_buffer_cache.htm.

[49] Oracle Corporation. [n. d.]. MySQL 5.5 Reference Manual. https://dev.mysql.

com/doc/refman/5.5/en/innodb-file-space.html, Last Accessed Sep. 26, 2018.

[50] Oracle Corporation. 2015. Oracle BerkeleyDB Reference Guide. http://sepp.

oetiker.ch/subversion-1.5.4-rp/ref/am_conf/pagesize.html, Last Accessed August

12, 2015.

[51] Oracle Corporation. 2016. Setting Up Your Data Warehouse System. https:

//docs.oracle.com/cd/B28359_01/server.111/b28314/tdpdw_system.htm.

[52] Anastasios Papagiannis, Giorgos Saloustros, Pilar González-Férez, and Angelos

Bilas. 2016. Tucana: Design and Implementation of a Fast and Efficient Scale-up

Key-value Store. In Proceedings of the USENIX 2016 Annual Technical Conference
(USENIX ATC). 537–550.

[53] John Paul. [n. d.]. Teradata Thoughts. http://teradata-thoughts.blogspot.com/

2013/10/teradata-13-vs-teradata-14_20.html, Last Accessed Sep. 26, 2018.

[54] Harald Prokop. 1999. Cache-Oblivious Algorithms. Master’s thesis. Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-

nology.

[55] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.

PebblesDB: Building Key-Value Stores using Fragmented Log-Structured Merge

Trees. In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP). 497–514. https://doi.org/10.1145/3132747.3132765

[56] Mendel Rosenblum and John K. Ousterhout. 1992. The Design and Implementa-

tion of a Log-structured File System. ACM Trans. Comput. Syst. 10, 1 (Feb. 1992),
26–52. https://doi.org/10.1145/146941.146943

[57] C Ruemmler and J. Wilkes. 1994. An introduction to disk drive modeling. IEEE
Computer 27, 3 (1994), 17–29.

[58] SAP. 2017. RLV Data Store for Write-Optimized Storage. http://help-legacy.sap.

com/saphelp_iq1611_iqnfs/helpdata/en/a3/13783784f21015bf03c9b06ad16fc0/

content.htm.

[59] Keith A. Smith and Margo I. Seltzer. 1997. File System Aging — Increasing the

Relevance of File System Benchmarks. InMeasurement and Modeling of Computer
Systems. 203–213.

[60] TokuDB. [n. d.]. https://github.com/percona/PerconaFT, Last Accessed Sep. 24

2018..

[61] Tokutek, Inc. [n. d.]. TokuMX—MongoDB Performance Engine. https://www.

percona.com/software/mongo-database/percona-tokumx, Last Accessed Sep. 26,

2018.

[62] Tokutek, Inc. 2013. TokuDB: MySQL Performance, MariaDB Performance. http:

//www.tokutek.com/products/tokudb-for-mysql/.

[63] Vertica. 2017. WOS (Write Optimized Store). https://my.vertica.com/docs/7.1.x/

HTML/Content/Authoring/Glossary/WOSWriteOptimizedStore.htm.

[64] Jeffrey Scott Vitter. 2001. External memory algorithms and data structures:

Dealing with massive data. ACM Computing surveys (CsUR) 33, 2 (2001), 209–
271.

[65] James Christopher Wyllie. 1979. The Complexity of Parallel Computations. Ph.D.
Dissertation. Ithaca, NY, USA. AAI8004008.

[66] Jimmy Xiang. 2012. Apache HBase Write Path. http://blog.cloudera.com/blog/

2012/06/hbase-write-path/.

[67] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala,

Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Leif Walsh, Michael A. Ben-

der, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E.

Porter. 2016. Optimizing Every Operation in a Write-optimized File System. In

Proceedings of the 14th USENIX Conference on File and Storage Technologies (FAST).
1–14.

[68] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala,

Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Leif Walsh, Michael A. Bender,

Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E. Porter.

2017. Writes Wrought Right, and Other Adventures in File System Optimization.

TOS 13, 1 (2017), 3:1–3:26.
[69] Yang Zhan, Alexander Conway, Yizheng Jiao, Eric Knorr, Michael A. Bender,

Martin Farach-Colton, William Jannen, Rob Johnson, Donald E. Porter, and Jun

Yuan. 2018. The Full Path to Full-Path Indexing. In Proceedings of the 16th USENIX
Conference on File and Storage Technologies (FAST). 123–138.

https://doi.org/10.1145/2818376
https://www.usenix.org/publications/login/summer2017/conway
https://doi.org/10.4230/LIPIcs.ICALP.2018.39
https://doi.org/10.4230/LIPIcs.ICALP.2018.39
https://doi.org/10.1145/2588555.2595635
https://github.com/google/leveldb
https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.embed.doc/doc/c0061906.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.apdv.embed.doc/doc/c0061906.html
https://www.ibm.com/support/knowledgecenter/en/SSBJG3_2.5.0/com.ibm.gen_busug.doc/c_fgl_InsertCursors_002.htm
https://www.ibm.com/support/knowledgecenter/en/SSBJG3_2.5.0/com.ibm.gen_busug.doc/c_fgl_InsertCursors_002.htm
https://www.ibm.com/support/knowledgecenter/en/SSBJG3_2.5.0/com.ibm.gen_busug.doc/c_fgl_InsertCursors_002.htm
https://doi.org/10.1145/3087556.3087583
https://doi.org/10.1145/3087556.3087583
http://www.vldb.org/conf/1999/P23.pdf
http://www.vldb.org/conf/1999/P23.pdf
https://www.linuxfoundation.org/blog/2009/06/a-conversation-with-chris-mason-on-btrfs/
https://www.linuxfoundation.org/blog/2009/06/a-conversation-with-chris-mason-on-btrfs/
http://dev.mysql.com/doc/refman/5.7/en/innodb-storage-engine.html
https://github.com/vinniefalco/NuDB
https://doi.org/10.1007/s002360050048
https://docs.oracle.com/database/121/TGDBA/tune_buffer_cache.htm
https://docs.oracle.com/database/121/TGDBA/tune_buffer_cache.htm
https://dev.mysql.com/doc/refman/5.5/en/innodb-file-space.html
https://dev.mysql.com/doc/refman/5.5/en/innodb-file-space.html
http://sepp.oetiker.ch/subversion-1.5.4-rp/ref/am_conf/pagesize.html
http://sepp.oetiker.ch/subversion-1.5.4-rp/ref/am_conf/pagesize.html
https://docs.oracle.com/cd/B28359_01/server.111/b28314/tdpdw_system.htm
https://docs.oracle.com/cd/B28359_01/server.111/b28314/tdpdw_system.htm
http://teradata-thoughts.blogspot.com/2013/10/teradata-13-vs-teradata-14_20.html
http://teradata-thoughts.blogspot.com/2013/10/teradata-13-vs-teradata-14_20.html
https://doi.org/10.1145/3132747.3132765
https://doi.org/10.1145/146941.146943
http://help-legacy.sap.com/saphelp_iq1611_iqnfs/helpdata/en/a3/13783784f21015bf03c9b06ad16fc0/content.htm
http://help-legacy.sap.com/saphelp_iq1611_iqnfs/helpdata/en/a3/13783784f21015bf03c9b06ad16fc0/content.htm
http://help-legacy.sap.com/saphelp_iq1611_iqnfs/helpdata/en/a3/13783784f21015bf03c9b06ad16fc0/content.htm
https://github.com/percona/PerconaFT
https://www.percona.com/software/mongo-database/percona-tokumx
https://www.percona.com/software/mongo-database/percona-tokumx
http://www.tokutek.com/products/tokudb-for-mysql/
http://www.tokutek.com/products/tokudb-for-mysql/
https://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/Glossary/WOSWriteOptimizedStore.htm
https://my.vertica.com/docs/7.1.x/HTML/Content/Authoring/Glossary/WOSWriteOptimizedStore.htm
http://blog.cloudera.com/blog/2012/06/hbase-write-path/
http://blog.cloudera.com/blog/2012/06/hbase-write-path/

	Abstract
	1 Introduction
	2 The PDAM and Affine Models
	2.1 Disk Access Machine (DAM) Model
	2.2 SSDs and the PDAM
	2.3 Hard Disks and the Affine Model

	3 Background on B-trees and B-trees
	4 Microbenchmarks to Validate the Affine and PDAM Models
	4.1 Validating the PDAM Model
	4.2 Validating the Affine Model

	5 B-tree Nodes in the Affine Model
	5.1 Large Nodes Optimize Lookups, Updates, and Range Queries

	6 B-tree Nodes in the Affine Model
	7 Empirical Validation of B-tree and B-tree Node Size
	8 Conclusions and PDAM Algorithm Design
	References

