Data Systems at Scale Scaling Up by Scaling Down and Out

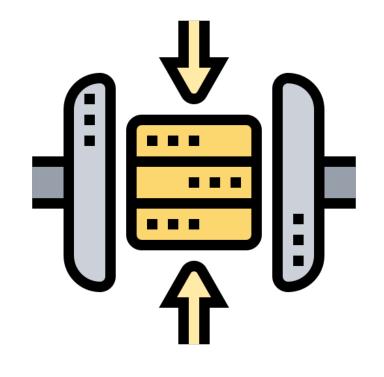
Prashant Pandey, University of Utah Northeastern University, Boston (Starting Spring 2025)

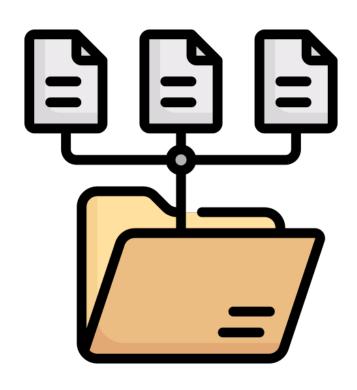
My goal as a researcher is to build scalable data systems with strong theoretical guarantees

My goal as a researcher is to build scalable data systems with strong theoretical guarantees

To scale and democratize next-generation data analyses

Three approaches to build scalable data systems



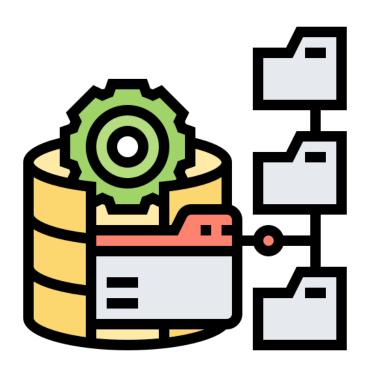


Compress it

Goal: make data smaller to fit inside fast memory

Filters, sketches, succinct data structures

Goal: organize data in a I/O friendly way



Organize it

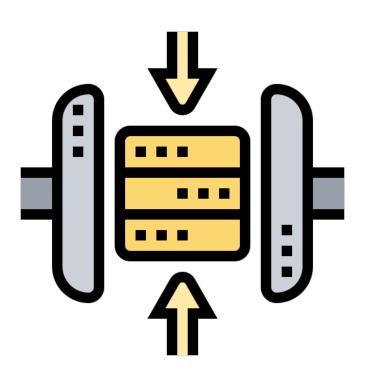
Distribute it

B-trees, LSM-trees, Be-trees

Goal: distribute data & reduce inter-node communication

Distributed hash tables

In this talk:

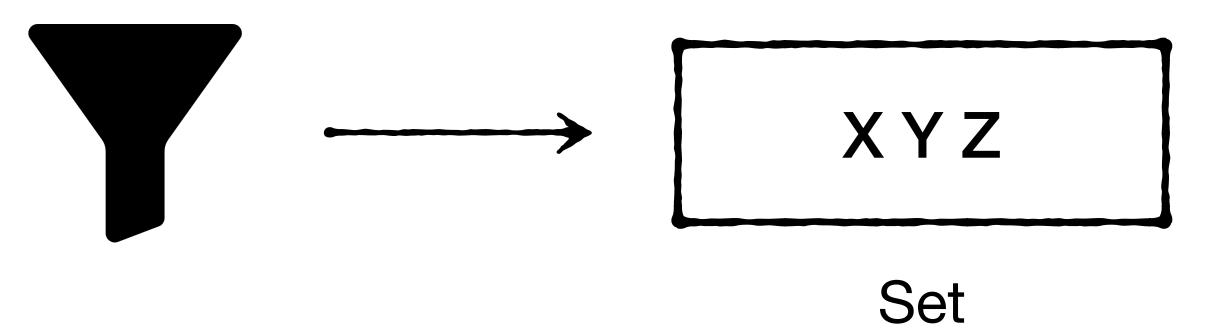


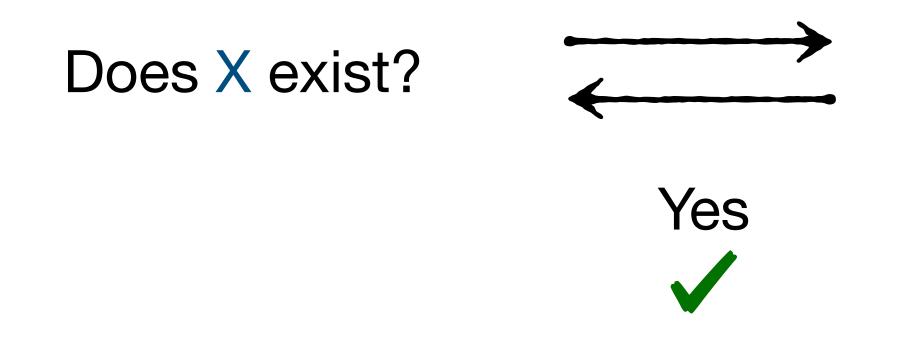
Goal: make data smaller to fit inside fast memory

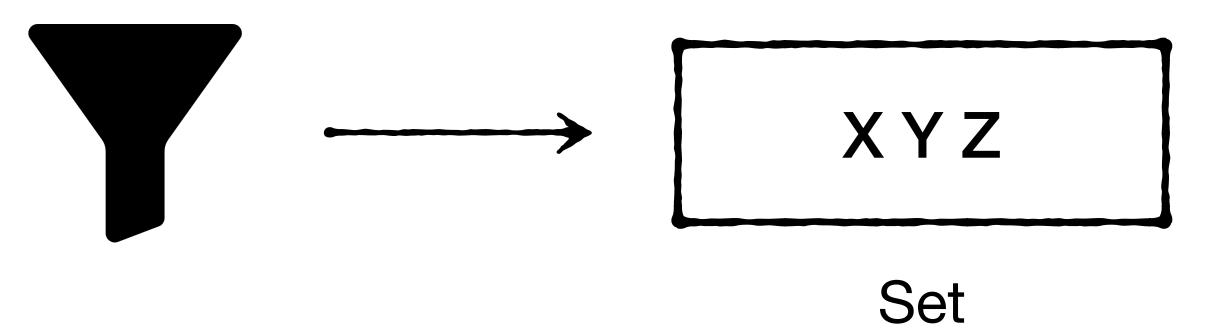
Compress it

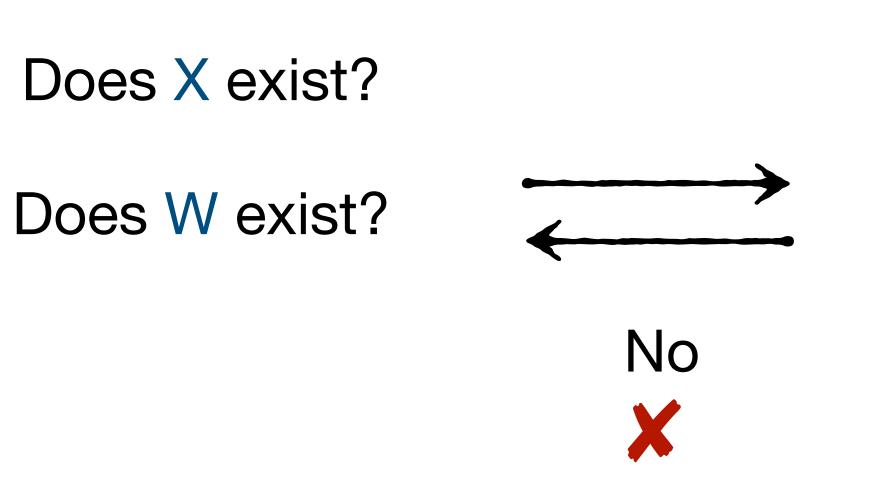
Filters

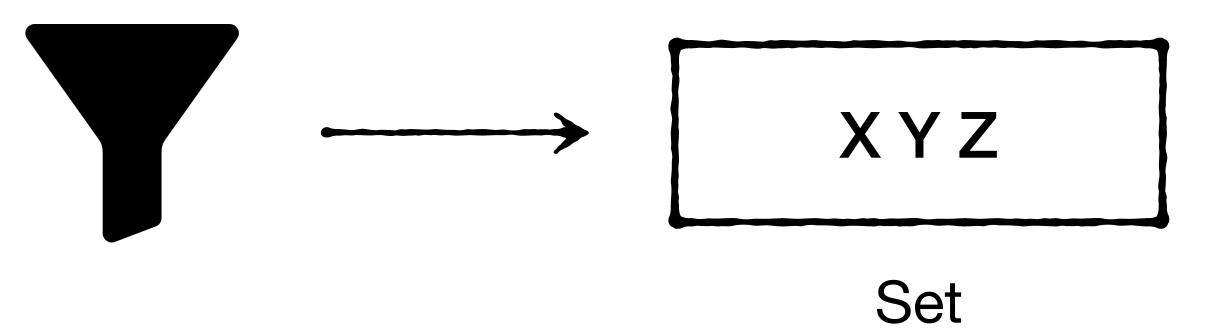
Does X exist?







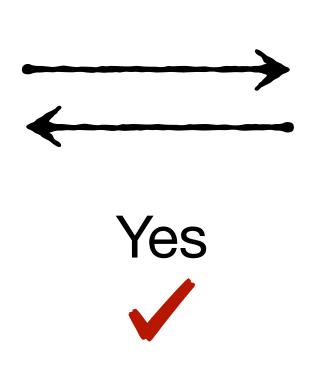


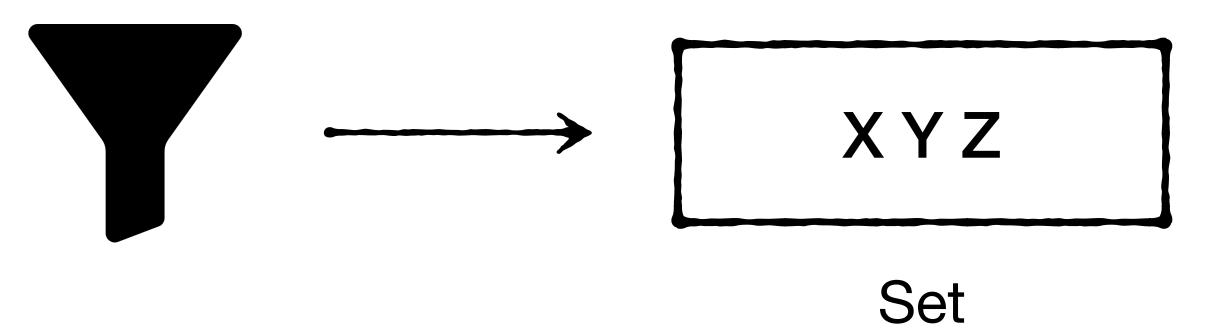


Does X exist?

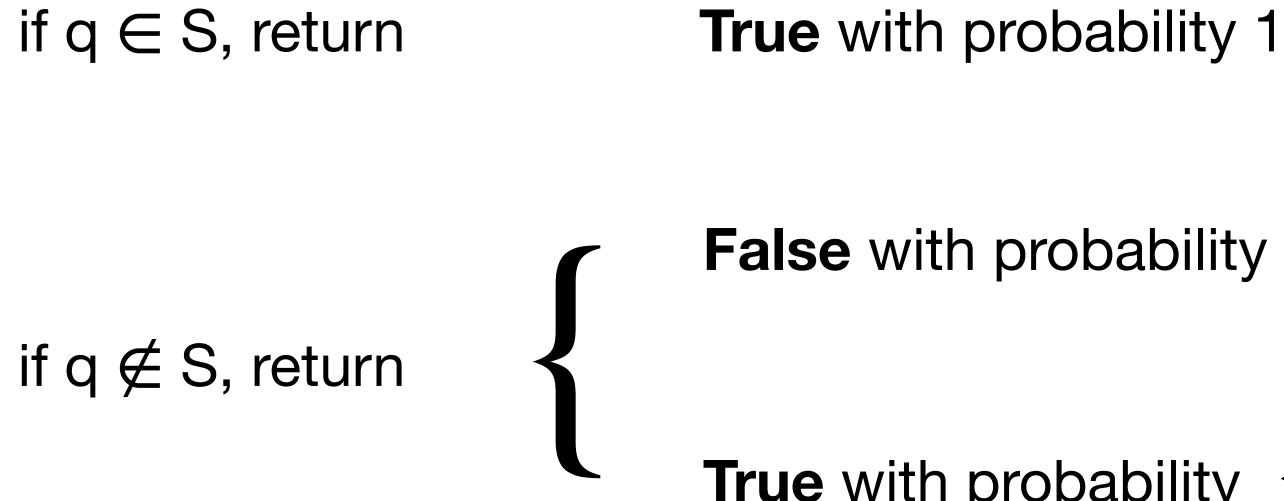
Does W exist?

Does A exist?



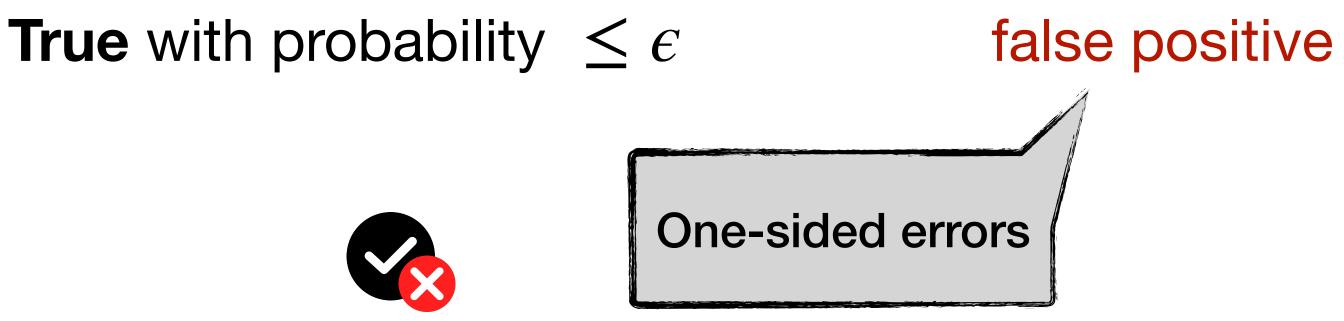


A filter guarantees a false-positive rate ϵ



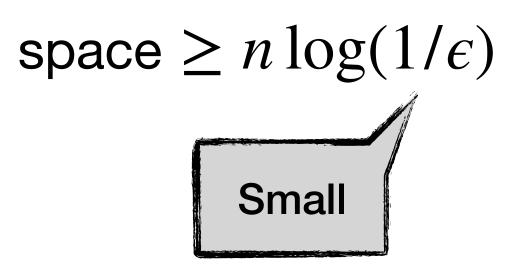
False positives with tunable probability

- q = query item S = set of items
 - true positive
- **False** with probability $> 1 \epsilon$ true negative



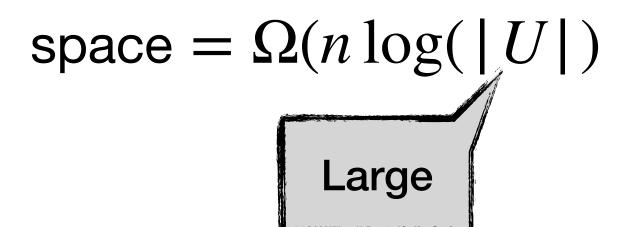
False-positives enable filters to be compact

n = number of items U = universe of items

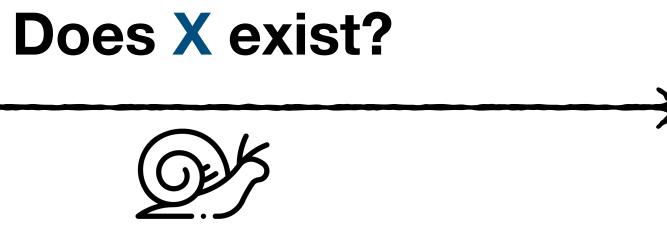


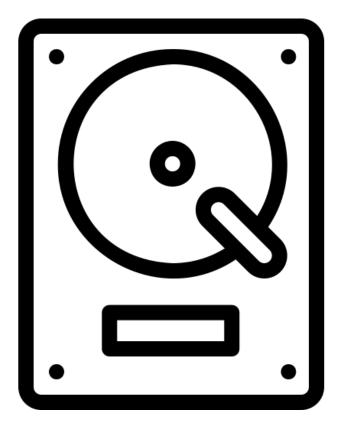
Filter

For $\epsilon = 2\%$, filters require ~1 Byte/item. Hash table/Tree can take >8-16 Byte/item.

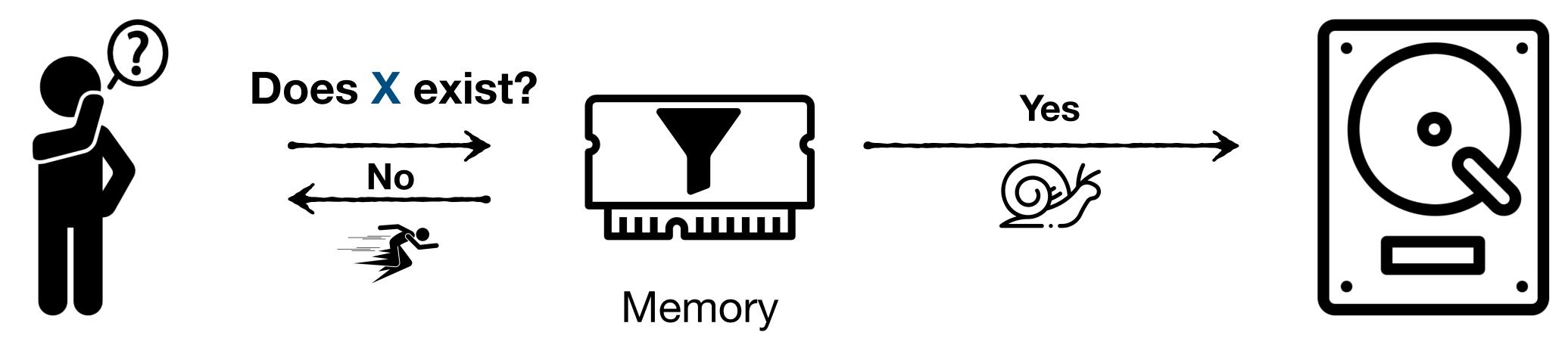


Hash table/Tree





Disk

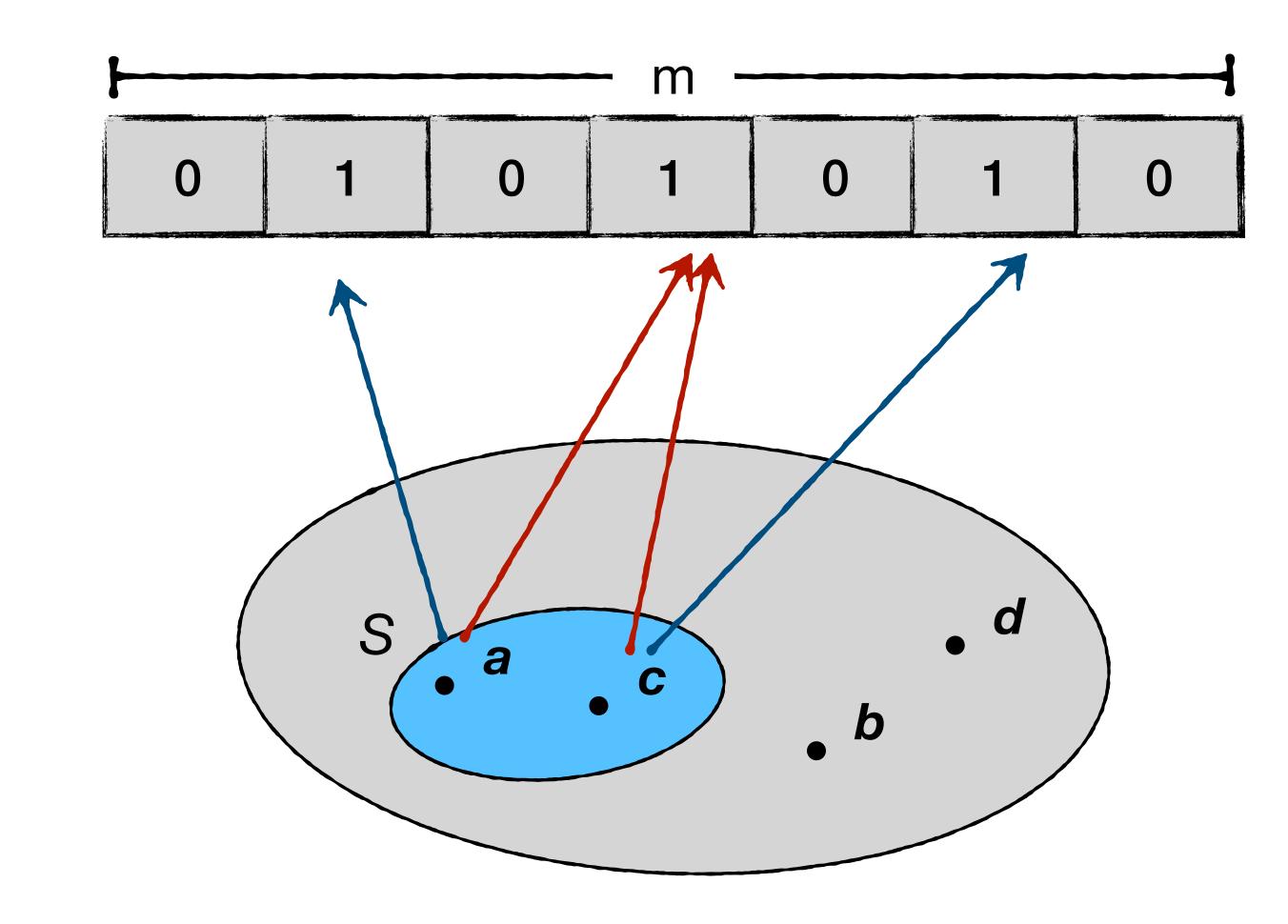


Saves unnecessary disk accesses and network hops

Disk

Classic filter: The Bloom filter (BF) [Bloom 70]

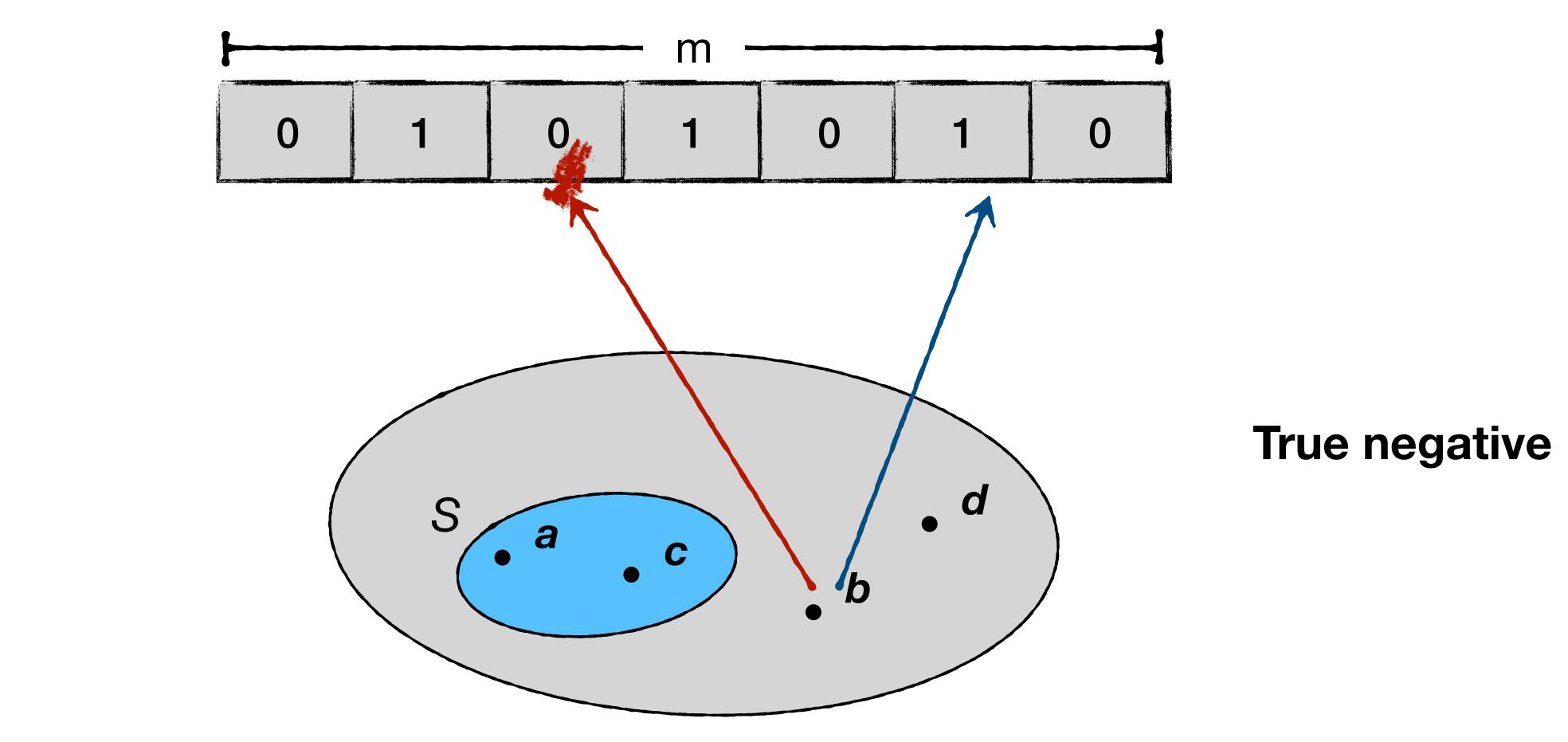
Bloom filter: *m* bit array + *k* hash functions (here *k*=2)



- $h_1(a) = 1$ $h_2(a) = 3$
- $h_1(c) = 5$ $h_2(c) = 3$

Classic filter: The Bloom filter (BF) [Bloom 70]

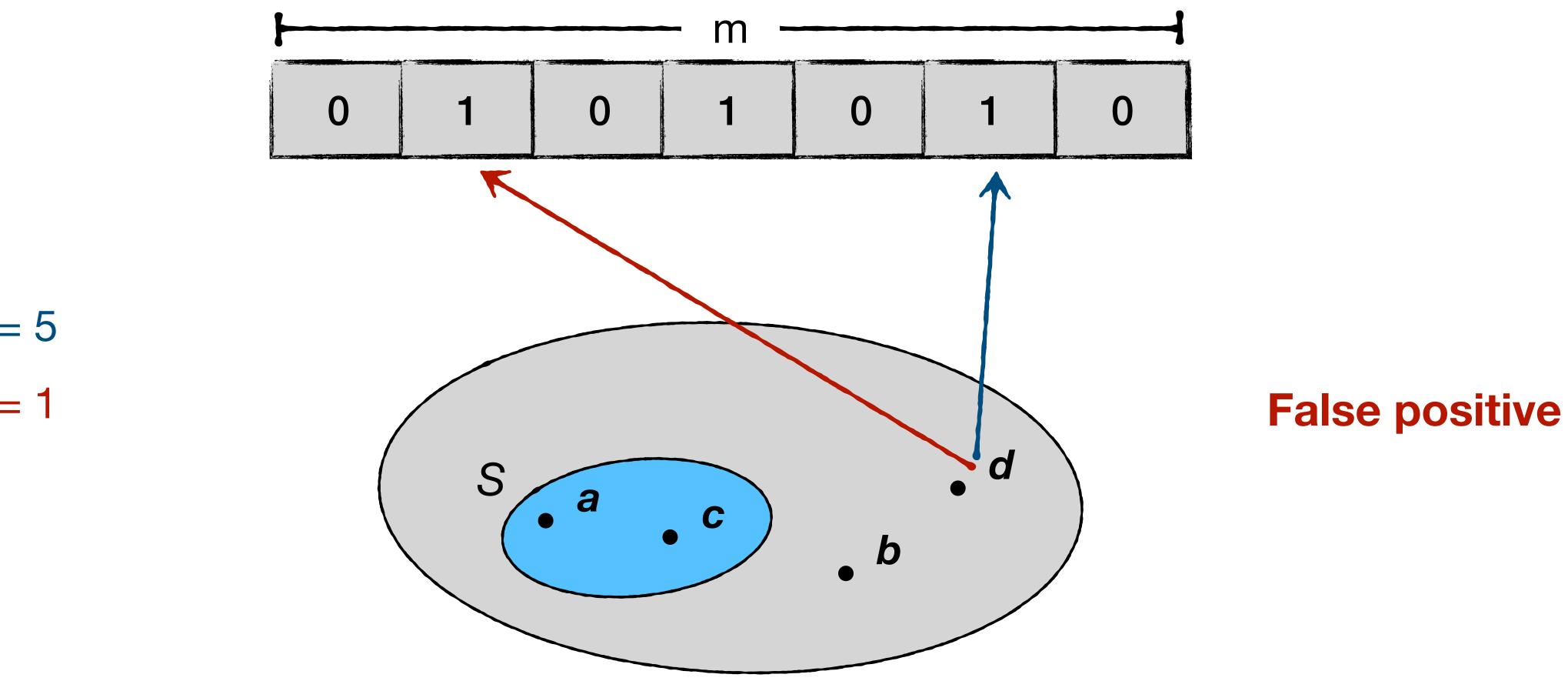
Bloom filter: *m* bit array + *k* hash functions (here *k*=2)



 $h_1(b) = 5$ $h_2(b) = 2$

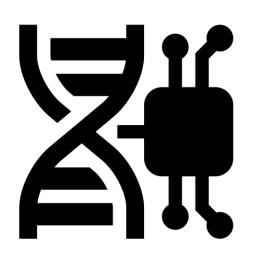
Classic filter: The Bloom filter (BF) [Bloom 70]

Bloom filter: *m* bit array + *k* hash functions (here *k*=2)



 $h_1(d) = 5$ $h_2(d) = 1$

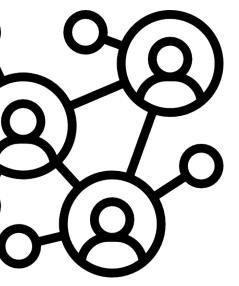
Bloom filters are ubiquitous (> 10K citations)

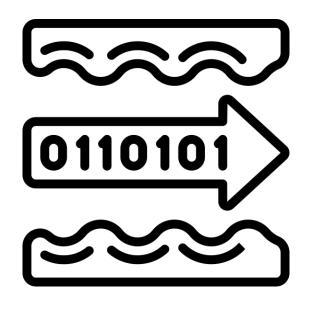




Computational biology

Databases





Stream

processing

Networking

Storage systems

Bloom filters have suboptimal performance

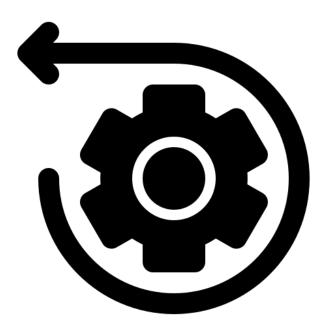
CFGMW 78: Optimal filter bound

	Bloom filter	Optimal
Space (bits)	$\sim 1.44n \log(1/\epsilon)$	$\sim n \log(1/\epsilon) + \Omega(n)$
CPU cost	$\Omega(1/\epsilon)$	<i>O</i> (1)
Data locality	$\Omega(1/\epsilon)$ probes	O(1) probes

Limitation

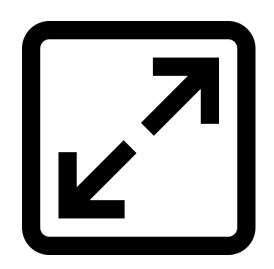
No deletes

Workaround



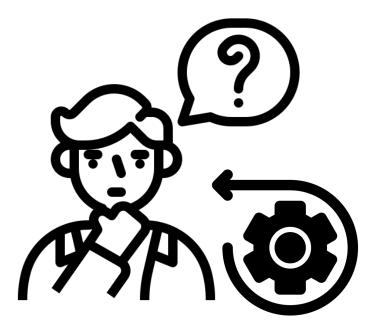
Rebuild

Limitation



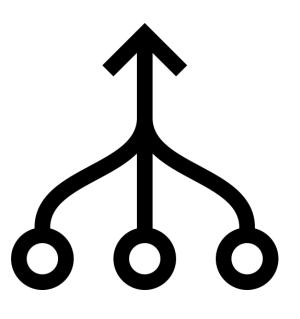
No resizes

Workaround



Guess N, Rebuild if wrong

Limitation

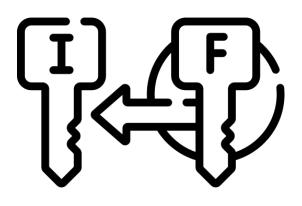


No merging or enumeration

Workaround

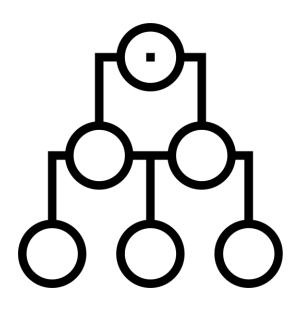
???

Limitation



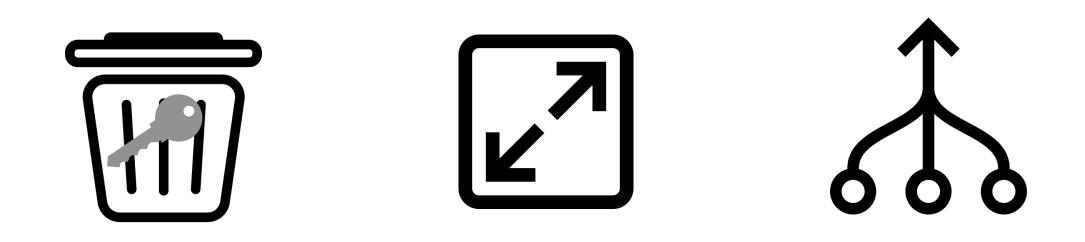
No values associated with keys

Workaround



Combine with other data structures

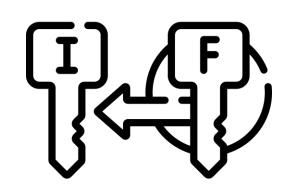
Bloom filters have several limitations

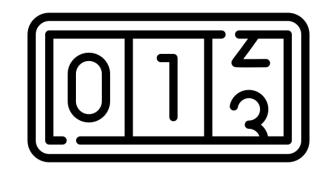


No Deletes

No Resize

No Merging/ Enumeration





No value association

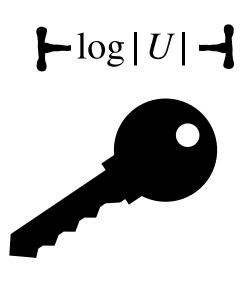
No Counting

Poor cache locality

Bloom filter limitations increase system complexity, waste space, and slow down application performance

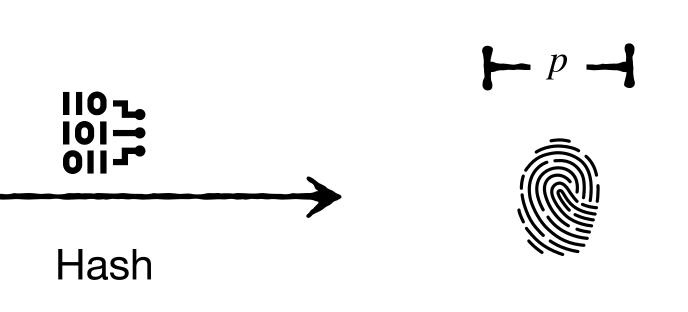
Fingerprinting is an alternative to Bloom filters

PPR05, DM09, BFJ+12, EF16, PBJ+17



Key

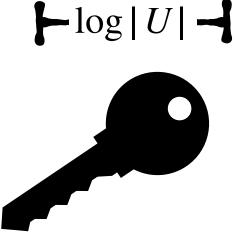
Store fingerprints compactly in a table



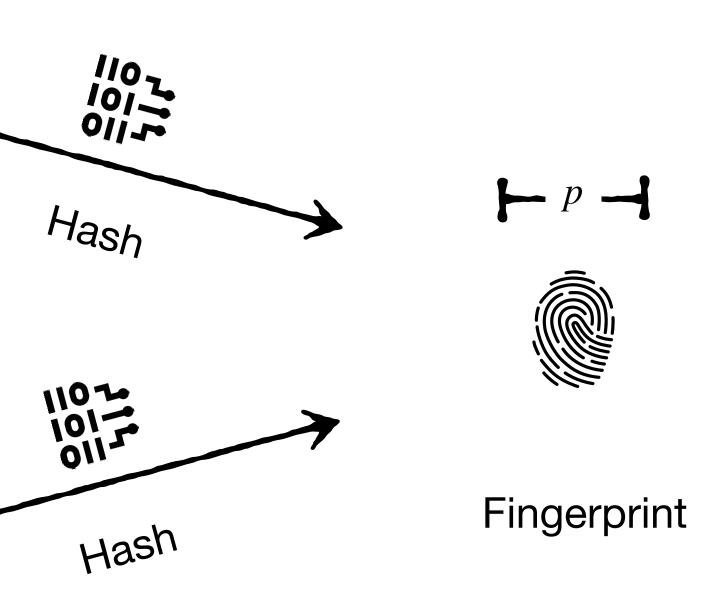
Fingerprint

Fingerprinting is an alternative to Bloom filters

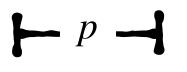
PPR05, DM09, BFJ+12, EF16, PBJ+17



False positives occur only when fingerprints collide **Pr [collision] =** $\frac{1}{2^p}$

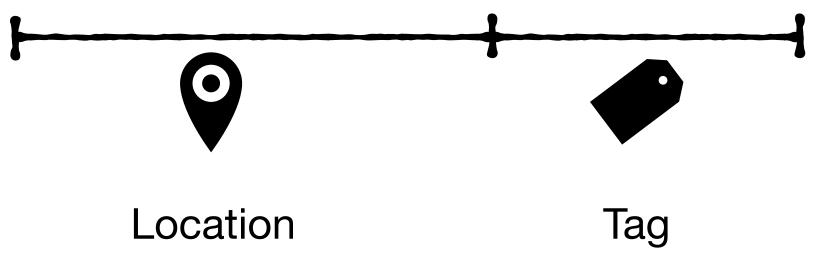


Knuth 97

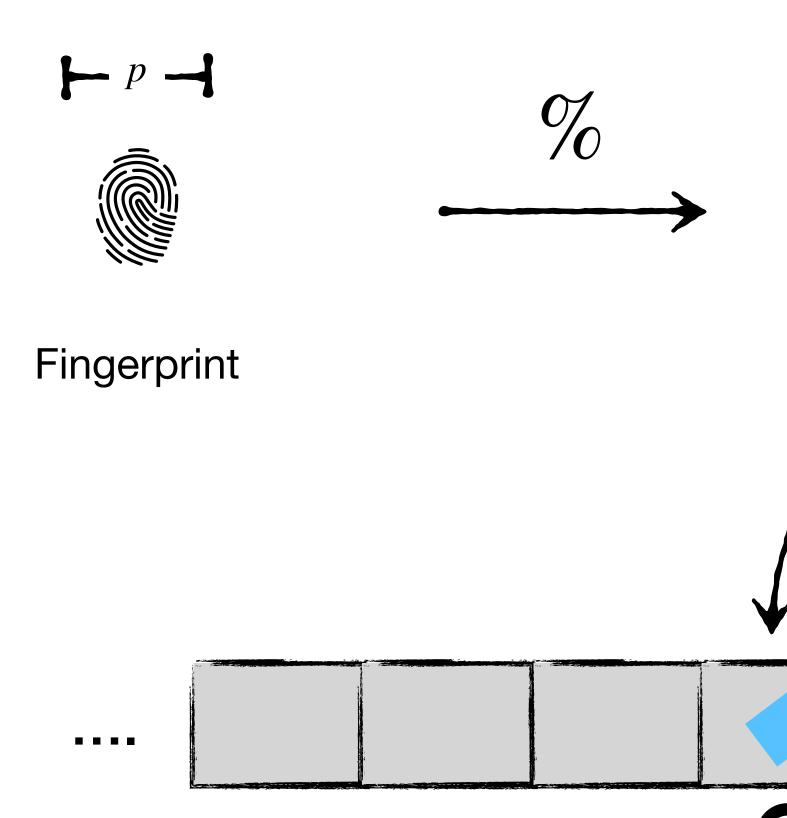


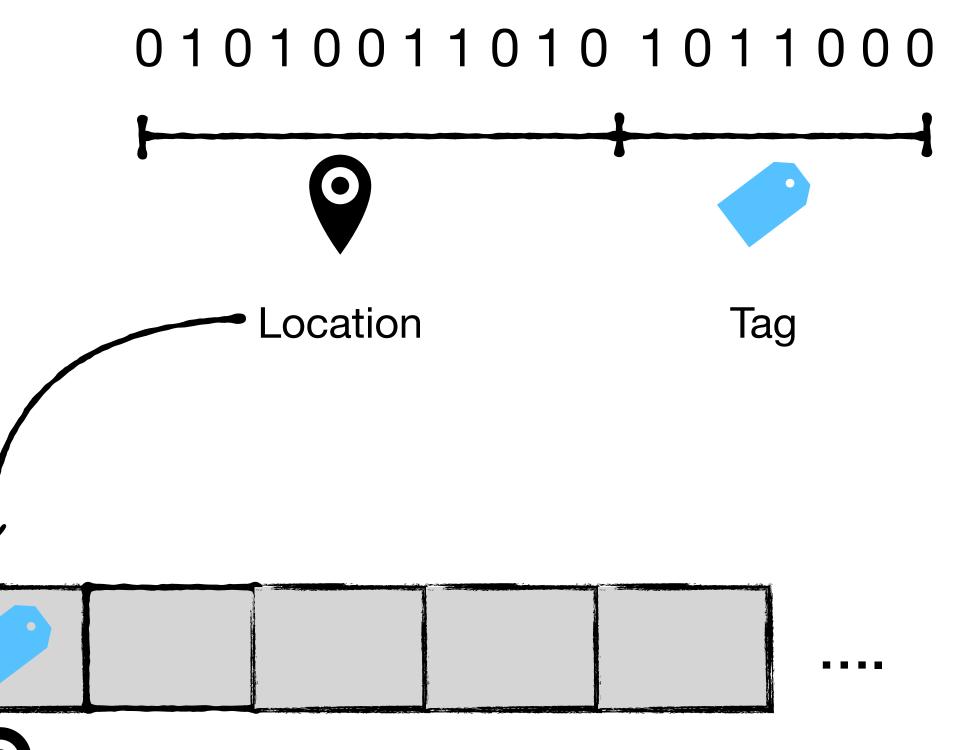
Fingerprint

01010011010 1011000

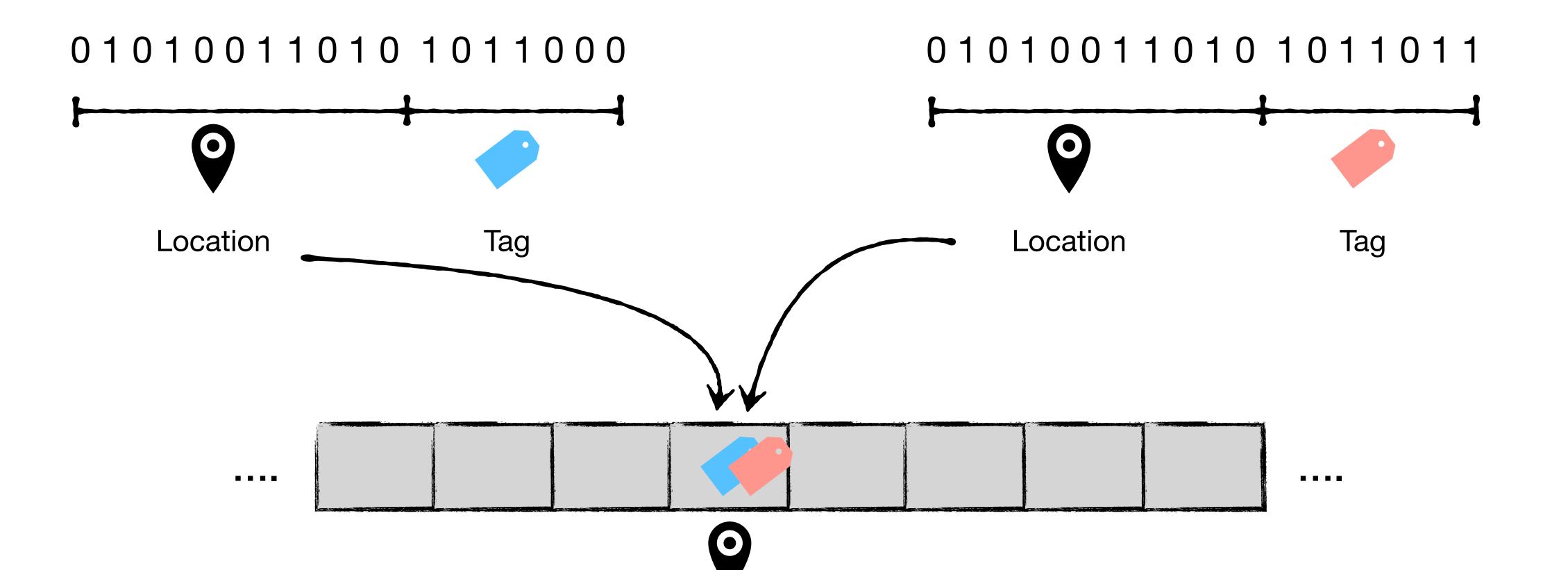


Knuth 97

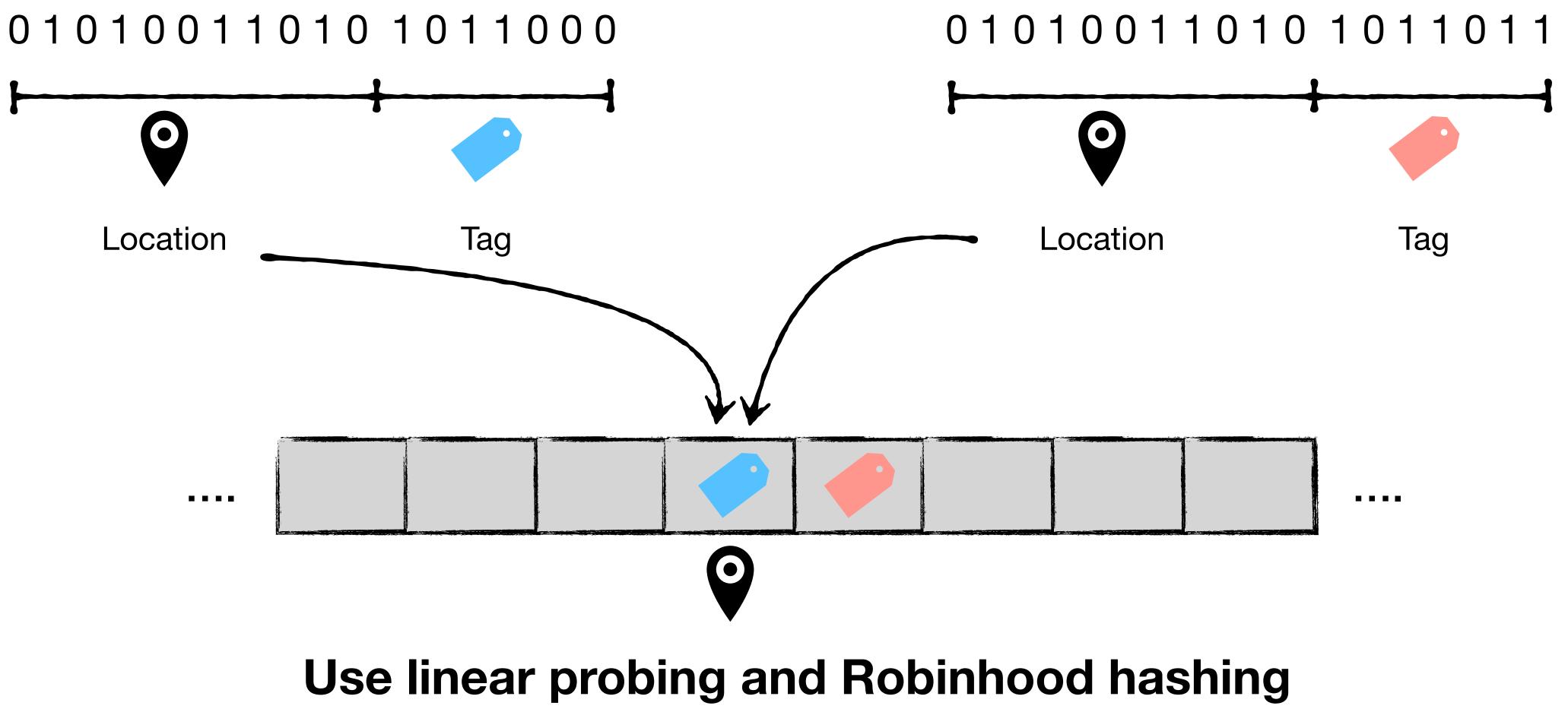




Knuth 97

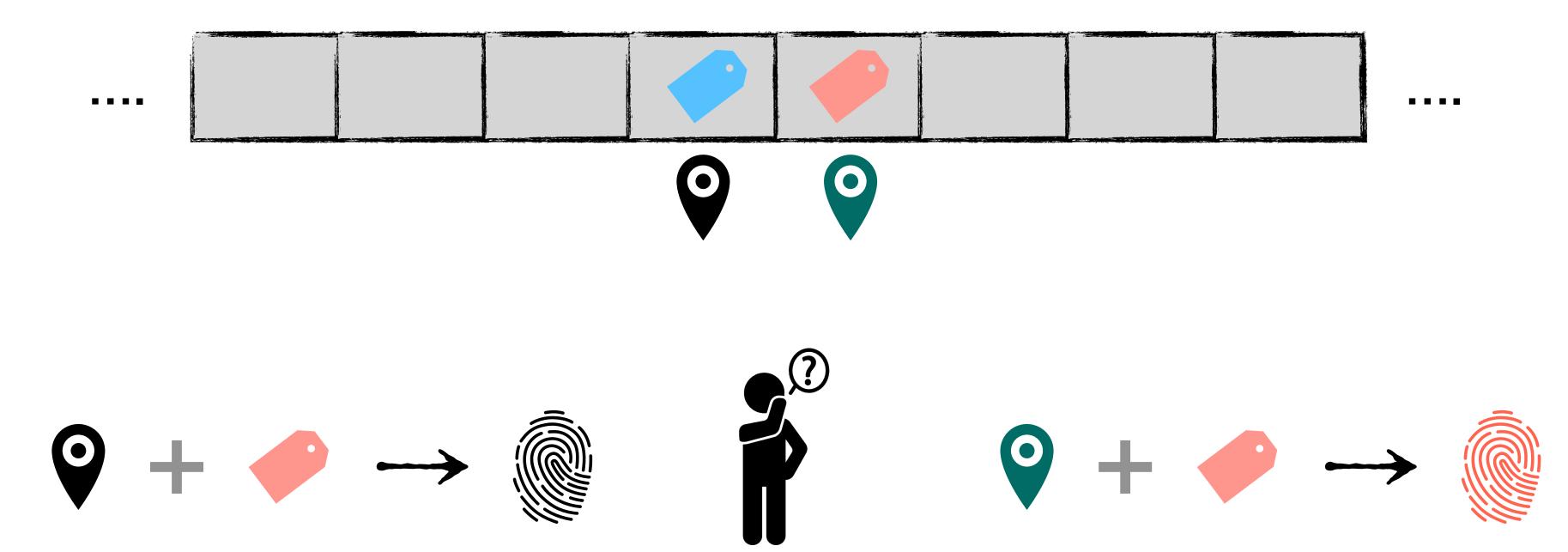


Knuth 97



Resolving collisions in quotient filter (QF)

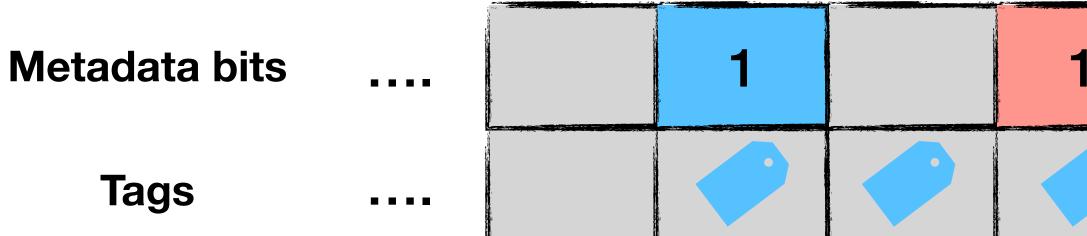
Pandey et al. SIGMOD 17



How to identify the home slot of a given tag?

Resolving collisions in quotient filter (QF)

Pandey et al. SIGMOD 17

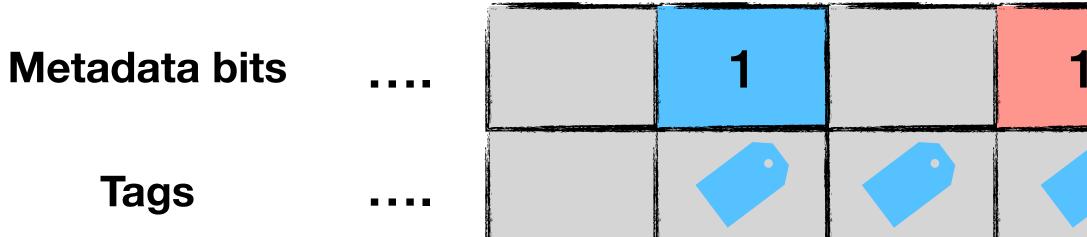


Use two metadata bits/slot to group tags by their home slot

1			

Resolving collisions in quotient filter (QF)

Pandey et al. SIGMOD 17



Metadata bits help identify the home slot of each tag

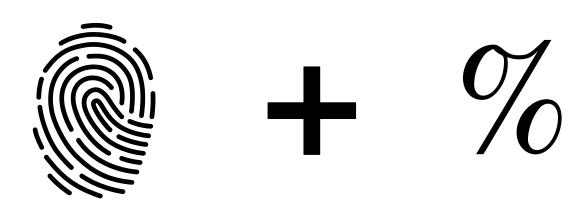
1			

Quotient filters offer better performance than BF

CFGMW 78: Optimal filter bound

	Quotient filter	Bloom filter	Optimal
Space (bits)	$\sim n \log(1/\epsilon) + 2.125n$	~ 1.44 $n\log(1/\epsilon)$	$\sim n \log(1/\epsilon) + \Omega(n)$
CPU cost	O(1) expected	$\Omega(1/\epsilon)$	<i>O</i> (1)
Data locality	1 probe + scan	$\Omega(1/\epsilon)$ probes	O(1) probes

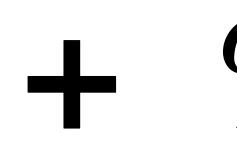
Quotient filters have theoretical advantages over Bloom filters

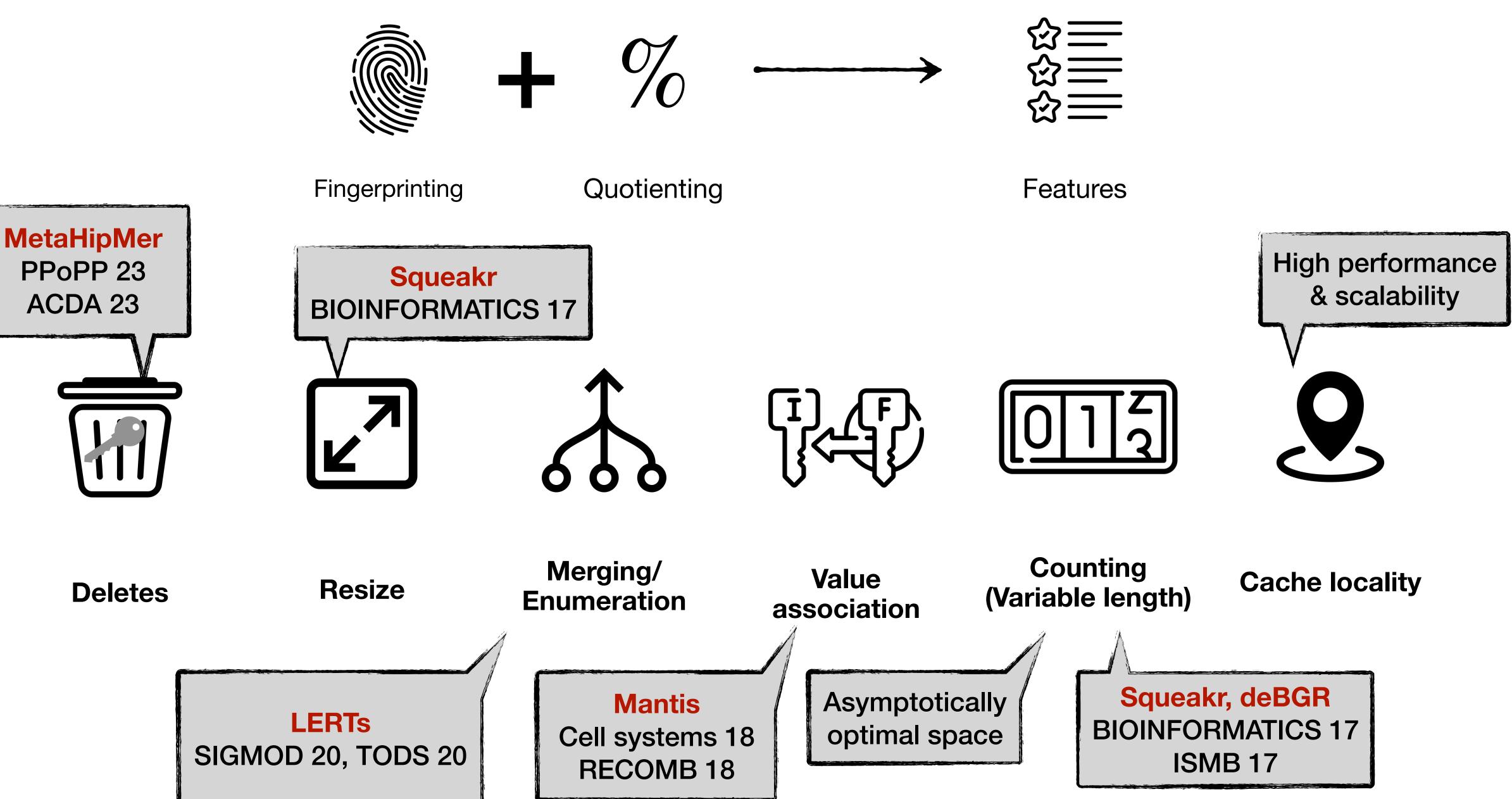


Fingerprinting

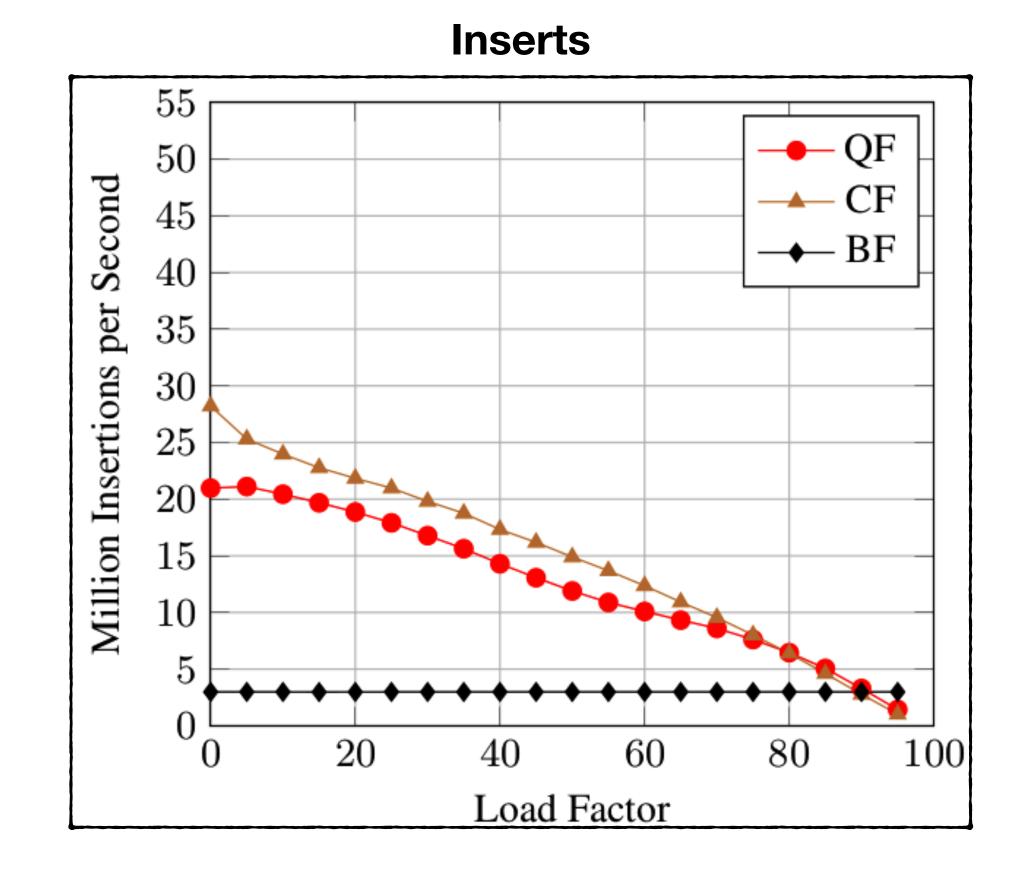
Quotienting

Features



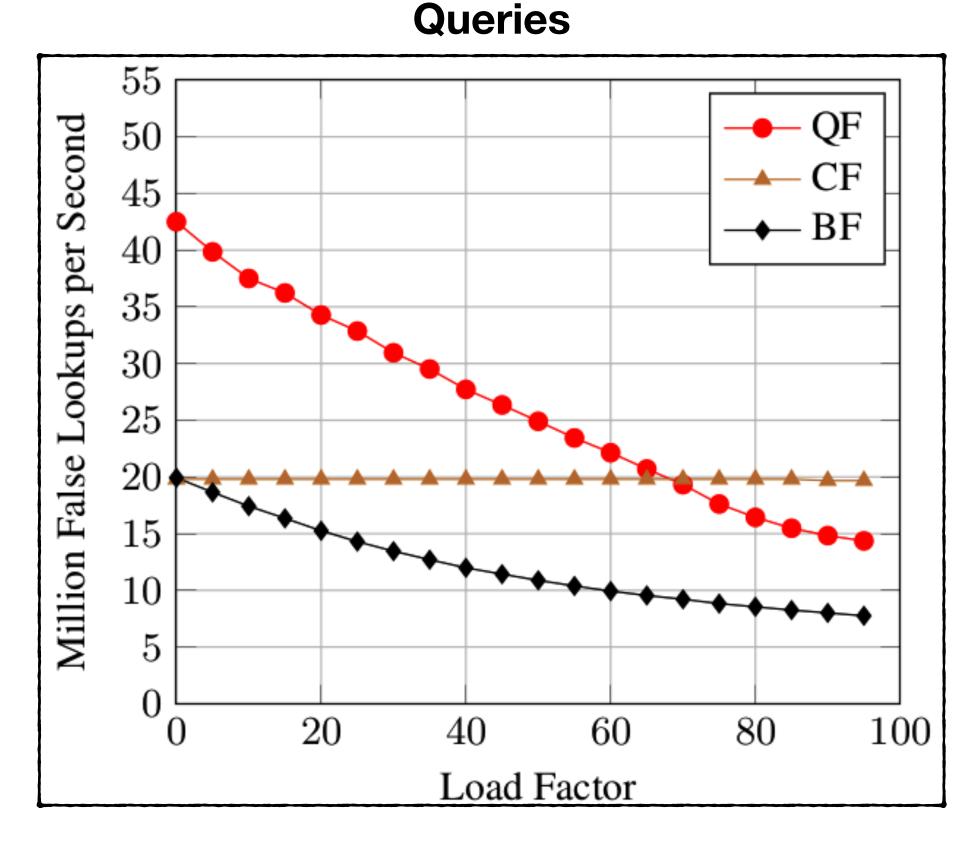


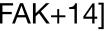
Quotient filters empirical performance



Insert performance is similar to the state-of-the-art non-counting filters Query performance is significantly fast at low load factors and slightly slower at high load factors

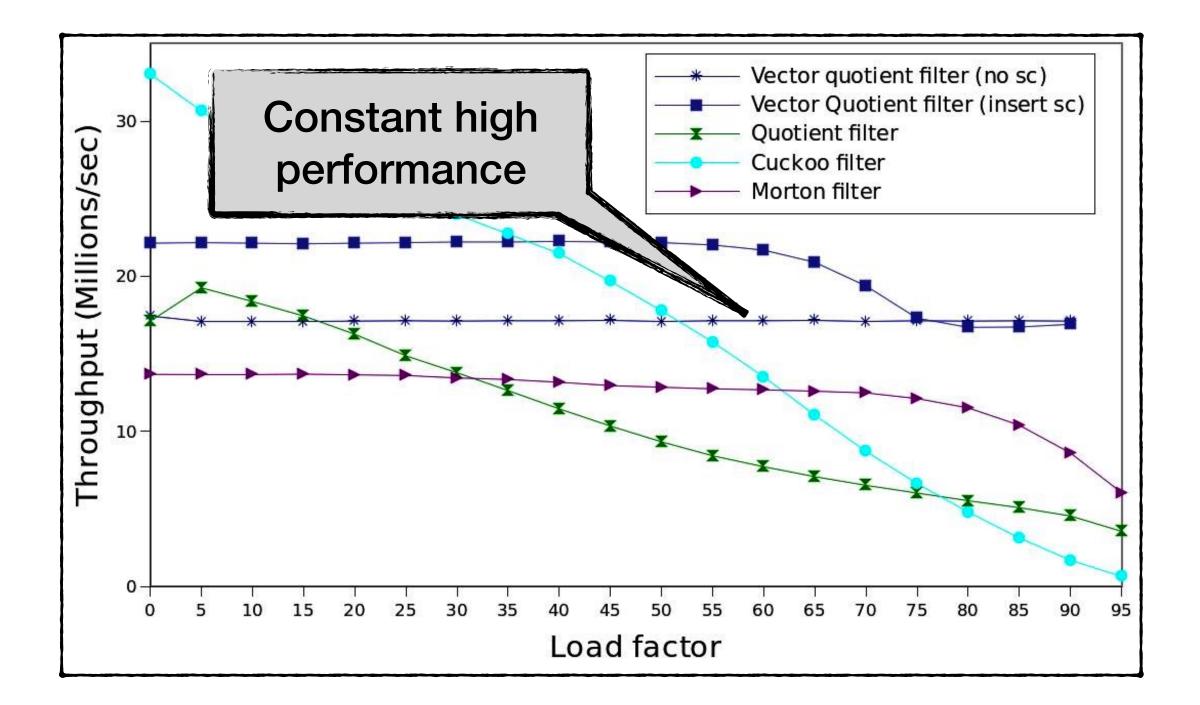
QF: quotient filter CF*: cuckoo filter [FAK+14] BF*: Bloom filter



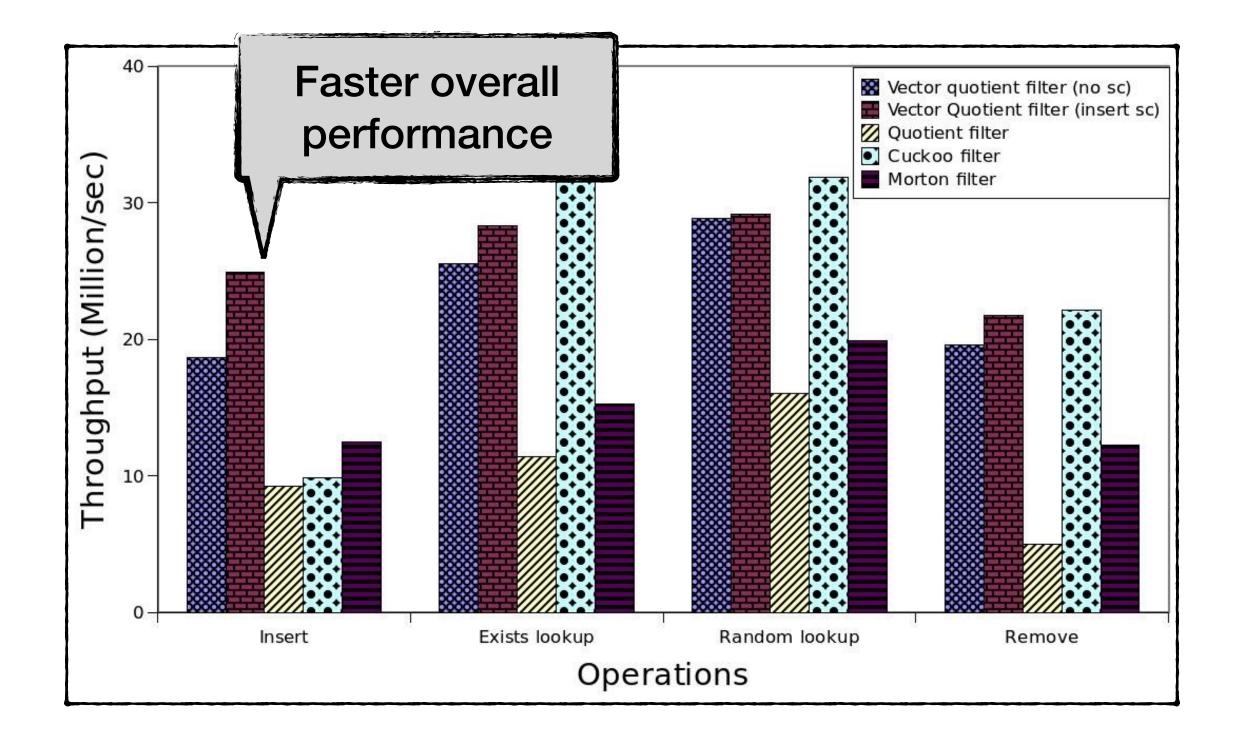


Vector quotient filters [SIGMOD 21]

Pandey et al. SIGMOD 21



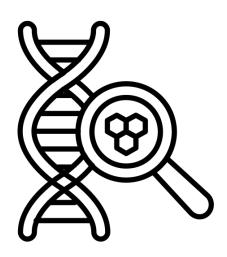
Combining hashing techniques (Robinhood hashing + power of 2-choice hashing) Using ultra-wide vector instructions (AVX-512)



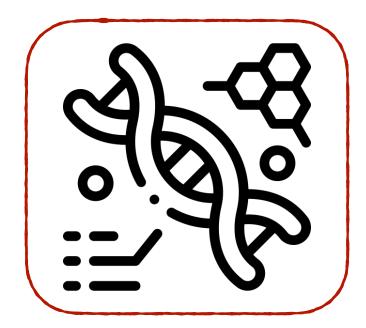
Quotient filter's impact in computer science

Databases

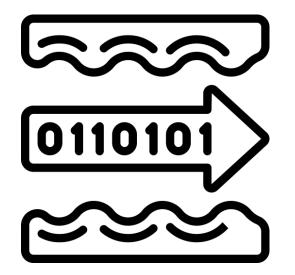
Data security



Sequence search

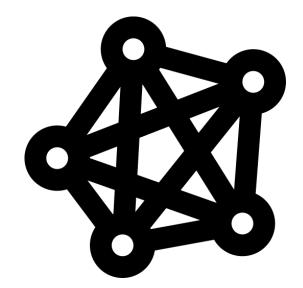


Genome assembly

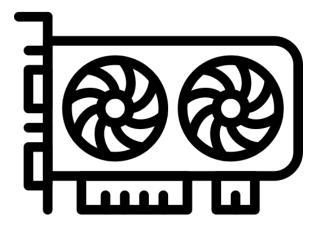


Stream analysis

Storage systems



Graph systems

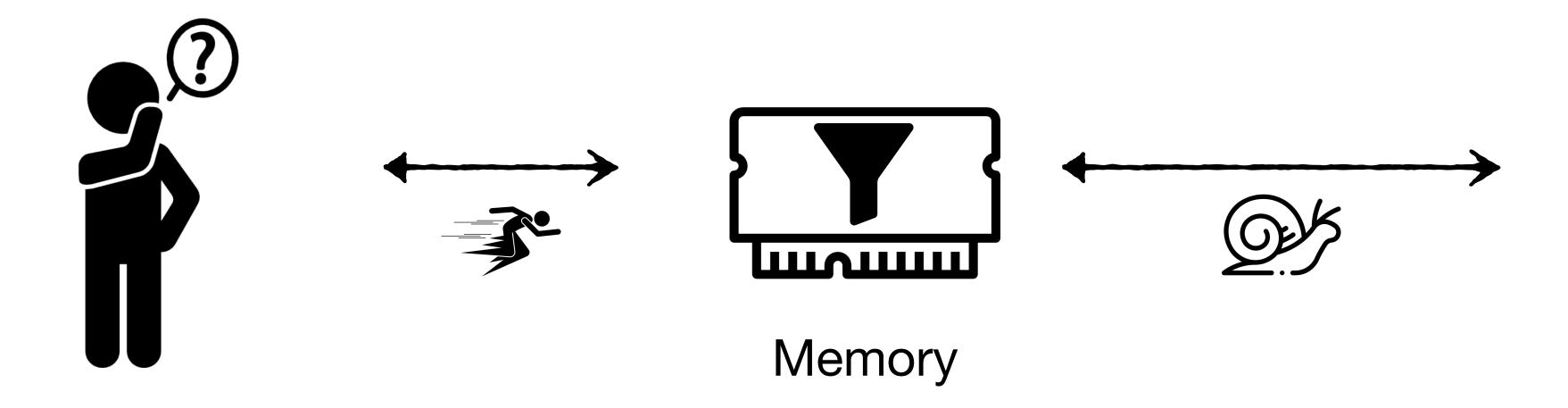


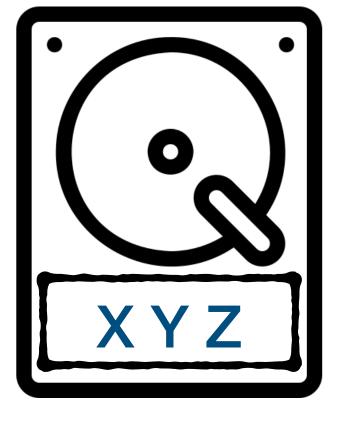
GPU data structure

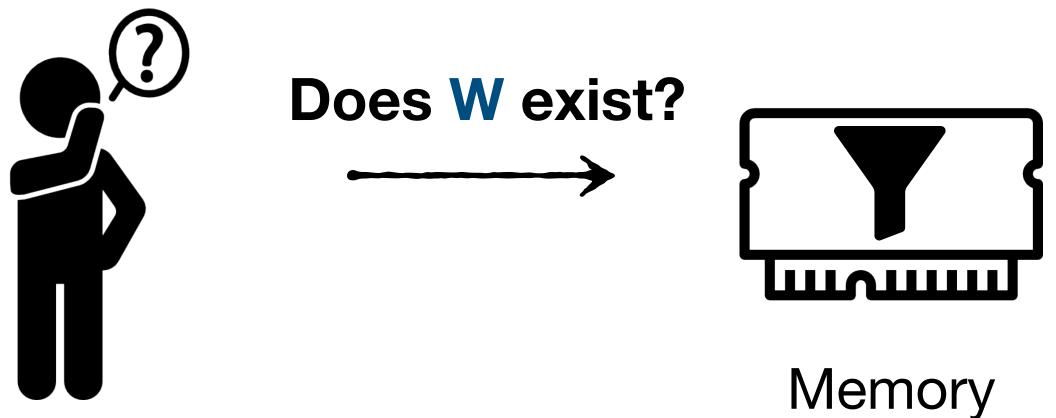
Takeaways

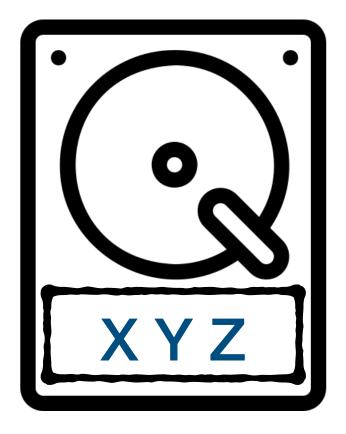
- Fingerprinting is powerful: provides deletions, enumerability, merging
- Quotienting complements fingerprinting: provides high cache locality, performance and compactness
- Quotient filter is a high-performance feature-full filter.

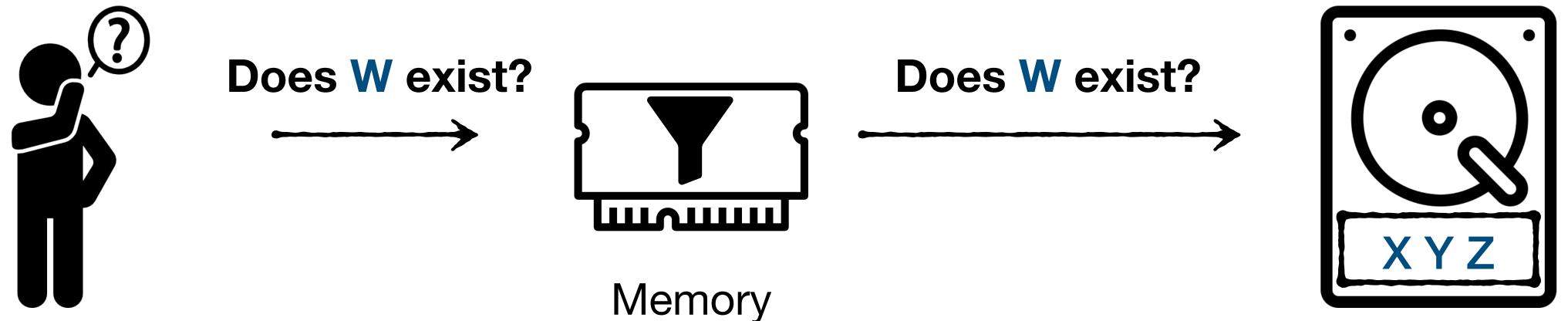
Adaptivity

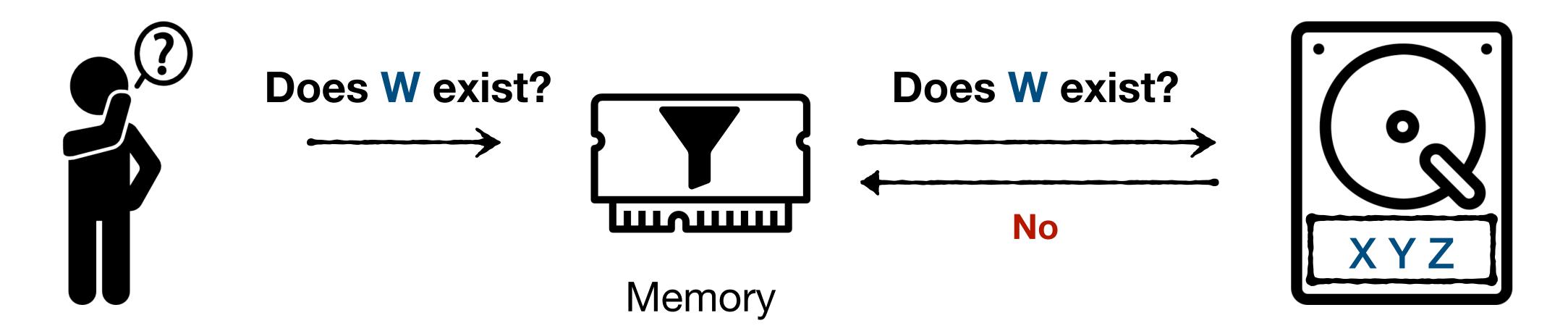




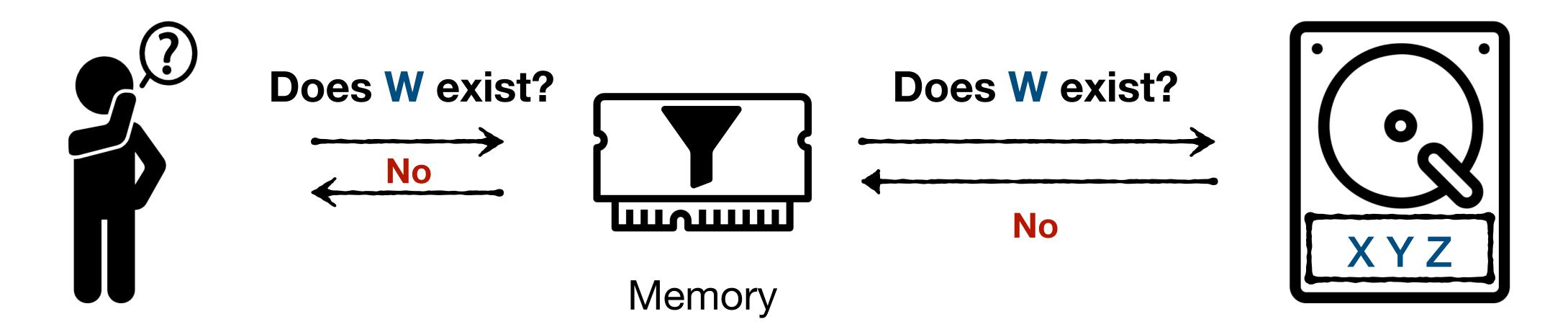




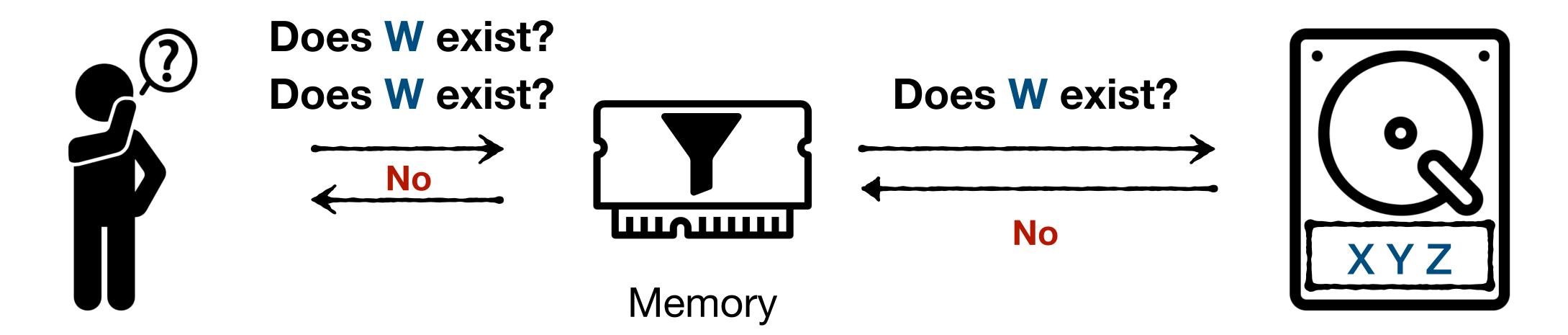




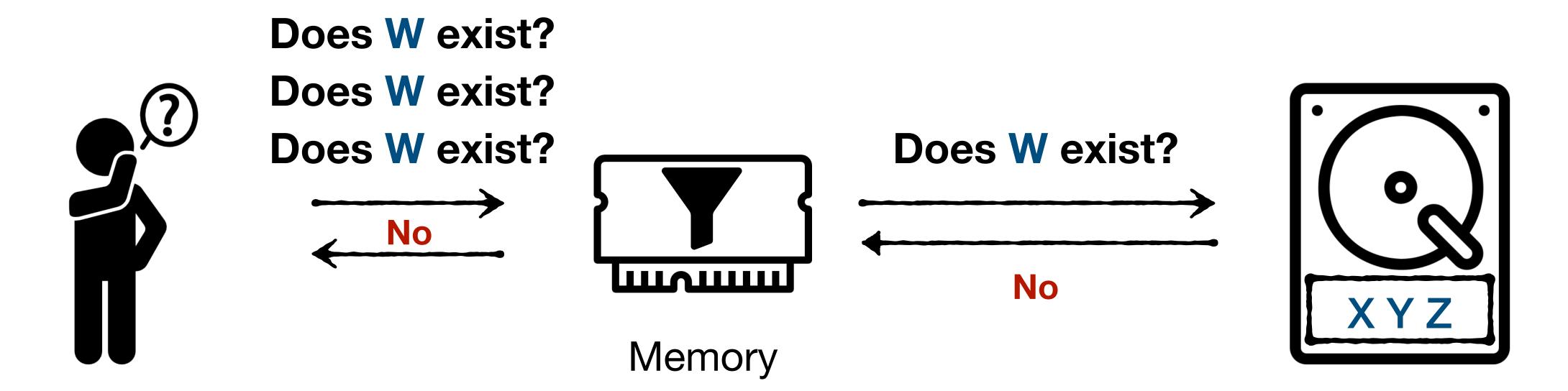
False positive



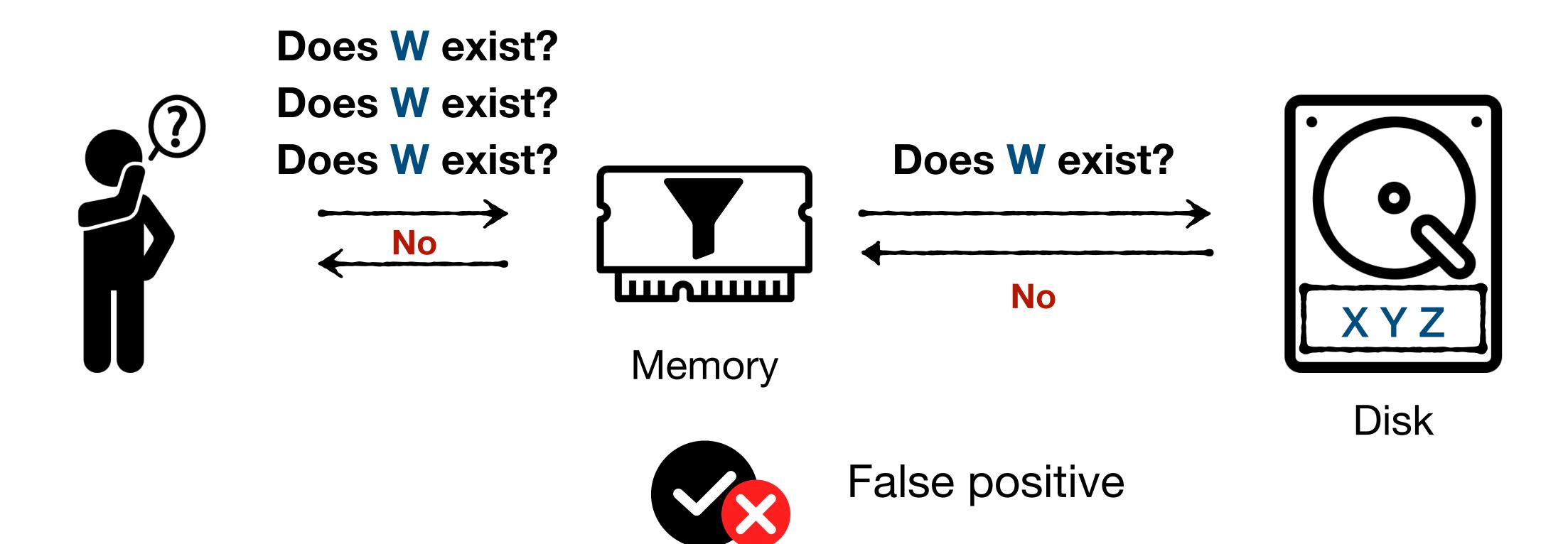
False positive



False positive

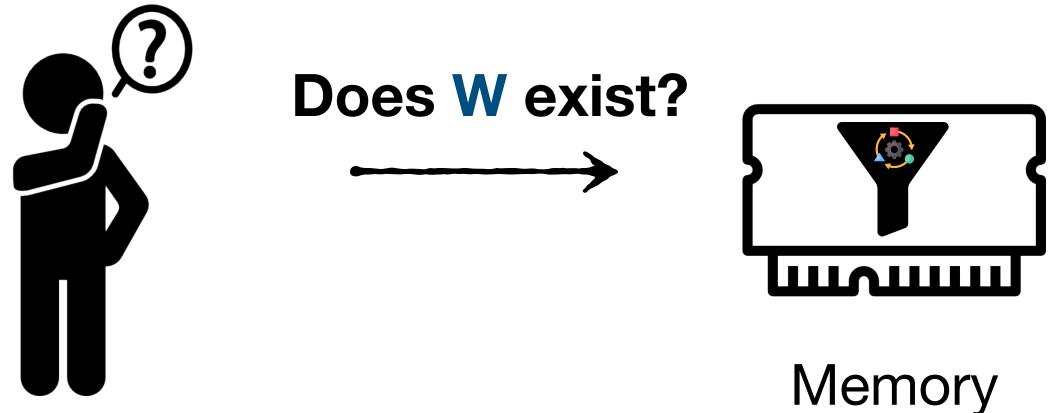


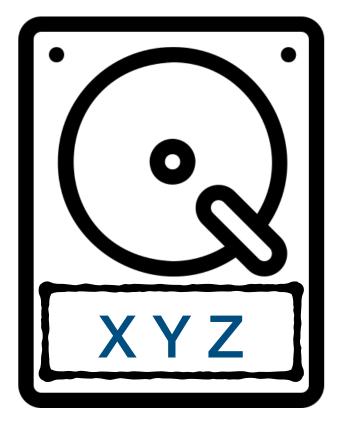
False positive

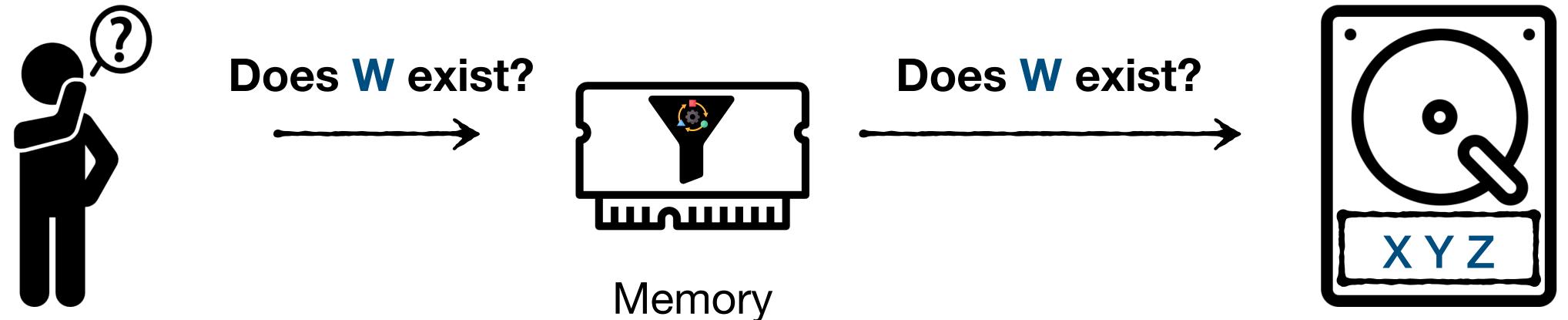


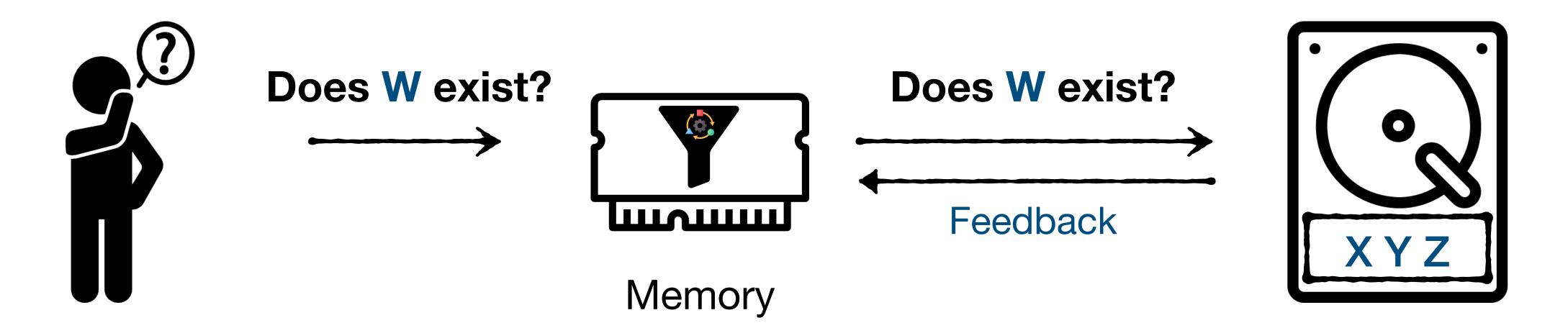
False-positive rate $\leq \epsilon$, only for a single query

Can we learn from the feedback?

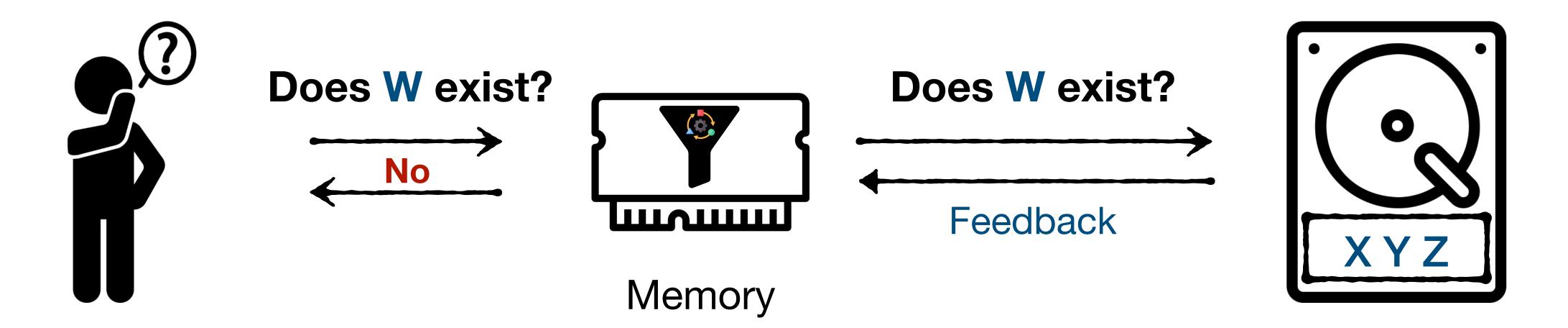




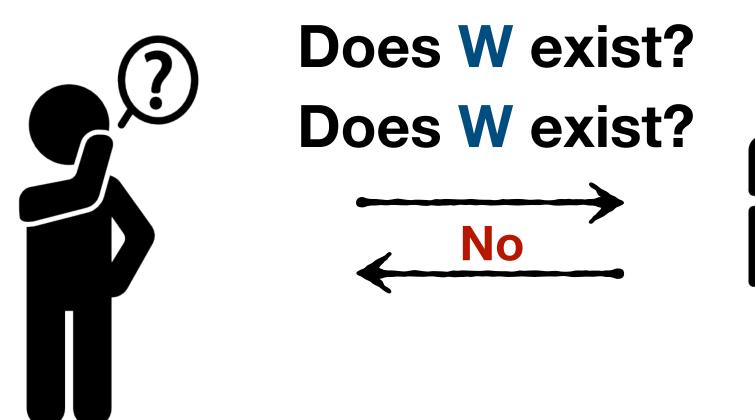


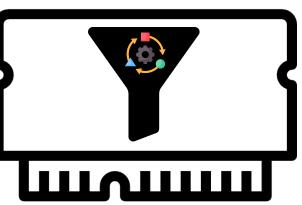


False positive

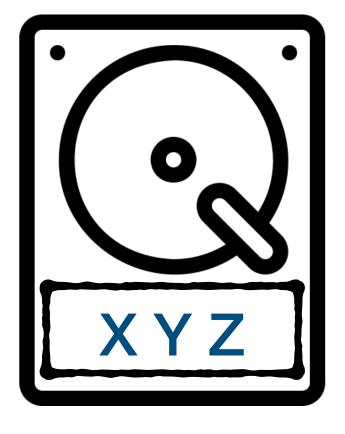


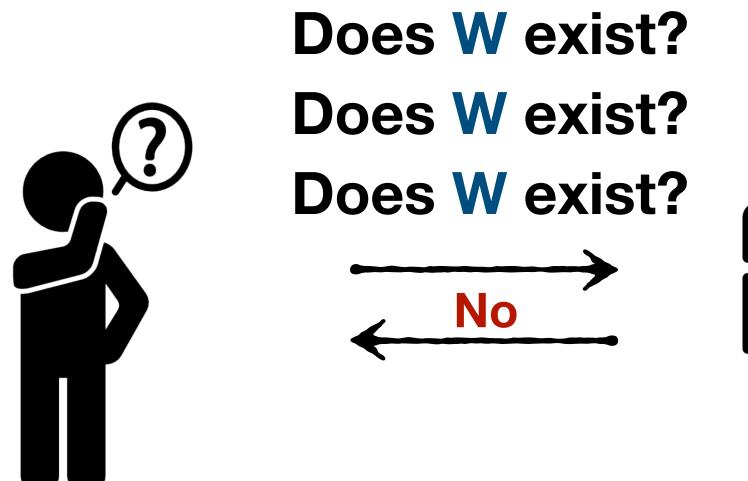
False positive

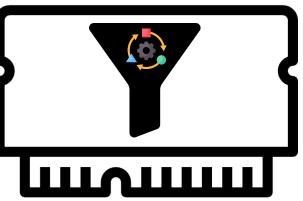




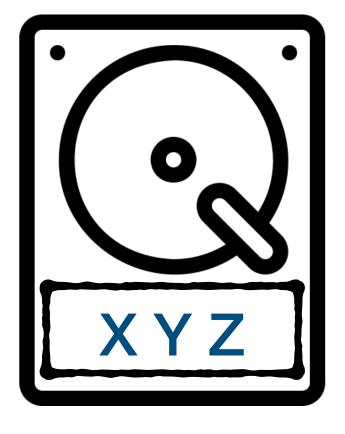
Memory







Memory

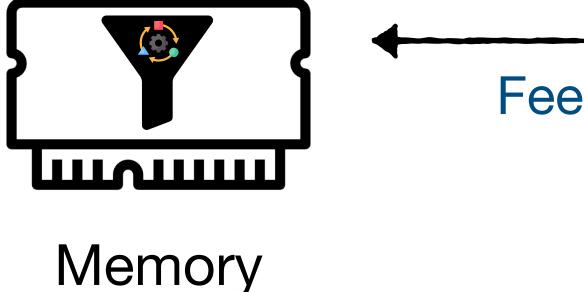


Adaptive filters [BFG+ 2018]

An adaptive filter modifies its state upon feedback and produces close to $O(\epsilon n)$ false positives for any sequence of n queries

False-positive rate $\leq \epsilon$, independent of the query distribution

Adaptive filter design has two parts [BFG+ 2018]



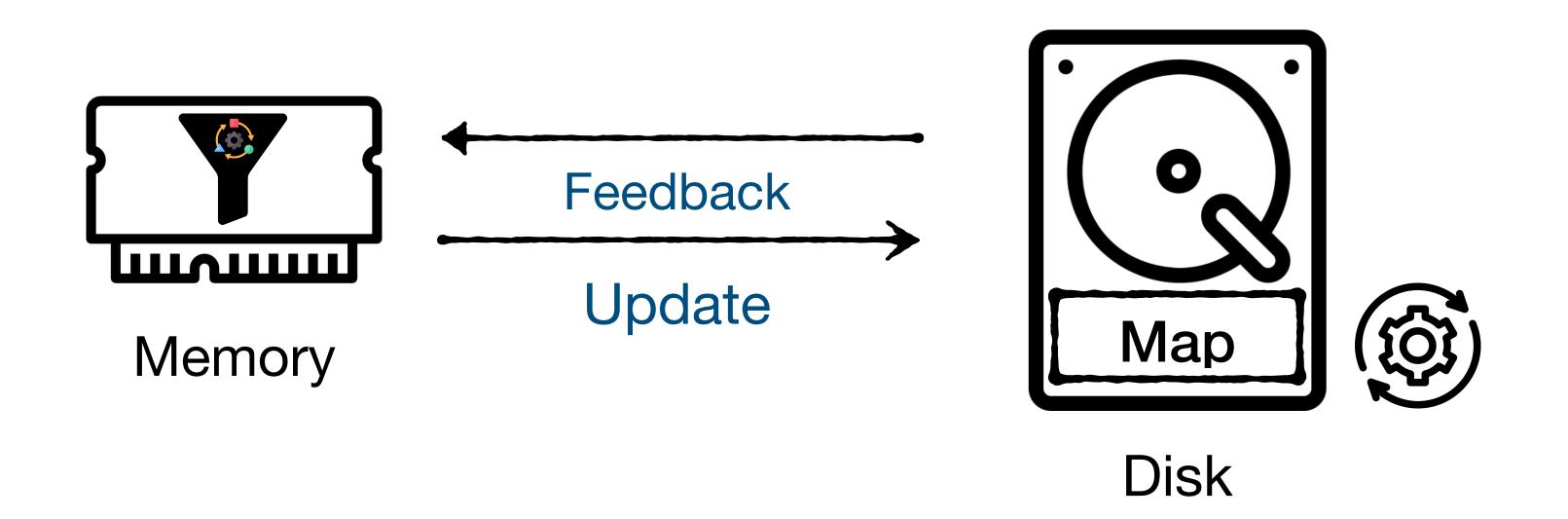
Small in-memory filter accessed on every query

Feedback

Disk

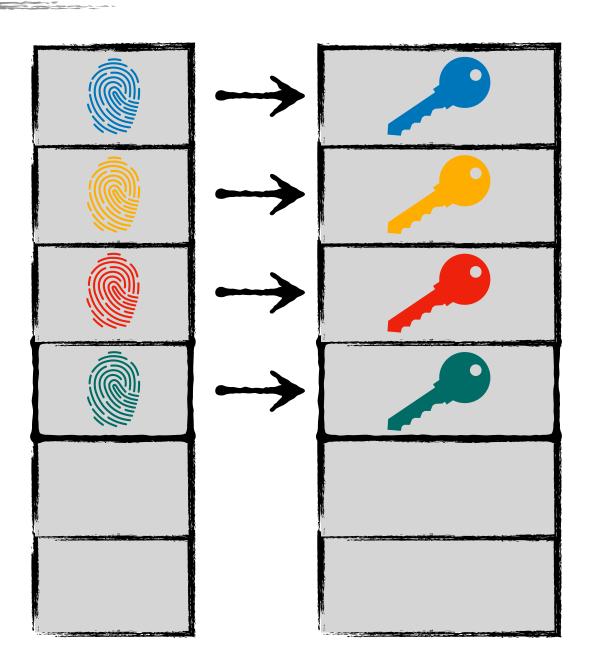
Large disk-resident map accessed during adaptations

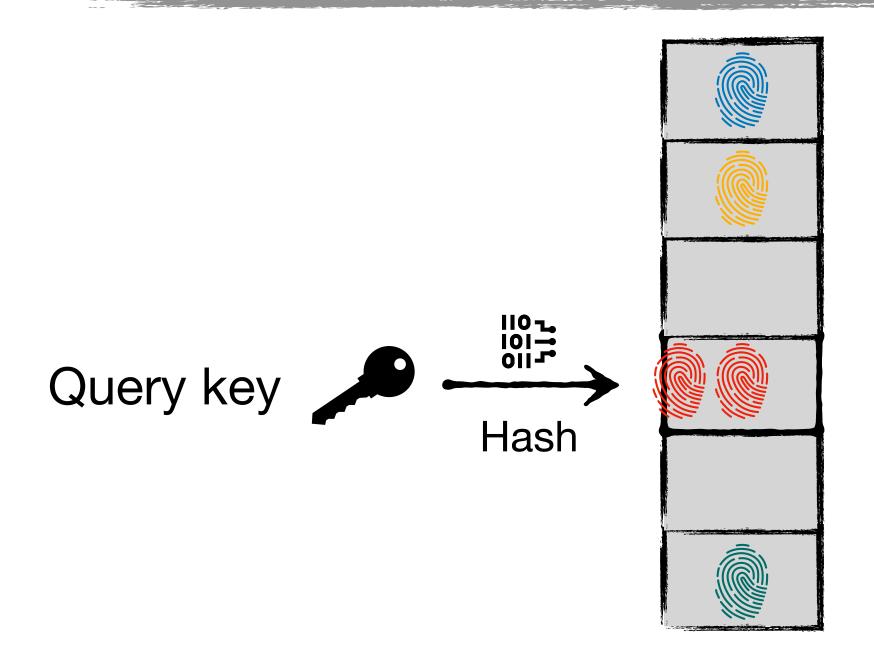
Adaptive filter design has two parts [BFG+ 2018]



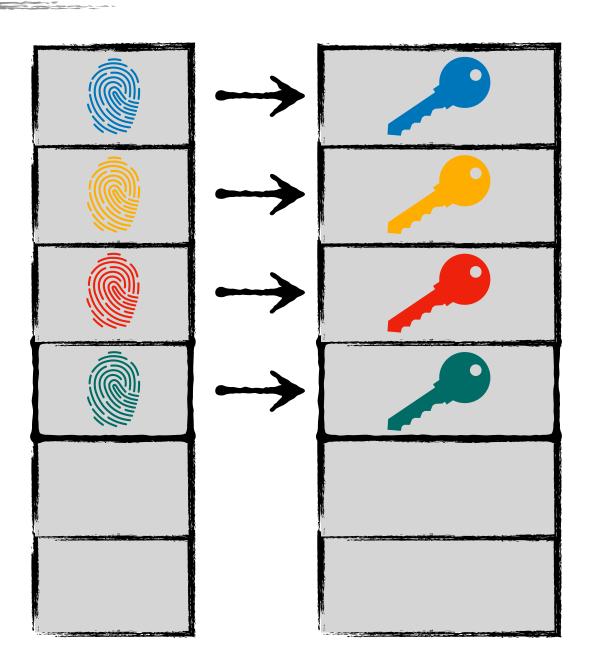
On-disk map enables adaptations and is updated to fix fingerprint collisions

Adaptive filter Memory



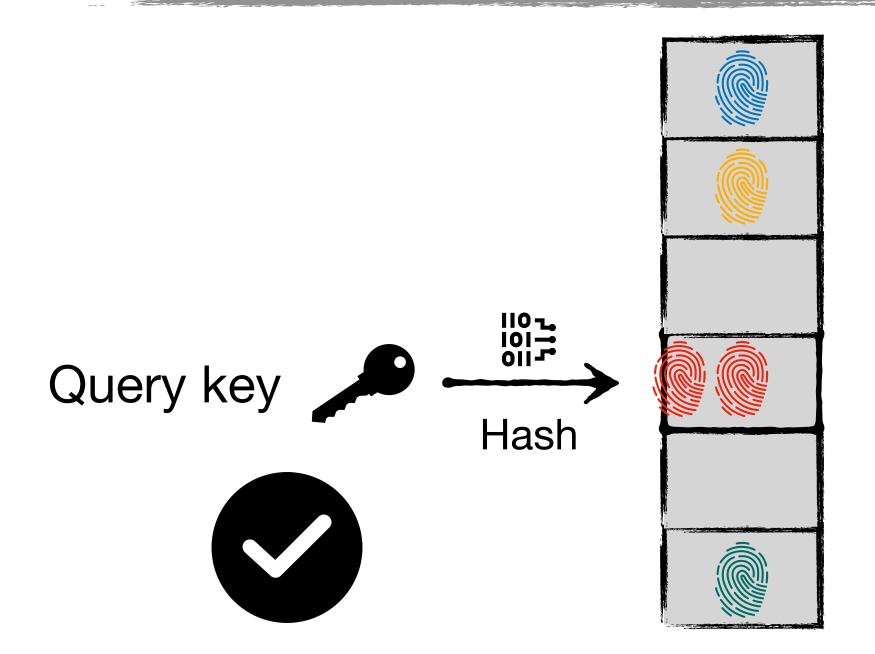


Adaptive filter Memory

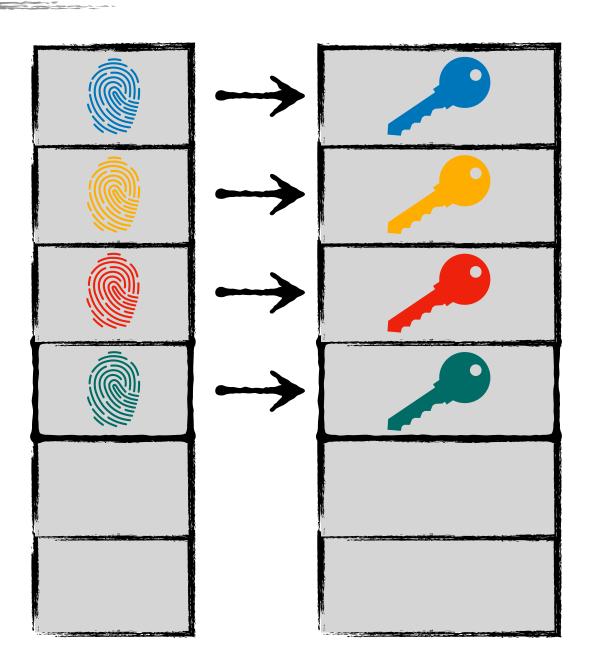


Fingerprint to Key map Disk

Fingerprint collisions can cause false positives

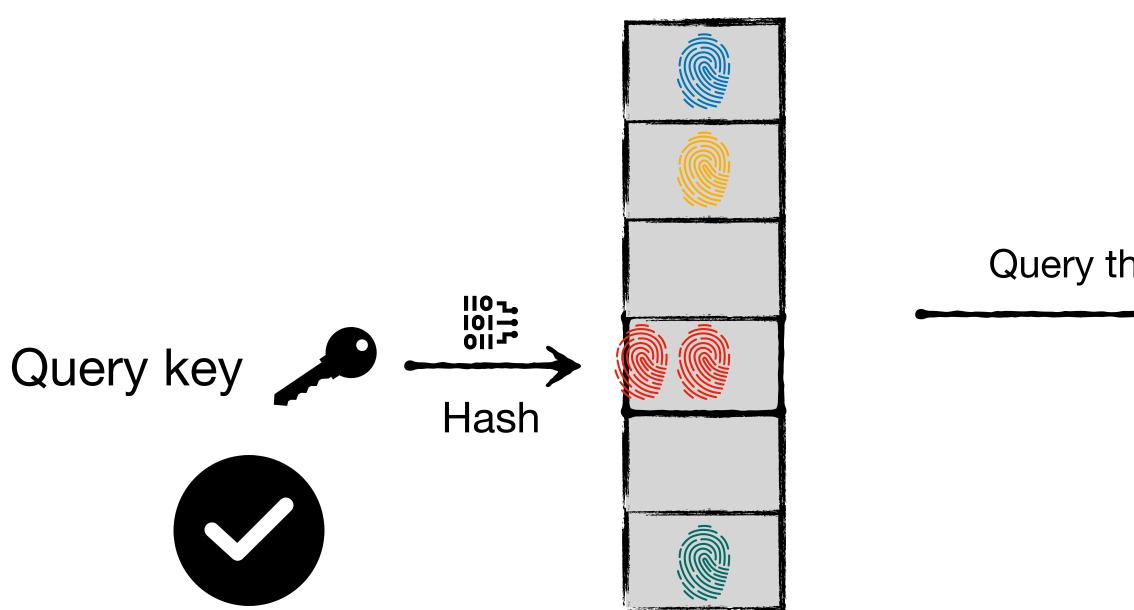


Adaptive filter Memory



Fingerprint to Key map Disk

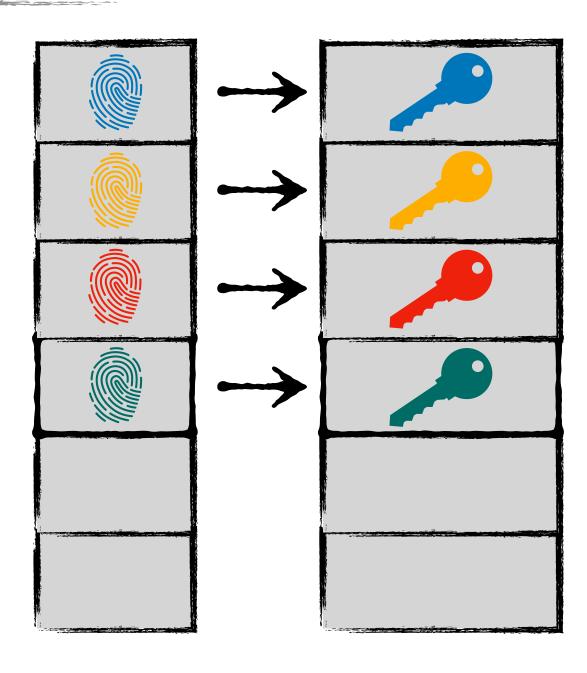
Fingerprint collisions can cause false positives

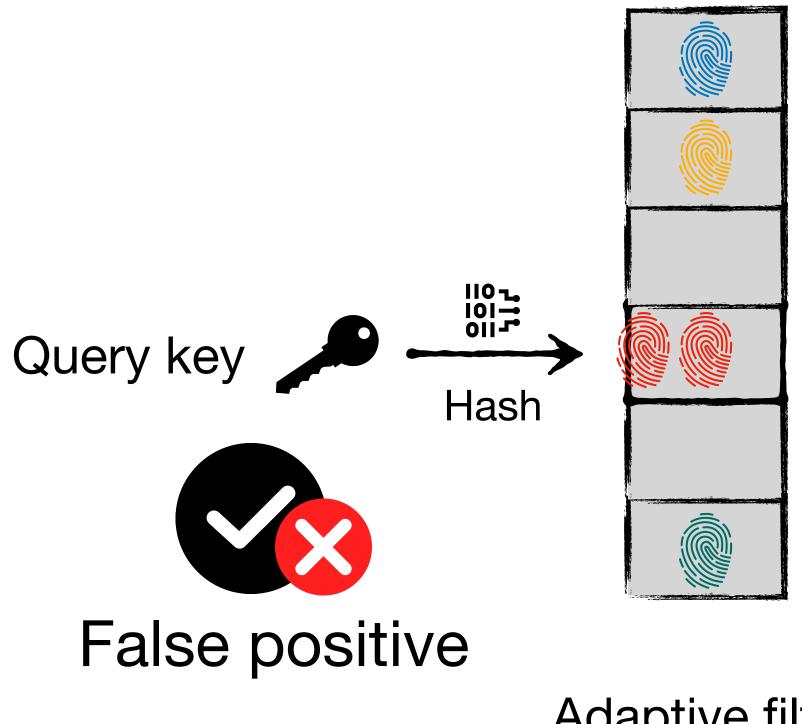


Adaptive filter Memory

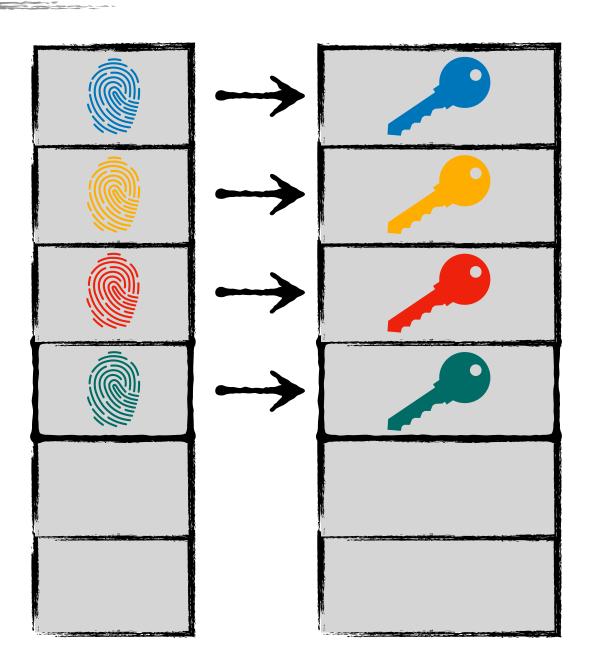
Fingerprint collisions can cause false positives

Query the database



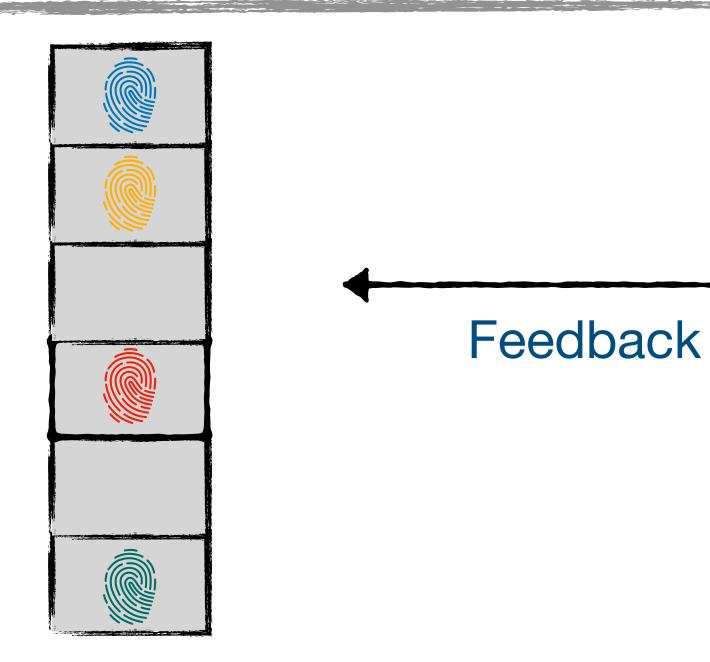


Adaptive filter Memory



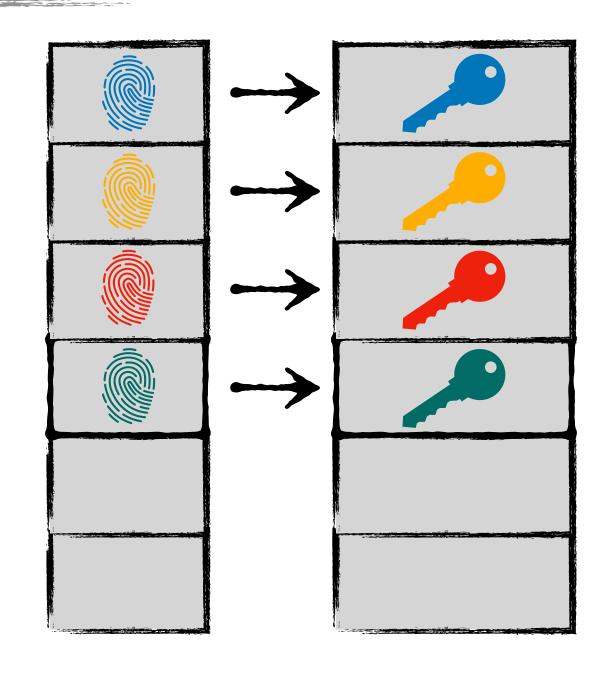
Fingerprint to Key map Disk

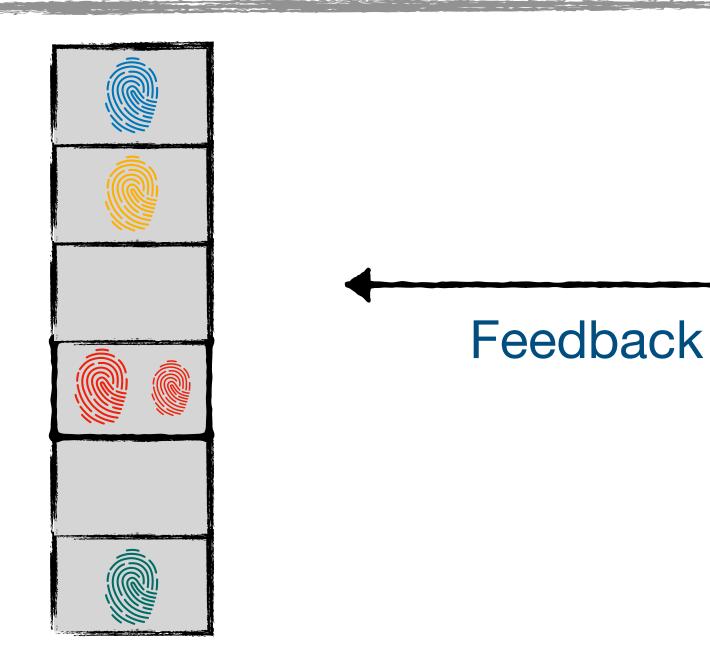
Fingerprint collisions can cause false positives



Adaptive filter Memory

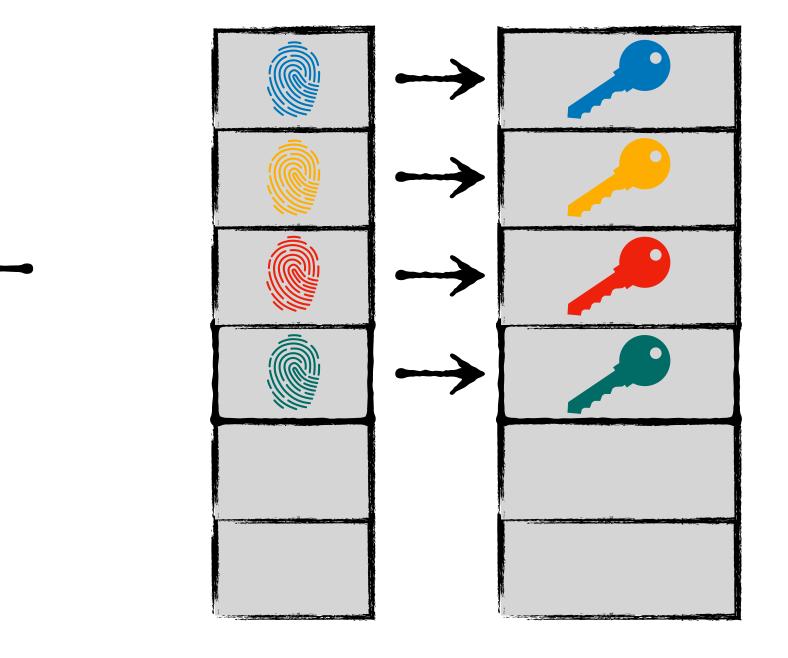
Feedback from the map can help fix the false positive

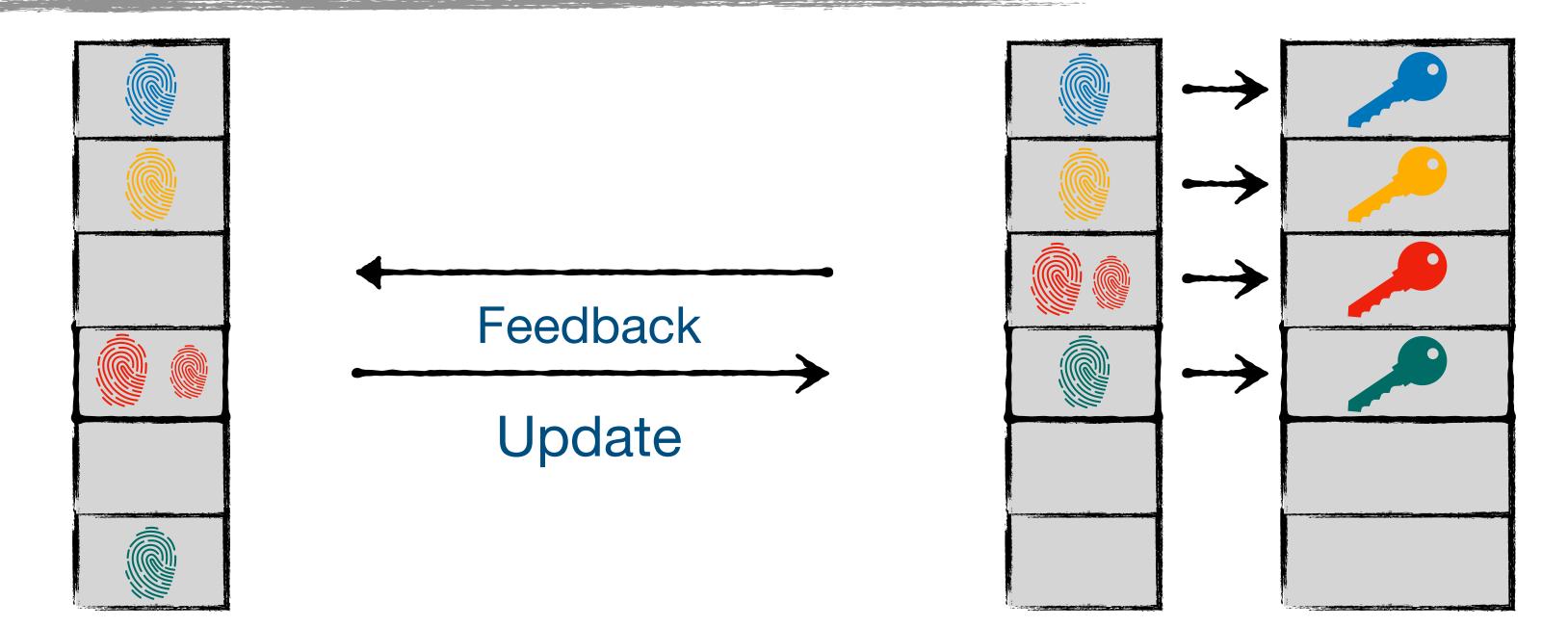




Adaptive filter Memory

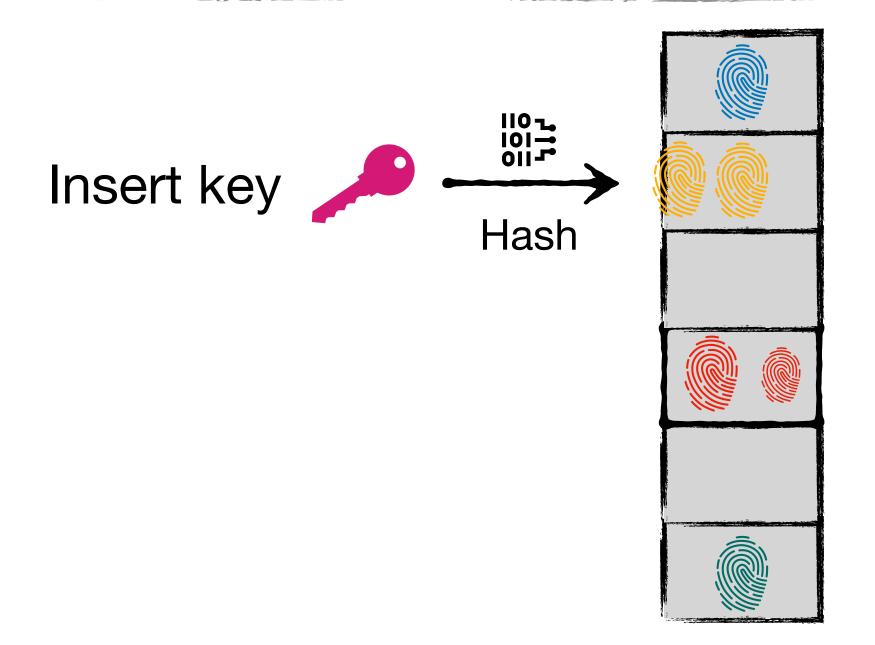
Extending the fingerprint of the existing key can avoid future false positives



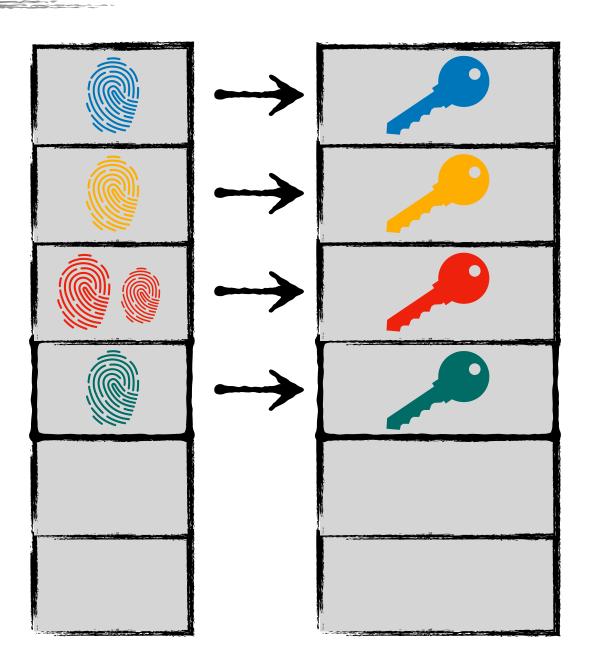


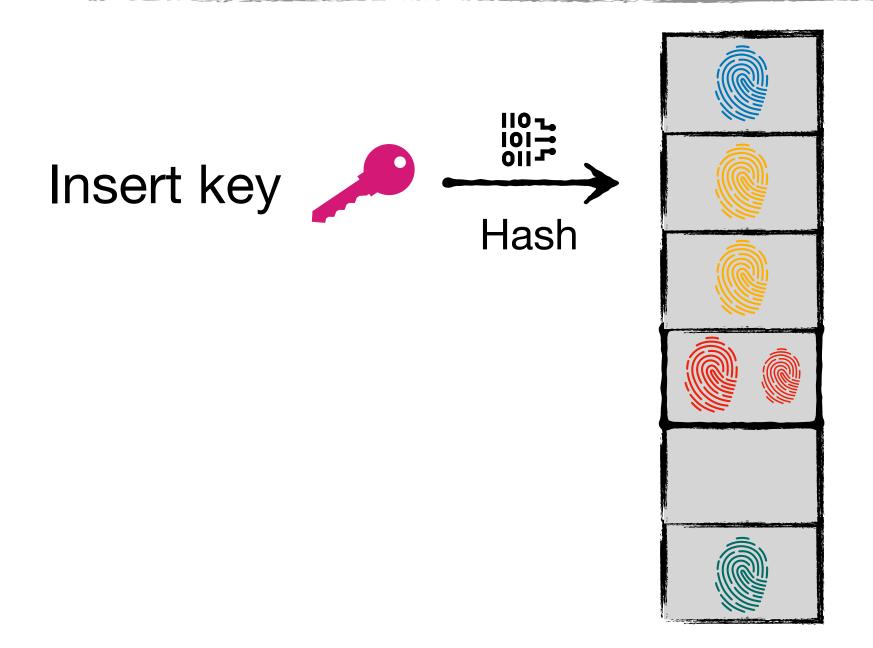
Adaptive filter Memory

Fingerprint map is updated accordingly

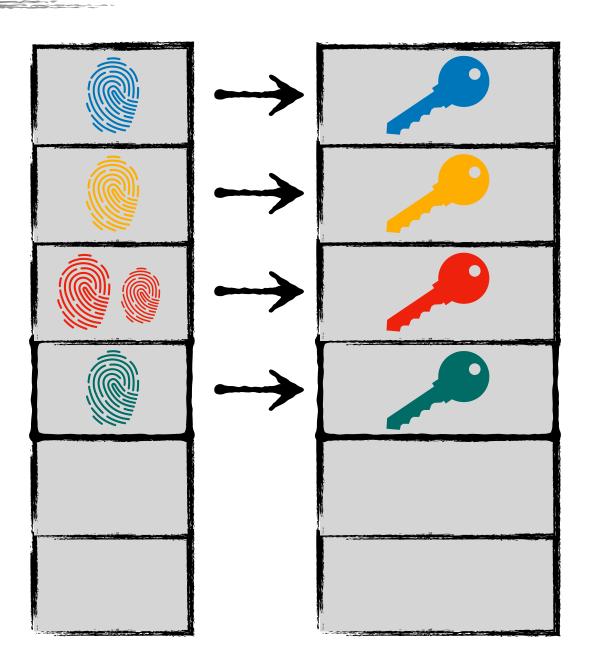


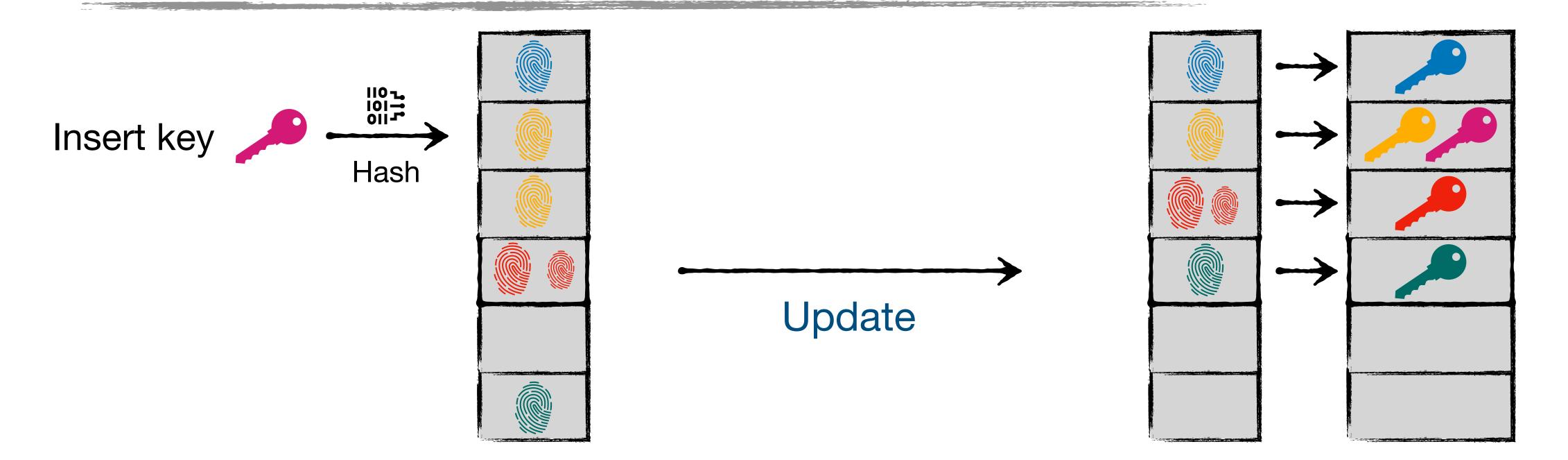
Adaptive filter Memory





Adaptive filter Memory

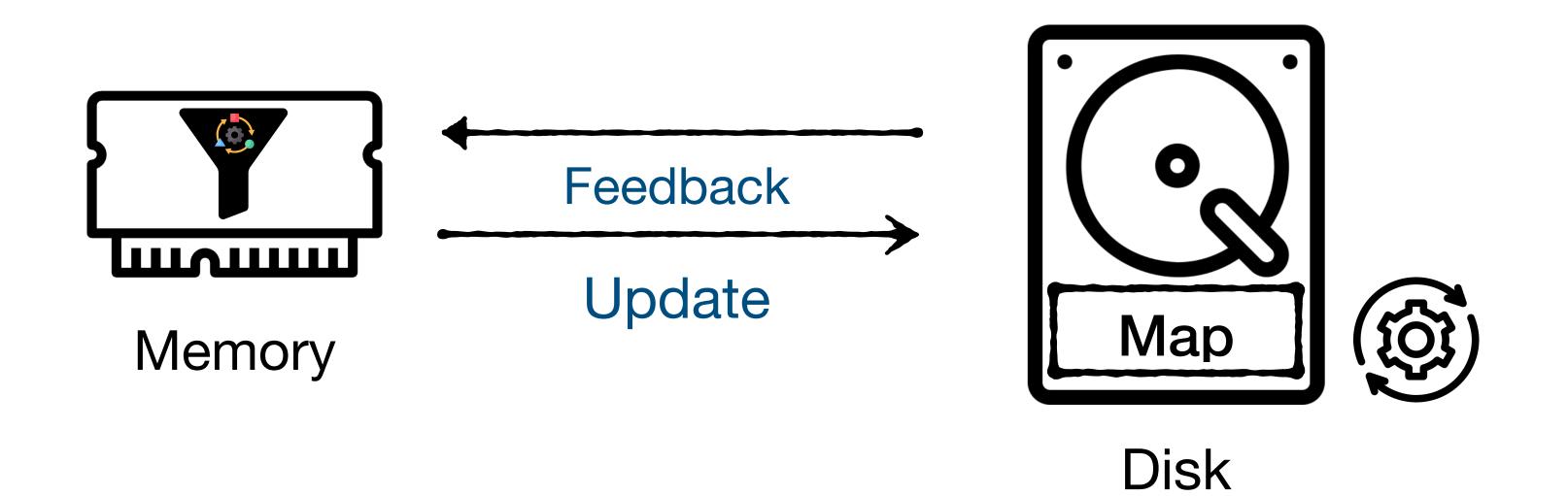




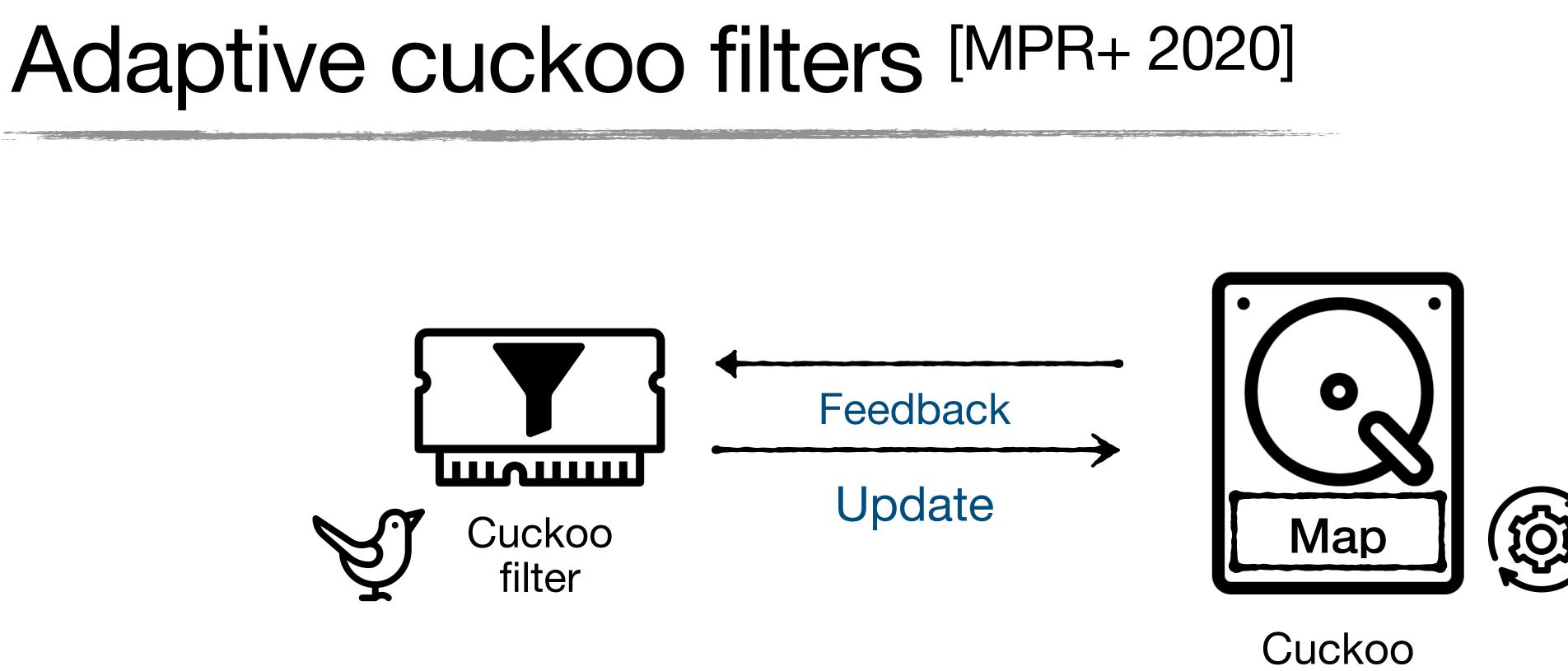
Adaptive filter Memory

Fingerprint map is updated accordingly

Fingerprint map updates dominate the performance



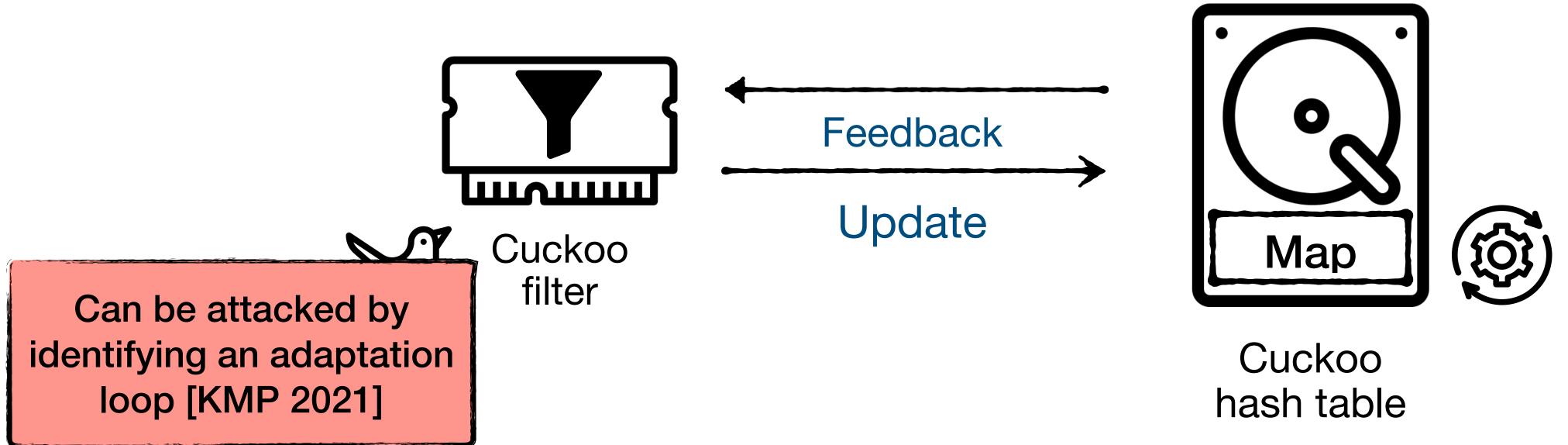
Minimizing the work in the map is crucial for the performance



Adaptivity by moving fingerprints around

hash table

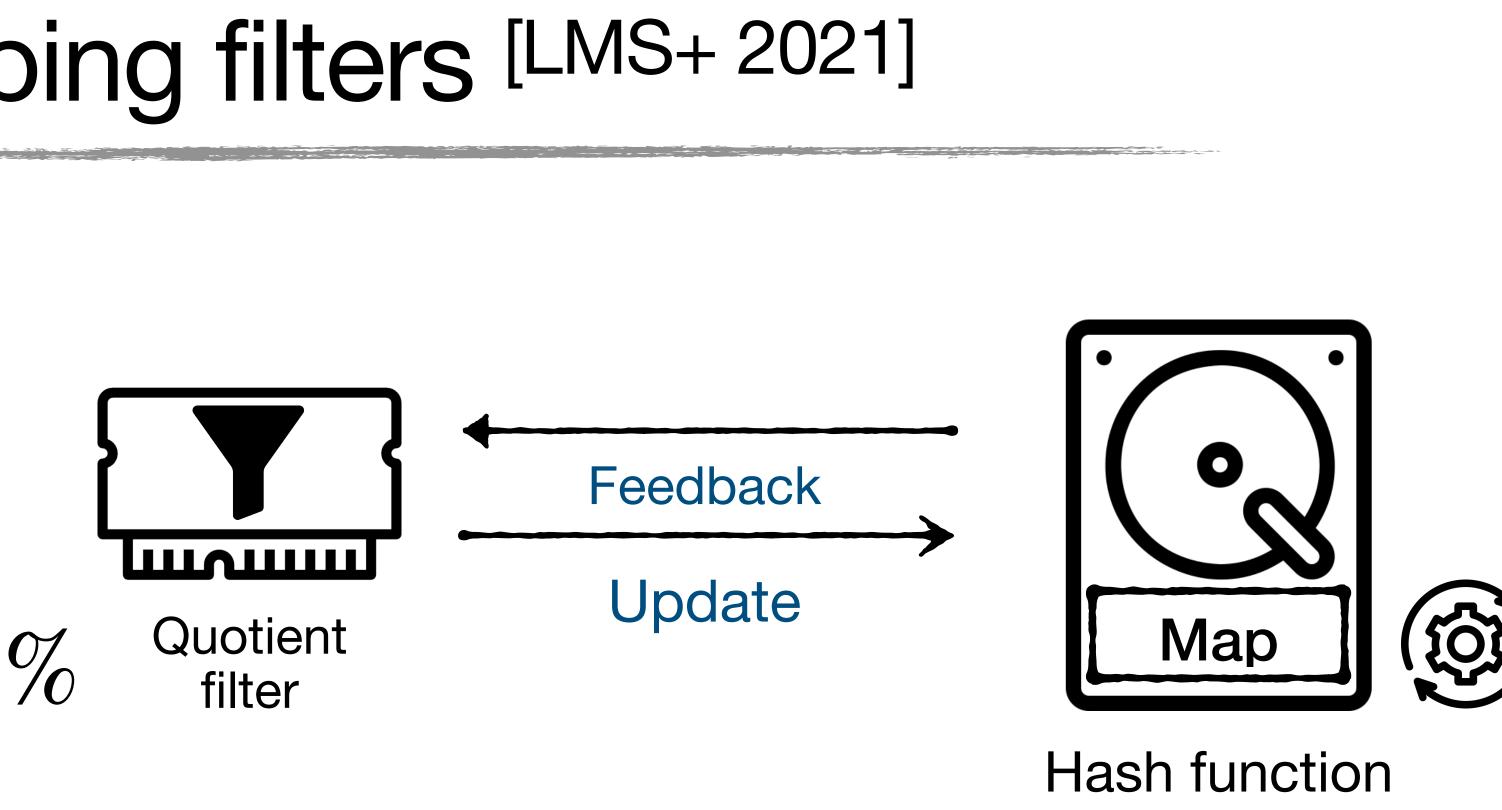
Adaptive cuckoo filters offer weak adaptivity



Can forget previous false positives while adapting for new ones

Adaptivity by moving fingerprints around during insertions/queries

Telescoping filters [LMS+ 2021]



Adaptivity by changing hash function during insertions/queries

map

Telescoping filters offer strong adaptivity



Hash map grows during adaptations (variable-length fingerprints) Does not forget previously learned fingerprints

Adaptivity by changing hash function during insertions/queries

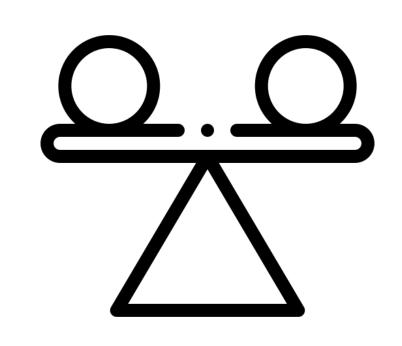
map

Adaptive quotient filter [WMT+ SIGMOD 2025]

- Adaptivity by using variable-length fingerprints to avoid collisions
- Based on the quotient filter (CQF) [PBJ+ 2017]
- Matches the space lower-bound to lower-order terms
- 10X—30X faster than other adaptive filters (ACF, TF) for disk-based database benchmarks
- Up to 6X faster performance than traditional filters (QF, CF) for disk-based database benchmarks

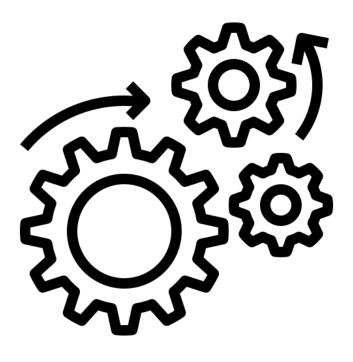


Adaptive quotient filter design



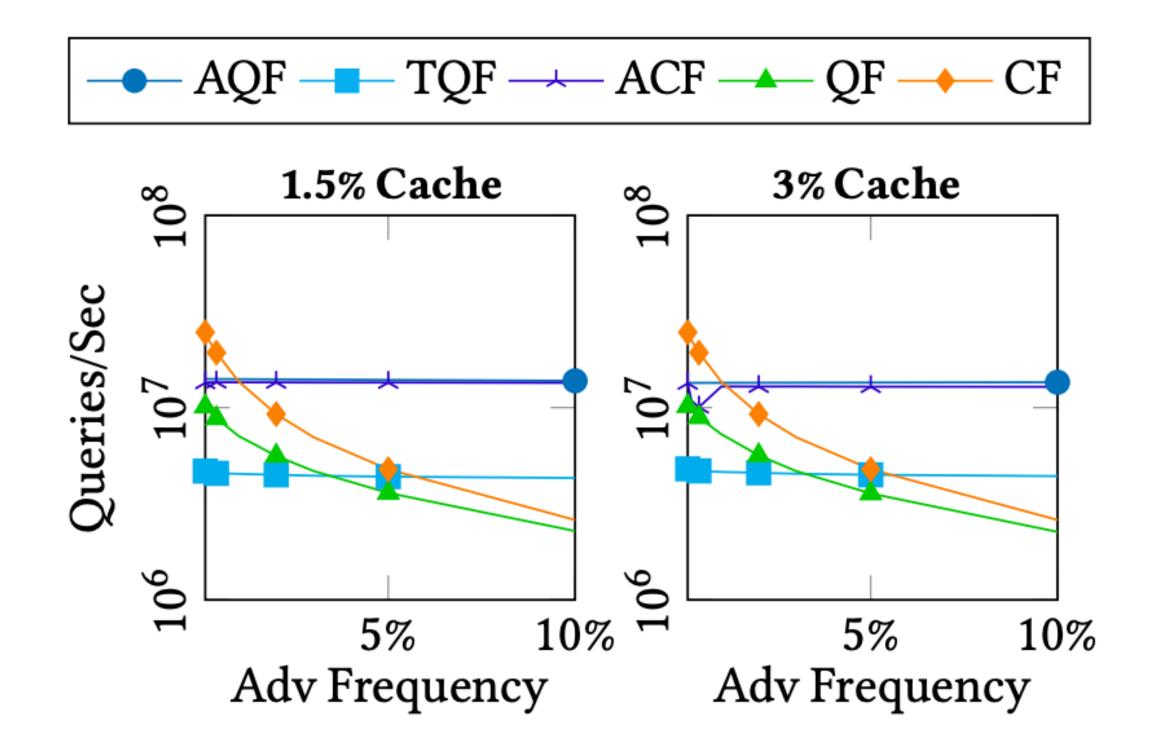
Preserves CQF performance and features

Stable reverse map during insertions



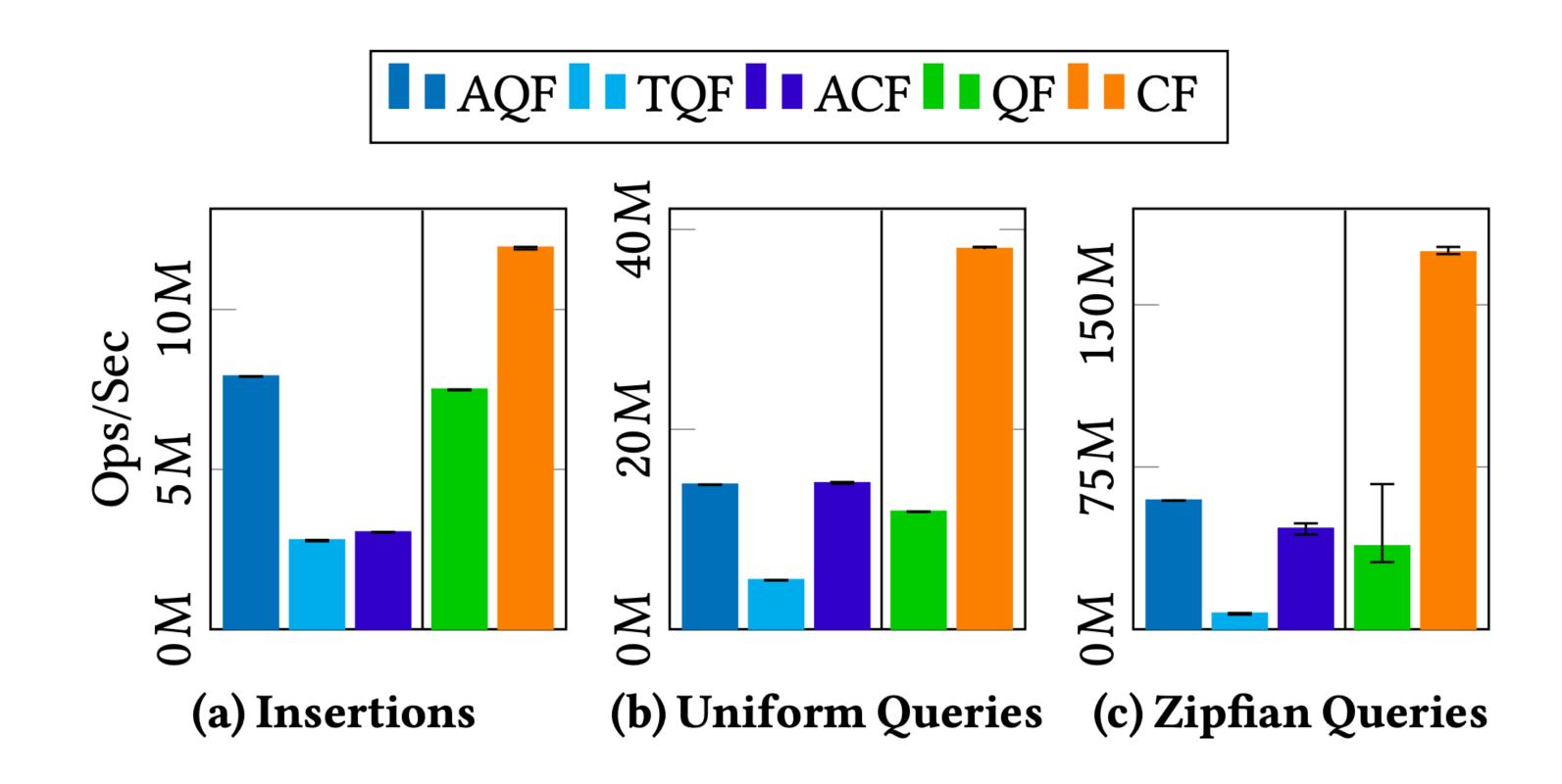
Supports dynamic operations

Database query performance



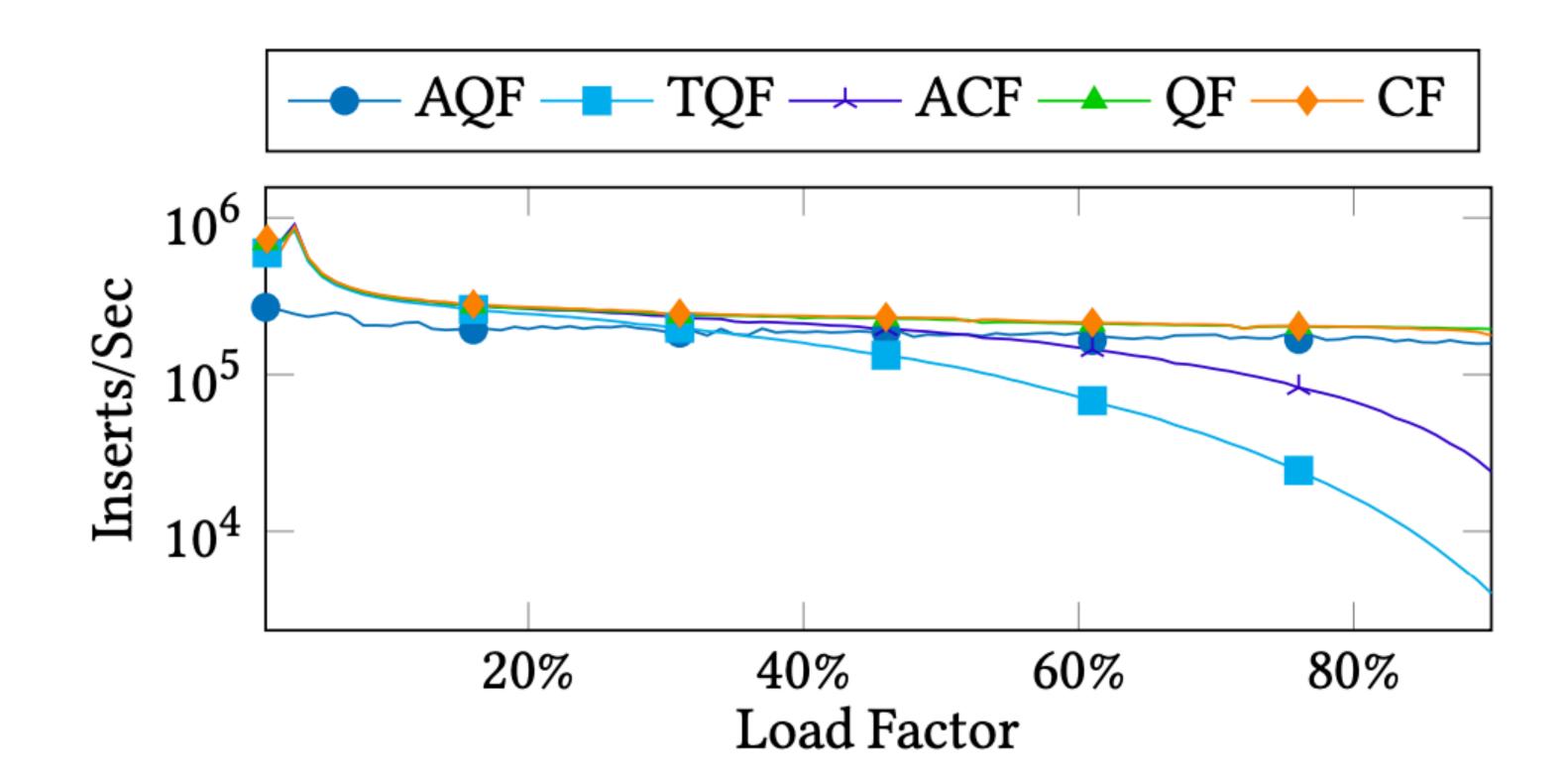
AQF up to 6X faster compared to QF/CF for database queries

Micro-benchmark performance



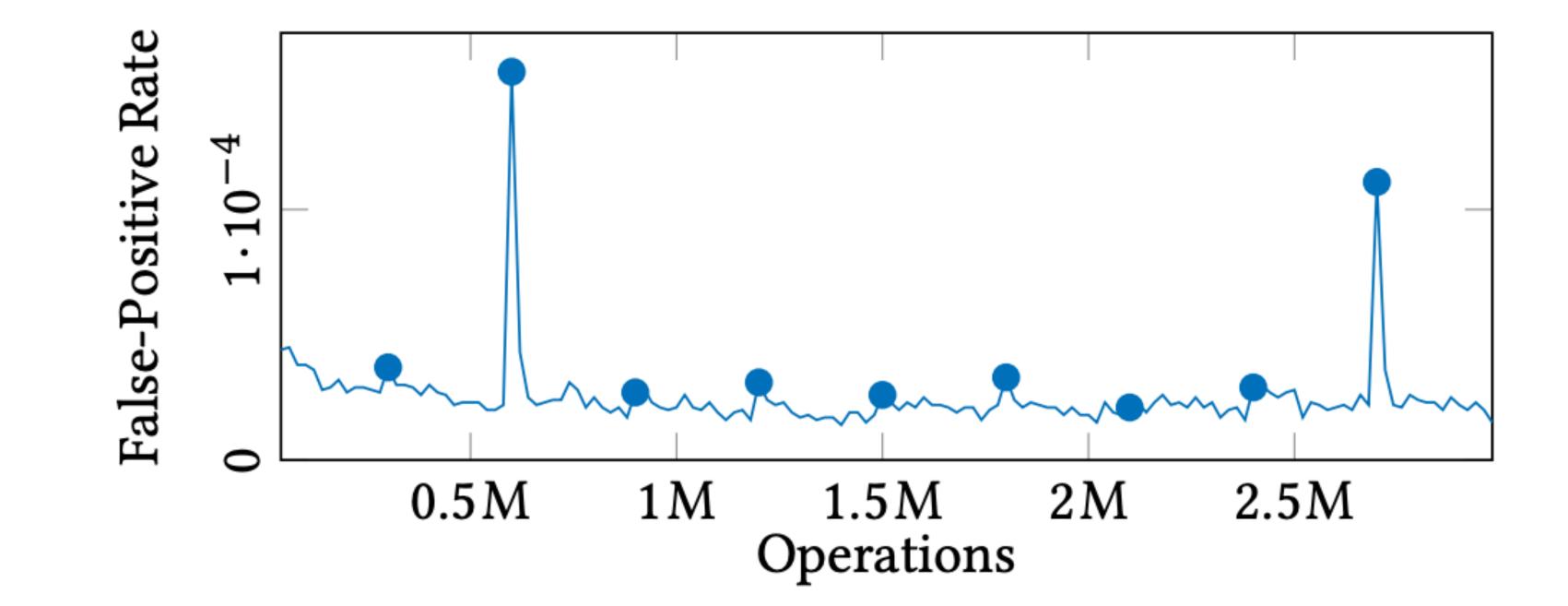
AQF has no overhead compared to the traditional CQF

Database insertion performance



AQF performs similarly to QF/CF for database insertions 10X – 30X faster than other adaptive filters

Adaptivity rate on a churn workload



AQF adapts to new false positives almost immediately for churn workloads

AQF offers even stronger guarantees compared to the broom filter [BFG+ 2018]

Monotonically adaptive filters [WMT+ SIGMOD 2025]

A filter that never forgets a false positive

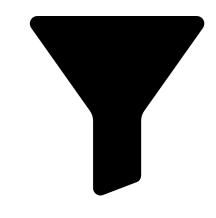
We can use monotonicity to solve other problems; security

False positives can be really expensive

Malicious URLs

Blocks malicious URLs

Legitimate URLs



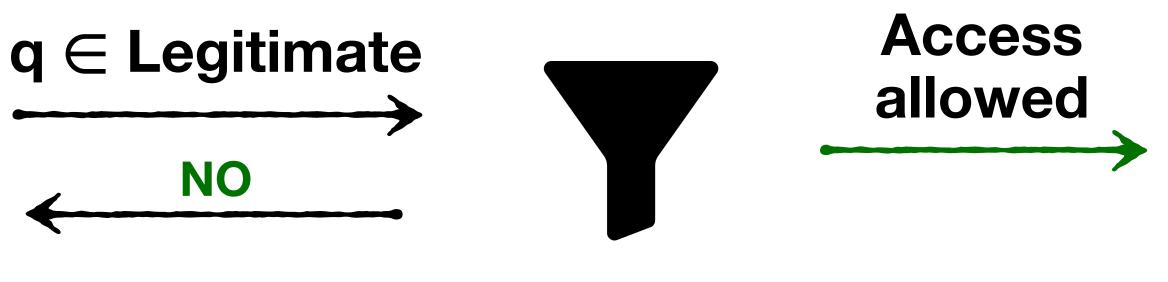
Filter containing malicious URLS

False positives can be really expensive

Malicious URLs

Allows legitimate URLs

Legitimate URLs



Filter containing malicious URLS

False positives can be really expensive

Malicious URLs

A false positive can block critical URLs such as a voter registration webpage or emergency weather info Legitimate URLs

Filter containing malicious URLS

False positive

YES/NO list problem

if $q \in YES$, return

if $q \in NO$, return

True with probability 1

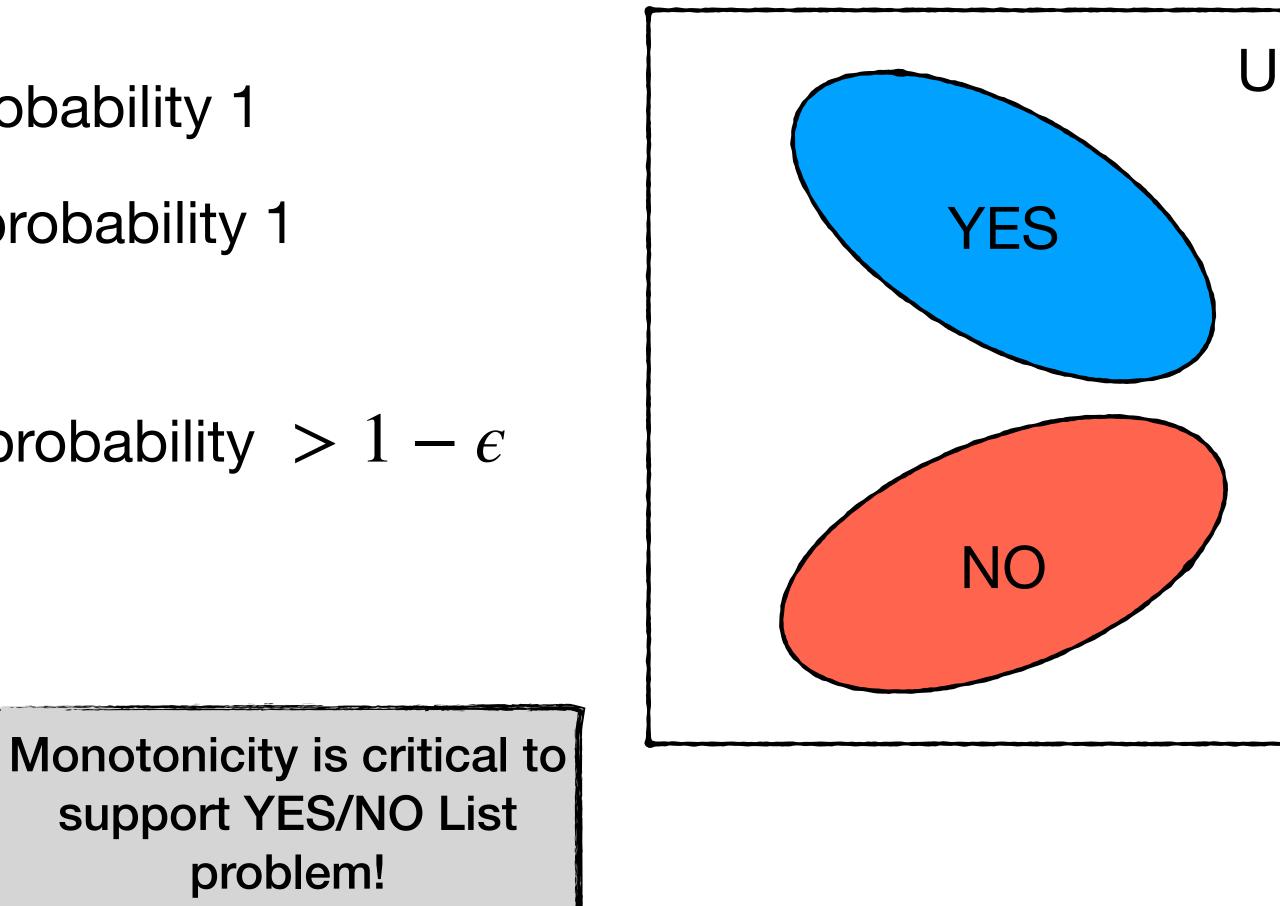
False with probability 1

Otherwise

False with probability $> 1 - \epsilon$

Applications:

- Detecting malicious URL
- Certificate revocation lists
- De Bruijn graph traversal



Prior work considered each problem separately

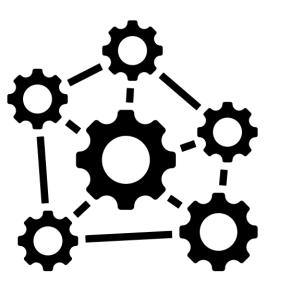
Purpose-built solutions

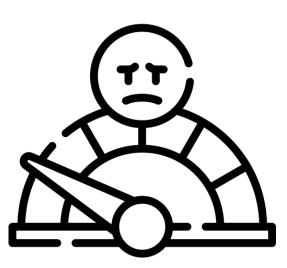
Bloomier filter [CKR+ 2004]

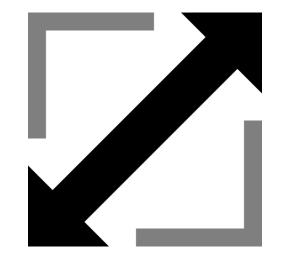
Cascading Bloom filter [TC 2009]

Static XOR filter [RSW+ 2021]

Seesaw counting filter [LCD+ 2022]







Complex design

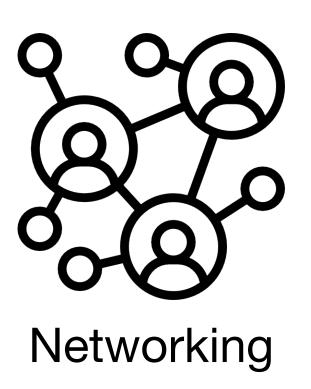
Low performance

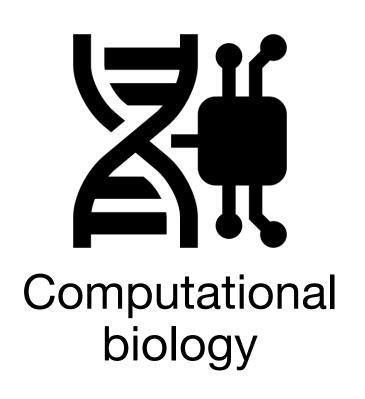
High space

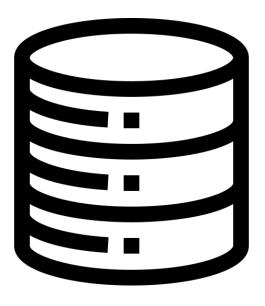
Monotonically adaptive filters solve many problems

- Security; avoiding DOS attacks
 - Static YES/NO list
 - Dynamic YES/NO list

- Robust performance guarantees
 - Skewed query distributions
 - Adversarial queries







Databases

Takeaways

- Adaptability is a critical to achieve robust performance in the context of skewed/adversarial workloads
- Monotonically adaptive filters can help address challenges across applications
- We need to redesign traditional applications in the context of newer guarantees and API offered by adaptive filters

Conclusion

- future data analyses challenges
- We can efficiently employ modern hardware by developing new algorithmic paradigms
- data science

Acknowledgment: All icons in the talk are taken from https://www.flaticon.com/

Data systems backed by strong theoretical guarantees are key to tackle

Building open and scalable data systems is critical for democratizing

https://prashantpandey.github.io/