
Prashant Pandey, University of Utah 
Northeastern University, Boston (Starting Spring 2025)

Data Systems at Scale
Scaling Up by Scaling Down and Out



My goal as a researcher is to build scalable data 
systems with strong theoretical guarantees



My goal as a researcher is to build scalable data 
systems with strong theoretical guarantees

To scale and democratize 
next-generation data analyses



Three approaches to build scalable data systems

Organize it

Goal: organize data in a I/O 
friendly way


B-trees, LSM-trees, Be-trees

Distribute it

Goal: distribute data & reduce 
inter-node communication 


Distributed hash tables

Goal: make data smaller to fit 
inside fast memory


Filters, sketches, succinct 
data structures

Compress it



In this talk:

Goal: make data smaller to fit 
inside fast memory


Filters

Compress it
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X Y Z

Does X exist?

Does W exist?

Set

Does A exist?

Yes

What is a filter data structure?

A filter compactly represents a set by trading off accuracy for space efficiency



A filter guarantees a false-positive rate ϵ

if q  S, return                  True with probability 1                        true positive


                                          False with probability           true negative


if q  S, return                  


                                          True with probability                    false positive

∈

> 1 − ϵ

∉
≤ ϵ

}

  q = query item S = set of items

False positives with tunable probability

One-sided errors



False-positives enable filters to be compact 

space ≥ n log(1/ϵ) space = Ω(n log( |U | )

Filter Hash table/Tree

Small Large

For , filters require ~1 Byte/item. Hash table/Tree can take >8-16 Byte/item.ϵ = 2 %

  n = number of items U = universe of items



Does X exist?

Disk



Does X exist?

Disk
Memory

No

Yes

Saves unnecessary disk accesses and network hops



Classic filter: The Bloom filter (BF) [Bloom 70]

0 1 0 1 0 1 0

Bloom filter: m bit array + k hash functions (here k=2)

m 

a c 
b 

d S

h1(a) = 1

h2(a) = 3


h1(c) = 5

h2(c) = 3



Classic filter: The Bloom filter (BF) [Bloom 70]

0 1 0 1 0 1 0

m 

a c 
b 

d S

h1(b) = 5


h2(b) = 2 True negative

Bloom filter: m bit array + k hash functions (here k=2)



Classic filter: The Bloom filter (BF) [Bloom 70]

0 1 0 1 0 1 0

m 

a c 
b 

d S

h1(d) = 5


h2(d) = 1 False positive

Bloom filter: m bit array + k hash functions (here k=2)



Bloom filters are ubiquitous (> 10K citations)

Storage 
systemsDatabases Networking Stream 

processing 
Computational 

biology



Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits)

CPU cost

Data locality

∼ 1.44n log(1/ϵ) ∼ n log(1/ϵ) + Ω(n)

Ω(1/ϵ) O(1)

Ω(1/ϵ) probes O(1) probes

CFGMW 78: Optimal filter bound



Applications workaround BF limitations

No deletes Rebuild

Limitation Workaround



Applications workaround BF limitations

No resizes Guess N, 
Rebuild if wrong

Limitation Workaround



Applications workaround BF limitations

No merging or 
enumeration ???

Limitation Workaround



Applications workaround BF limitations

No values 
associated with keys

Combine with other 
data structures

Limitation Workaround



No Deletes No Resize No Merging/
Enumeration

No value 
association No Counting Poor cache 

locality

Bloom filters have several limitations

Bloom filter limitations increase system complexity, waste space, and slow 
down application performance



Fingerprinting is an alternative to Bloom filters

Hash

FingerprintKey

log |U | p

Store fingerprints compactly in a table

PPR05, DM09, BFJ+12, EF16, PBJ+17



Fingerprinting is an alternative to Bloom filters

Fingerprint

False positives occur only when fingerprints collide 

Pr [collision] = 
1
2p

Hash

Hash

log |U |

p

PPR05, DM09, BFJ+12, EF16, PBJ+17



Storing fingerprints compactly using quotienting

Fingerprint

0 1 0 1 0 0 1 1 0 1 0  1 0 1 1 0 0 0

Location Tag

%
p

Knuth 97 



Fingerprint

0 1 0 1 0 0 1 1 0 1 0  1 0 1 1 0 0 0

Location Tag

%

Storing fingerprints compactly using quotienting

…. ….

p

Knuth 97 



Storing fingerprints compactly using quotienting

…. ….

0 1 0 1 0 0 1 1 0 1 0  1 0 1 1 0 0 0

Location Tag

0 1 0 1 0 0 1 1 0 1 0  1 0 1 1 0 1 1

Location Tag

Knuth 97 



Storing fingerprints compactly using quotienting

…. ….

Use linear probing and Robinhood hashing

0 1 0 1 0 0 1 1 0 1 0  1 0 1 1 0 0 0

Location Tag

0 1 0 1 0 0 1 1 0 1 0  1 0 1 1 0 1 1

Location Tag

Knuth 97 



Resolving collisions in quotient filter (QF)

…. ….

How to identify the home slot of a given tag?

Pandey et al. SIGMOD 17



Use two metadata bits/slot to group tags by their home slot

…. ….

1 1…. ….Metadata bits

Tags

Resolving collisions in quotient filter (QF)
Pandey et al. SIGMOD 17



…. ….

1 1…. ….Metadata bits

Tags

Metadata bits help identify the home slot of each tag

Resolving collisions in quotient filter (QF)
Pandey et al. SIGMOD 17



Quotient filter Bloom filter Optimal

Space (bits)

CPU cost

Data locality

∼ 1.44n log(1/ϵ) ∼ n log(1/ϵ) + Ω(n)

Ω(1/ϵ) O(1)

Ω(1/ϵ) probes O(1) probes

Quotient filters offer better performance than BF 

∼ n log(1/ϵ) + 2.125n

O(1) expected

1 probe + scan

Quotient filters have theoretical advantages over Bloom filters

CFGMW 78: Optimal filter bound



%
Fingerprinting Quotienting Features



%
Fingerprinting Quotienting Features

Deletes Resize Merging/
Enumeration

Value 
association

Counting 
(Variable length) Cache locality

Asymptotically 
optimal space

Squeakr, deBGR 
BIOINFORMATICS 17 

ISMB 17

Mantis  
Cell systems 18 

RECOMB 18
LERTs 

SIGMOD 20, TODS 20

MetaHipMer 
PPoPP 23 
ACDA 23

High performance 
& scalabilitySqueakr 

BIOINFORMATICS 17



Quotient filters empirical performance 
Inserts Queries

Insert performance is similar to the state-of-the-art non-counting filters

Query performance is significantly fast at low load factors and slightly slower at high load factors

QF: quotient filter

CF*: cuckoo filter [FAK+14]


BF*: Bloom filter



Vector quotient filters [SIGMOD 21]

Combining hashing techniques (Robinhood hashing + power of 2-choice hashing)

Using ultra-wide vector instructions (AVX-512)

Constant high 
performance

Faster overall 
performance

Pandey et al. SIGMOD 21



Quotient filter’s impact in computer science

Databases Data 
security

Stream 
analysis

Storage 
systems

Genome 
assembly

Graph 
systems

GPU data 
structure

Sequence 
search



Takeaways

• Fingerprinting is powerful: provides deletions, enumerability, 
merging 


• Quotienting complements fingerprinting: provides high cache 
locality, performance and compactness


• Quotient filter is a high-performance feature-full filter. 



Adaptivity



Disk
Memory

X Y Z

Skewed workloads can make filters obsolete
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Does W exist?

Disk
Memory

X Y Z

False-positive rate , only for a single query≤ ϵ

Does W exist?

No
No

False positive

Does W exist?
Does W exist?

Skewed workloads can make filters obsolete



Can we learn from the feedback?



Does W exist?

Disk
Memory

X Y Z

Adaptive filters change their state upon feedback



Does W exist?

Disk
Memory

X Y Z

Does W exist?

Adaptive filters change their state upon feedback



Does W exist?

Disk
Memory

X Y Z

Does W exist?

False positive

Feedback

Adaptive filters change their state upon feedback



Does W exist?

Disk
Memory

X Y Z

Does W exist?

False positive

Feedback
No

Adaptive filters change their state upon feedback



Does W exist?
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No

Does W exist?
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Adaptive filters change their state upon feedback



Does W exist?

Disk
Memory

X Y Z

No

Does W exist?

True negative

Does W exist?

Adaptive filters change their state upon feedback



Adaptive filters [BFG+ 2018]

An adaptive filter modifies its state upon feedback and produces 
close to  false positives for any sequence of  queriesO(ϵn) n

False-positive rate , independent of the query distribution≤ ϵ



Adaptive filter design has two parts [BFG+ 2018]

Disk

Memory Map

Feedback

Small in-memory filter 
accessed on every query

Large disk-resident map 
accessed during adaptations



Adaptive filter design has two parts [BFG+ 2018]

Disk

Memory Map

Feedback

Update

On-disk map enables adaptations and is updated to fix fingerprint collisions



Fingerprint to Key map

Disk

Adaptive filter

Memory

Adaptive filters employ variable-length fingerprints 
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Disk
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Fingerprint collisions can cause false positives

Hash
Query key
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Adaptive filters employ variable-length fingerprints 

Fingerprint to Key map

Disk

Adaptive filter

Memory

Fingerprint collisions can cause false positives

Hash
Query key

Query the database



Adaptive filters employ variable-length fingerprints 

Fingerprint to Key map

Disk

Adaptive filter

Memory

Fingerprint collisions can cause false positives

Hash
Query key

False positive



Fingerprint to Key map

Disk

Adaptive filter

Memory

Feedback

Feedback from the map can help fix the false positive

Adaptive filters employ variable-length fingerprints 



Fingerprint to Key map

Disk

Adaptive filter

Memory

Feedback

Extending the fingerprint of the existing key can avoid future false positives

Adaptive filters employ variable-length fingerprints 



Fingerprint to Key map

Disk

Adaptive filter

Memory

Feedback

Update

Fingerprint map is updated accordingly

Adaptive filters employ variable-length fingerprints 



Fingerprint to Key map

Disk

Adaptive filter
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Adaptive filters employ variable-length fingerprints 

Hash
Insert key



Fingerprint to Key map

Disk

Adaptive filter

Memory

Adaptive filters employ variable-length fingerprints 

Hash
Insert key



Fingerprint to Key map

Disk

Adaptive filter

Memory

Adaptive filters employ variable-length fingerprints 

Hash
Insert key

Fingerprint map is updated accordingly

Update



Fingerprint map updates dominate the performance

Disk

Memory Map

Feedback

Update

Minimizing the work in the map is crucial for the performance



Adaptive cuckoo filters [MPR+ 2020]

Cuckoo 
hash table

Cuckoo 
filter

Map

Feedback

Update

Adaptivity by moving fingerprints around



Adaptive cuckoo filters offer weak adaptivity

Cuckoo 
hash table

Cuckoo 
filter

Map

Feedback

Update

Can forget previous false positives while adapting for new ones

Adaptivity by moving fingerprints around during insertions/queries

Can be attacked by 
identifying an adaptation 

loop [KMP 2021]



Telescoping filters [LMS+ 2021]

Quotient 
filter

Map

Feedback

Update

Adaptivity by changing hash function during insertions/queries

Hash function 
map

%



Telescoping filters offer strong adaptivity

Hash function 
map

Quotient 
filter

Map

Feedback

Update

Adaptivity by changing hash function during insertions/queries
Hash map grows during adaptations (variable-length fingerprints)


Does not forget previously learned fingerprints

%



Adaptive quotient filter [WMT+ SIGMOD 2025]

• Adaptivity by using variable-length fingerprints to avoid collisions


• Based on the quotient filter (CQF) [PBJ+ 2017]


• Matches the space lower-bound to lower-order terms


• 10X—30X faster than other adaptive filters (ACF, TF) for disk-based database 
benchmarks


• Up to 6X faster performance than traditional filters (QF, CF) for disk-based 
database benchmarks



Adaptive quotient filter design

Stable reverse map 
during insertions

Preserves CQF 
performance and features

Supports dynamic 
operations



Database query performance

AQF up to 6X faster compared to QF/CF for database queries



Micro-benchmark performance

AQF has no overhead compared to the traditional CQF



Database insertion performance

AQF performs similarly to QF/CF for database insertions

10X—30X faster than other adaptive filters



Adaptivity rate on a churn workload

AQF adapts to new false positives almost immediately for churn workloads



AQF offers even stronger guarantees 
compared to the broom filter [BFG+ 2018]



Monotonically adaptive filters [WMT+ SIGMOD 2025]

A filter that never forgets a false positive

We can use monotonicity to solve other problems; security



Filter containing 
malicious URLS

q  Malicious∈

YES

False positives can be really expensive

Malicious URLs Legitimate URLs

Blocks malicious URLs



q  Legitimate∈

NO

False positives can be really expensive

Filter containing 
malicious URLS

Allows legitimate URLs

Access 
allowed

Malicious URLs Legitimate URLs



q  Legitimate∈

YES

False positives can be really expensive

False positive

Filter containing 
malicious URLS

A false positive can block 
critical URLs such as a voter 

registration webpage or 
emergency weather info

Malicious URLs Legitimate URLs

Expensive



YES/NO list problem

if q  YES, return         True with probability 1


if q  NO,  return          False with probability 1

                                         


Otherwise                      False with probability 

∈
∈

> 1 − ϵ

U

YES

NO

Applications:

• Detecting malicious URL

• Certificate revocation lists

• De Bruijn graph traversal

Monotonicity is critical to 
support YES/NO List 

problem!



Prior work considered each problem separately

Bloomier filter [CKR+ 2004]

Cascading Bloom filter [TC 2009]

Static XOR filter [RSW+ 2021]

Seesaw counting filter [LCD+ 2022]

Purpose-built solutions

Complex design Low performance High space



Monotonically adaptive filters solve many problems

• Security; avoiding DOS attacks

• Static YES/NO list 

• Dynamic YES/NO list


• Robust performance guarantees

• Skewed query distributions

• Adversarial queries                  

Computational 
biology

Databases

Networking 



Takeaways

• Adaptability is a critical to achieve robust performance in the 
context of skewed/adversarial workloads


• Monotonically adaptive filters can help address challenges 
across applications


• We need to redesign traditional applications in the context of 
newer guarantees and API offered by adaptive filters




Conclusion

• Data systems backed by strong theoretical guarantees are key to tackle 
future data analyses challenges


• We can efficiently employ modern hardware by developing new 
algorithmic paradigms


• Building open and scalable data systems is critical for democratizing 
data science

https://prashantpandey.github.io/

Acknowledgment: All icons in the talk are taken from https://www.flaticon.com/




