
Prashant Pandey, University of Utah
Northeastern University, Boston (Starting Spring 2025)

Data Systems at Scale
Scaling Up by Scaling Down and Out

My goal as a researcher is to build scalable data
systems with strong theoretical guarantees

My goal as a researcher is to build scalable data
systems with strong theoretical guarantees

To scale and democratize
next-generation data analyses

Three approaches to build scalable data systems

Organize it

Goal: organize data in a I/O
friendly way

B-trees, LSM-trees, Be-trees

Distribute it

Goal: distribute data & reduce
inter-node communication

Distributed hash tables

Goal: make data smaller to fit
inside fast memory

Filters, sketches, succinct
data structures

Compress it

In this talk:

Goal: make data smaller to fit
inside fast memory

Filters

Compress it

X Y ZDoes X exist?

What is a filter data structure?

Set

A filter compactly represents a set by trading off accuracy for space efficiency

X Y ZDoes X exist?

Yes Set

What is a filter data structure?

A filter compactly represents a set by trading off accuracy for space efficiency

X Y Z

No

Does W exist?

Set

Does X exist?

What is a filter data structure?

A filter compactly represents a set by trading off accuracy for space efficiency

X Y Z

Does X exist?

Does W exist?

Set

Does A exist?

Yes

What is a filter data structure?

A filter compactly represents a set by trading off accuracy for space efficiency

A filter guarantees a false-positive rate ϵ

if q S, return True with probability 1 true positive

 False with probability true negative

if q S, return

 True with probability false positive

∈

> 1 − ϵ

∉
≤ ϵ

}

 q = query item S = set of items

False positives with tunable probability

One-sided errors

False-positives enable filters to be compact

space ≥ n log(1/ϵ) space = Ω(n log(|U |)

Filter Hash table/Tree

Small Large

For , filters require ~1 Byte/item. Hash table/Tree can take >8-16 Byte/item.ϵ = 2 %

 n = number of items U = universe of items

Does X exist?

Disk

Does X exist?

Disk
Memory

No

Yes

Saves unnecessary disk accesses and network hops

Classic filter: The Bloom filter (BF) [Bloom 70]

0 1 0 1 0 1 0

Bloom filter: m bit array + k hash functions (here k=2)

m

a c
b

d S

h1(a) = 1

h2(a) = 3

h1(c) = 5

h2(c) = 3

Classic filter: The Bloom filter (BF) [Bloom 70]

0 1 0 1 0 1 0

m

a c
b

d S

h1(b) = 5

h2(b) = 2 True negative

Bloom filter: m bit array + k hash functions (here k=2)

Classic filter: The Bloom filter (BF) [Bloom 70]

0 1 0 1 0 1 0

m

a c
b

d S

h1(d) = 5

h2(d) = 1 False positive

Bloom filter: m bit array + k hash functions (here k=2)

Bloom filters are ubiquitous (> 10K citations)

Storage
systemsDatabases Networking Stream

processing
Computational

biology

Bloom filters have suboptimal performance

Bloom filter Optimal

Space (bits)

CPU cost

Data locality

∼ 1.44n log(1/ϵ) ∼ n log(1/ϵ) + Ω(n)

Ω(1/ϵ) O(1)

Ω(1/ϵ) probes O(1) probes

CFGMW 78: Optimal filter bound

Applications workaround BF limitations

No deletes Rebuild

Limitation Workaround

Applications workaround BF limitations

No resizes Guess N,
Rebuild if wrong

Limitation Workaround

Applications workaround BF limitations

No merging or
enumeration ???

Limitation Workaround

Applications workaround BF limitations

No values
associated with keys

Combine with other
data structures

Limitation Workaround

No Deletes No Resize No Merging/
Enumeration

No value
association No Counting Poor cache

locality

Bloom filters have several limitations

Bloom filter limitations increase system complexity, waste space, and slow
down application performance

Fingerprinting is an alternative to Bloom filters

Hash

FingerprintKey

log |U | p

Store fingerprints compactly in a table

PPR05, DM09, BFJ+12, EF16, PBJ+17

Fingerprinting is an alternative to Bloom filters

Fingerprint

False positives occur only when fingerprints collide

Pr [collision] =
1
2p

Hash

Hash

log |U |

p

PPR05, DM09, BFJ+12, EF16, PBJ+17

Storing fingerprints compactly using quotienting

Fingerprint

0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0

Location Tag

%
p

Knuth 97

Fingerprint

0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0

Location Tag

%

Storing fingerprints compactly using quotienting

…. ….

p

Knuth 97

Storing fingerprints compactly using quotienting

…. ….

0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0

Location Tag

0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1

Location Tag

Knuth 97

Storing fingerprints compactly using quotienting

…. ….

Use linear probing and Robinhood hashing

0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0

Location Tag

0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 1 1

Location Tag

Knuth 97

Resolving collisions in quotient filter (QF)

…. ….

How to identify the home slot of a given tag?

Pandey et al. SIGMOD 17

Use two metadata bits/slot to group tags by their home slot

…. ….

1 1…. ….Metadata bits

Tags

Resolving collisions in quotient filter (QF)
Pandey et al. SIGMOD 17

…. ….

1 1…. ….Metadata bits

Tags

Metadata bits help identify the home slot of each tag

Resolving collisions in quotient filter (QF)
Pandey et al. SIGMOD 17

Quotient filter Bloom filter Optimal

Space (bits)

CPU cost

Data locality

∼ 1.44n log(1/ϵ) ∼ n log(1/ϵ) + Ω(n)

Ω(1/ϵ) O(1)

Ω(1/ϵ) probes O(1) probes

Quotient filters offer better performance than BF

∼ n log(1/ϵ) + 2.125n

O(1) expected

1 probe + scan

Quotient filters have theoretical advantages over Bloom filters

CFGMW 78: Optimal filter bound

%
Fingerprinting Quotienting Features

%
Fingerprinting Quotienting Features

Deletes Resize Merging/
Enumeration

Value
association

Counting
(Variable length) Cache locality

Asymptotically
optimal space

Squeakr, deBGR
BIOINFORMATICS 17

ISMB 17

Mantis
Cell systems 18

RECOMB 18
LERTs

SIGMOD 20, TODS 20

MetaHipMer
PPoPP 23
ACDA 23

High performance
& scalabilitySqueakr

BIOINFORMATICS 17

Quotient filters empirical performance
Inserts Queries

Insert performance is similar to the state-of-the-art non-counting filters

Query performance is significantly fast at low load factors and slightly slower at high load factors

QF: quotient filter

CF*: cuckoo filter [FAK+14]

BF*: Bloom filter

Vector quotient filters [SIGMOD 21]

Combining hashing techniques (Robinhood hashing + power of 2-choice hashing)

Using ultra-wide vector instructions (AVX-512)

Constant high
performance

Faster overall
performance

Pandey et al. SIGMOD 21

Quotient filter’s impact in computer science

Databases Data
security

Stream
analysis

Storage
systems

Genome
assembly

Graph
systems

GPU data
structure

Sequence
search

Takeaways

• Fingerprinting is powerful: provides deletions, enumerability,
merging

• Quotienting complements fingerprinting: provides high cache
locality, performance and compactness

• Quotient filter is a high-performance feature-full filter.

Adaptivity

Disk
Memory

X Y Z

Skewed workloads can make filters obsolete

Does W exist?

Disk
Memory

X Y Z

Skewed workloads can make filters obsolete

Does W exist?

Disk
Memory

X Y Z

Does W exist?

Skewed workloads can make filters obsolete

Does W exist?

Disk
Memory

X Y Z

Does W exist?

No

False positive

Skewed workloads can make filters obsolete

Does W exist?

Disk
Memory

X Y Z

Does W exist?

No
No

False positive

Skewed workloads can make filters obsolete

Does W exist?

Disk
Memory

X Y Z

Does W exist?

No
No

False positive

Does W exist?

Skewed workloads can make filters obsolete

Does W exist?

Disk
Memory

X Y Z

Does W exist?

No
No

False positive

Does W exist?
Does W exist?

Skewed workloads can make filters obsolete

Does W exist?

Disk
Memory

X Y Z

False-positive rate , only for a single query≤ ϵ

Does W exist?

No
No

False positive

Does W exist?
Does W exist?

Skewed workloads can make filters obsolete

Can we learn from the feedback?

Does W exist?

Disk
Memory

X Y Z

Adaptive filters change their state upon feedback

Does W exist?

Disk
Memory

X Y Z

Does W exist?

Adaptive filters change their state upon feedback

Does W exist?

Disk
Memory

X Y Z

Does W exist?

False positive

Feedback

Adaptive filters change their state upon feedback

Does W exist?

Disk
Memory

X Y Z

Does W exist?

False positive

Feedback
No

Adaptive filters change their state upon feedback

Does W exist?

Disk
Memory

X Y Z

No

Does W exist?

True negative

Adaptive filters change their state upon feedback

Does W exist?

Disk
Memory

X Y Z

No

Does W exist?

True negative

Does W exist?

Adaptive filters change their state upon feedback

Adaptive filters [BFG+ 2018]

An adaptive filter modifies its state upon feedback and produces
close to false positives for any sequence of queriesO(ϵn) n

False-positive rate , independent of the query distribution≤ ϵ

Adaptive filter design has two parts [BFG+ 2018]

Disk

Memory Map

Feedback

Small in-memory filter
accessed on every query

Large disk-resident map
accessed during adaptations

Adaptive filter design has two parts [BFG+ 2018]

Disk

Memory Map

Feedback

Update

On-disk map enables adaptations and is updated to fix fingerprint collisions

Fingerprint to Key map

Disk

Adaptive filter

Memory

Adaptive filters employ variable-length fingerprints

Adaptive filters employ variable-length fingerprints

Fingerprint to Key map

Disk

Adaptive filter

Memory

Fingerprint collisions can cause false positives

Hash
Query key

Adaptive filters employ variable-length fingerprints

Fingerprint to Key map

Disk

Adaptive filter

Memory

Fingerprint collisions can cause false positives

Hash
Query key

Adaptive filters employ variable-length fingerprints

Fingerprint to Key map

Disk

Adaptive filter

Memory

Fingerprint collisions can cause false positives

Hash
Query key

Query the database

Adaptive filters employ variable-length fingerprints

Fingerprint to Key map

Disk

Adaptive filter

Memory

Fingerprint collisions can cause false positives

Hash
Query key

False positive

Fingerprint to Key map

Disk

Adaptive filter

Memory

Feedback

Feedback from the map can help fix the false positive

Adaptive filters employ variable-length fingerprints

Fingerprint to Key map

Disk

Adaptive filter

Memory

Feedback

Extending the fingerprint of the existing key can avoid future false positives

Adaptive filters employ variable-length fingerprints

Fingerprint to Key map

Disk

Adaptive filter

Memory

Feedback

Update

Fingerprint map is updated accordingly

Adaptive filters employ variable-length fingerprints

Fingerprint to Key map

Disk

Adaptive filter

Memory

Adaptive filters employ variable-length fingerprints

Hash
Insert key

Fingerprint to Key map

Disk

Adaptive filter

Memory

Adaptive filters employ variable-length fingerprints

Hash
Insert key

Fingerprint to Key map

Disk

Adaptive filter

Memory

Adaptive filters employ variable-length fingerprints

Hash
Insert key

Fingerprint map is updated accordingly

Update

Fingerprint map updates dominate the performance

Disk

Memory Map

Feedback

Update

Minimizing the work in the map is crucial for the performance

Adaptive cuckoo filters [MPR+ 2020]

Cuckoo
hash table

Cuckoo
filter

Map

Feedback

Update

Adaptivity by moving fingerprints around

Adaptive cuckoo filters offer weak adaptivity

Cuckoo
hash table

Cuckoo
filter

Map

Feedback

Update

Can forget previous false positives while adapting for new ones

Adaptivity by moving fingerprints around during insertions/queries

Can be attacked by
identifying an adaptation

loop [KMP 2021]

Telescoping filters [LMS+ 2021]

Quotient
filter

Map

Feedback

Update

Adaptivity by changing hash function during insertions/queries

Hash function
map

%

Telescoping filters offer strong adaptivity

Hash function
map

Quotient
filter

Map

Feedback

Update

Adaptivity by changing hash function during insertions/queries
Hash map grows during adaptations (variable-length fingerprints)

Does not forget previously learned fingerprints

%

Adaptive quotient filter [WMT+ SIGMOD 2025]

• Adaptivity by using variable-length fingerprints to avoid collisions

• Based on the quotient filter (CQF) [PBJ+ 2017]

• Matches the space lower-bound to lower-order terms

• 10X—30X faster than other adaptive filters (ACF, TF) for disk-based database
benchmarks

• Up to 6X faster performance than traditional filters (QF, CF) for disk-based
database benchmarks

Adaptive quotient filter design

Stable reverse map
during insertions

Preserves CQF
performance and features

Supports dynamic
operations

Database query performance

AQF up to 6X faster compared to QF/CF for database queries

Micro-benchmark performance

AQF has no overhead compared to the traditional CQF

Database insertion performance

AQF performs similarly to QF/CF for database insertions

10X—30X faster than other adaptive filters

Adaptivity rate on a churn workload

AQF adapts to new false positives almost immediately for churn workloads

AQF offers even stronger guarantees
compared to the broom filter [BFG+ 2018]

Monotonically adaptive filters [WMT+ SIGMOD 2025]

A filter that never forgets a false positive

We can use monotonicity to solve other problems; security

Filter containing
malicious URLS

q Malicious∈

YES

False positives can be really expensive

Malicious URLs Legitimate URLs

Blocks malicious URLs

q Legitimate∈

NO

False positives can be really expensive

Filter containing
malicious URLS

Allows legitimate URLs

Access
allowed

Malicious URLs Legitimate URLs

q Legitimate∈

YES

False positives can be really expensive

False positive

Filter containing
malicious URLS

A false positive can block
critical URLs such as a voter

registration webpage or
emergency weather info

Malicious URLs Legitimate URLs

Expensive

YES/NO list problem

if q YES, return True with probability 1

if q NO, return False with probability 1

Otherwise False with probability

∈
∈

> 1 − ϵ

U

YES

NO

Applications:

• Detecting malicious URL

• Certificate revocation lists

• De Bruijn graph traversal

Monotonicity is critical to
support YES/NO List

problem!

Prior work considered each problem separately

Bloomier filter [CKR+ 2004]

Cascading Bloom filter [TC 2009]

Static XOR filter [RSW+ 2021]

Seesaw counting filter [LCD+ 2022]

Purpose-built solutions

Complex design Low performance High space

Monotonically adaptive filters solve many problems

• Security; avoiding DOS attacks

• Static YES/NO list

• Dynamic YES/NO list

• Robust performance guarantees

• Skewed query distributions

• Adversarial queries

Computational
biology

Databases

Networking

Takeaways

• Adaptability is a critical to achieve robust performance in the
context of skewed/adversarial workloads

• Monotonically adaptive filters can help address challenges
across applications

• We need to redesign traditional applications in the context of
newer guarantees and API offered by adaptive filters

Conclusion

• Data systems backed by strong theoretical guarantees are key to tackle
future data analyses challenges

• We can efficiently employ modern hardware by developing new
algorithmic paradigms

• Building open and scalable data systems is critical for democratizing
data science

https://prashantpandey.github.io/

Acknowledgment: All icons in the talk are taken from https://www.flaticon.com/

