
GPU-accelerated k-mer analysis
in MetaHipMer

Prashant Pandey
University of Utah
September 2022

MetaHipMer2 Metagenome Assembler

● Part of ECP Exabiome project
● Original MetaHipMer (v1) was released in 2017 (written in

UPC/MPI)
● Released version 2 of MHM on Sept 30th 2020

○ Entirely rewritten in UPC++
○ Runs up to 10x faster than MHM v1 and uses 2x less memory

● Increasing use of GPUs

Science Analysis with Metagenomics

What happens to microbes after a
wildfire?

What are the seasonal fluctuations
in a wetland mangrove?

How do microbes affect disease and
growth of switchgrass for biofuels

What are the microbial dynamics
of soil carbon cycling?

Combine genomics with isotope tracing methods for improved
functional understanding

JGI-NERSC-KBase FICUS (Facilities Integrating Collaborations for User Science) call called out MetaHipMer

Metagenome Assembly
microbial genomes (1000s)

● varying abundance (frequency)
● sequence depth (how many times

sequenced, e.g. 50x)

reads
● typical length for short reads 150-250
● error prone, e.g 0.24% per base
● number of reads for a genome

dependant on sequence depth and
abundance

contigs
● contiguous sequences
● the longer the better
● the fewer errors the better

sequence

assemble

The MHM2 pipeline

3) Alignment
Align reads to contigs

5) Scaffolding
Walk contig graph (iterate)

2) Contig Generation
Walk k-mer graph

reads

k-mers

read-contig
alignments

contig-contig
scaffolds

contigs

1 Iterate for k+s

Extract k+s-mers2

3

4extended
contigs

5

4) Local Assembly
Extend contig ends

1) K-mer Analysis
Build k-mer graph

MHM2 Performance on Summit

● Using GPUs for local
assembly and CPUs
for kmer analysis

● kmer analysis is most
of runtime (up to
45%)

Can we speed up k-mer
analysis phase using GPUs?

Preprocessing
Downstream
applications

k-mer Count
ACTGATG 10
GGTGCAT 20
AACTGGA
CCGTGAC 1000
GGTGTGC 4000000
CGTGCAC 11
GTGTCAC 9090992

2

● The size of the raw sequencing data makes the problem challenging
● k-mer counts follow highly skewed distributions making the problem

computationally intensive

1. Genome/metagenome
 assembly
2. Error correction
3. Metagenomic
 classification
4. Sequence clustering
5. Sequence search
6. Abundance study
etc.k-mer counting

> 30 papers

k-mer counting

Two optimizations for the GPU k-mer analysis phase

● Reducing communication volume
across nodes using supermers to
speed up

● Reducing memory usage on GPU
nodes using mapping filters

Two optimizations for the GPU k-mer analysis phase

● Reducing communication volume
across nodes using supermers to
speed up

● Reducing memory usage on GPU
nodes using mapping filters

GPU hash table

● Use open addressing
○ fixed size, determined at start by using max available memory to minimize load factor/collisions
○ quadratic probing - allows high load factors

● Consists of two arrays (need to be separately initialized):
○ keys: array of uint64_t, containing k-mer packed into 4 bases per byte
○ values: array of 8 uint16_t for the counts of each of the 4 extensions on both sides and one

uint32_t for the count of the kmer

● Empty slots indicated by last position of KEY_EMPTY = 0xff...ff
○ always use odd values of k, and each nucleotide is packed into 2 bits, so last two bits will never

be used

● Locked slots indicated by last position of KEY_TRANSITION = 0xff...fe
○ also never overlaps with packed k-mer

k-mer analysis for creating distributed de Bruijn graph

● Our goal is to build a de Bruijn
graph as a distributed hash
table

● k-mers come from reads and
from contigs in previous
rounds

● Don't use singletons (likely
errors)

● Each vertex is a compressed
k-mer with extensions and
k-mer count

reads contigs
(from previous round)

distributed hash table

k-mers

compressed k-mer
count: integer
left extension: A,C,G,T,X,F
right extension:
A,C,G,T,X,F

key:

value:

k-mer analysis for creating distributed de Bruijn graph

● Our goal is to build a de Bruijn
graph as a distributed hash
table

● k-mers come from reads and
from contigs in previous
rounds

● Don't use singletons (likely
errors)

● Each vertex is a compressed
k-mer with extensions and
k-mer count

reads contigs
(from previous round)

distributed hash table

k-mers

compressed k-mer
count: integer
left extension: A,C,G,T,X,F
right extension:
A,C,G,T,X,F

key:

value:

Communication

 x x x x x x x x

Splitting reads into compressed supermers
concatenate reads into strings separated
by underscores _

each thread processes one position and
computes target from (revcomp) kmer minimizer

output is device array of target for
every kmer (-1 for spaces)i i i i -1 j j k k -1 l l i

each thread processes one position and builds a
supermer if the start position target is different
from the left target position

array with offset, length, target for each supermer
slot obtained by atomic add

offset length target

input string compressed separately, one thread
per 2 positions (compressing two ACGTNacgt
chars into one byte (lower case = low quality)

Compressed supermer sequences obtained
on CPU by applying offsets and lengths to
compressed string; then dispatched to targets

(↓ CPU spins on upcxx::progress ↓)

● Reads are split into compressed
supermers on the GPU and then
passed to the CPU for network
transfer

● The network transfer is more
complicated than this (hierarchical
three-tier aggregating store)

● The local hash table is not the same as
the final hash table (which stores only
a kmer plus left and right extension
characters - A,C,G,T,X,F)

Inserting k-mers from reads

buffer for target
process/node

P0 PnP1
….

async RPC to target

read

split into compressed
supermers (GPU)

split supermer into
kmers (GPU)

k-mer
count: integer
left ext counts: array 4 ints
right ext counts: array 4 ints

key:

value:

insert into local hash
table and update
counts (GPU)

 x x x

Processing supermers at the receiver

concatenate supermers into string
separated by underscores _

each thread processes one position and
computes (revcomp) compressed kmer plus
extensions

left ext
(A,C,G,T,0)

right ext
(A,C,G,T,0)

packed k-mer
(4 bases/byte)

low quality extensions are set to 0

each thread inserts k-mer into hash table on GPU

k-mer
count: integer
left ext counts: array 4 ints
right ext counts: array 4 ints

Performance of k-mer analysis

● Dataset is WA0 (71GB) on 32 Summit
nodes

● Total speedup from GPUs is 2.9x
● Parse and pack (PnP) gives 29% speedup
● Adding GPU hash tables gives another

56%
● Adding supermers gives another 44%
● Supermers actually slow down CPU

version by 55% (mostly the cost of
extracting supermers in RPCs on receiving
processes)

Performance of pipeline

● k-mer analysis is now 2.7x to 2.9x faster
● k-mer analysis is now less than 25% of runtime (down from max 45%)
● overall speedup is 70 to 86% on up to 256 nodes
● GPU computation is a few percent of k-mer analysis time

Communication

● supermers reduce communication volume by 5.3x and number of messages by
3.7x

● communication reduction results in 44% speedup for k-mer analysis
● most communication is now alignment - reduce in future through earlier read

shuffling

Two optimizations for the GPU k-mer analysis phase

● Reducing communication volume
across nodes using supermers to
speed up

● Reducing memory usage on GPU
nodes using mapping filters

PAR Report

8/3/2021

Hunter McCoy

 Table 1

Initial Reads Kmers

 Table 0

 Table n

...

K-mer analysis phase

PAR Report

8/3/2021

Hunter McCoy

 Table 1

Initial Reads Kmers

 Table 0

 Table n

...

}

30-70%
Singletons

K-mer analysis phase

Singleton k-mers are erroneous and need to be cleaned out.

K-mer analysis phase

● Hash tables store all k-mers but discard new k-mers once they are full
○ (load factor = 1)

● GPUs have limited memory (16GBs on V100)
● Lots of wasted space due to singleton k-mers

○ Each k-mer can take up to 18 bytes

● Non-singletons k-mers end up being dropped resulting in poor assembly
quality.

A filter is an approximate dictionary

a
c

b
d

A filter supports approximate membership queries on S.

membership(a):

membership(b):

membership(c):

membership(d):

false
positive

S

if q ∈ S, return with probability 1

 with probability ﹥ 1 - ε
if q ∉ S, return
 with probability ≤ ε

false positive

true negative

true positive

one-sided
errors

25

A filter guarantees a false-positive rate

False-positive rate enables filters to be compact

Hash tableFilter

Small

Large

Hash tableFilter

Small

Large

For most practical purposes:
ε = 2%, a filter requires ≈ 8 bits/item

False-positive rate enables filters to be compact

Using filters to remove singletons

Hash table
GPU

Mapping filter on GPU

K-mer analysis with filter

Hash table
GPU

k-mers

If foundInsert if
not exist

We use a quotient filter[Pandey et al. SIGMOD 2017] as a mapping filter.
It can approximately map a key to a small value.
Key is k-mer and value is the extensions.

Mapping filter on GPU

Two choice filter on the GPU

● The two choice filter is based on power-of-two-choice
hashing.

● We can perform insert/query/delete operations using
only 2 cache line probes and 1 cache line write.

● Cooperative groups is used to perform operations inside
each block.

● Both point and batch operations supported.
○ Batching operations helps to speed up the throughput

K-mer analysis results using filters

K-mer analysis results using filters

Summary

● Accelerating k-mer analysis with GPUs is complicated
● Gives a 2.5x to 2.9x speedup
● Can reduce the memory usage by 2x using advanced filter data structures
● Open questions:

○ Is there a better GPU hash table that can offer consistent high performance?
○ Can we use a better partitioning scheme to perform efficient distributed join during contiging

phase?
○ Can we rewrite the whole pipeline using batch parallel model?

Hash table insertions

// kmer is array of uint64_t of length N
// all key slots initially set to KEY_EMPTY
int slot = hash(kmer) % capacity; // starting slot
for (i = 0; i < MAX_PROBE; i++) { // maximum number of probes
 do { // acquire "lock" on key
 key = atomicCAS(keys[slot][N - 1], KEY_EMPTY, KEY_TRANSITION)
 } while (key != KEY_TRANSITION);
 if (key == KEY_EMPTY) { // lock was acquired on an empty slot, set key
 for (l = 0; l < N - 1; l++) { key = atomicExch(keys[slot][l], kmer[l]);}
 found_key = true; break;
 } else if (key == kmer[N - 1]) { // this could be the same key
 found_key = kmers_equal(kmer, keys[slot]); // check for same key
 if (found_key) break;
 }
 slot = (start_slot + (i + 1) * (i + 1)) % capacity; // quadratic probe
}
if (found_slot)
 atomicADD(values[slot][...]...; // inc k-mer count and extension counts

k-mers from contigs

● k-mers from contigs inserted into a separate, smaller ctg-kmers GPU hash
table

● processed similarly to k-mers from reads, except:
○ count for k-mer is min of all inserts (set with atomicMin, after atomicCAS to check for zero)
○ after all insertions are done, a new GPU kernel purges conflicts (2 or more valid extensions on a

side) - marked KEY_EMPTY

● after ctg-kmers completed, insert each entry into read-kmers hash table:
○ if the k-mer already exists (from a read) but it doesn't have good extensions, add the extension

counts from the contig k-mer
○ if the k-mer doesn't exist, add the ctg k-mer

Final stages

● purge invalid entries, one GPU thread per hash table slot:
○ purge (set to KEY_EMPTY) k-mers with a count of 1 or without valid extensions on both sides

● compute final extensions, one GPU thread per hash table slot:
○ for each side, convert array of counts for A,C,G,T into a single base extension or X or F

● each GPU thread inserts (kmer, count, left ext, right ext) into new compact GPU
hash table

● copy compact GPU hash table into host memory
● iterate through array on CPU, inserting each (kmer, count, left ext, right ext)

element into local CPU hash table for later use in deBruijn graph traverse

