BP-tree: Overcoming the Point-Range Operation Tradeoff for
In-Memory B-trees

Helen Xu Amanda Li Brian Wheatman = Manoj Marneni ~ Prashant Pandey
Lawrence Berkeley Massachusetts In- Johns University of Utah University of Utah
National Laboratory stitute of Technology =~ Hopkins University =~ u1320407@utah.edu pandey@cs.utah.edu

hjxu@Ibl.gov amandali@mit.edu wheatman@cs.jhu.edu

I I I I I I I I

ABSTRACT 1.5 | | —e— Insert —@— Find —— Range query .
B-trees are the go-to data structure for in-memory indexes in
databases and storage systems. B-trees support both point opera- =8 4| |
tions (i.e., inserts and finds) and range operations (i.e., iterators and SIRs
maps). However, there is an inherent tradeoff between point and Té g
range operations since the optimal node size for point operations 5 “‘8 0.5 - .
is much smaller than the optimal node size for range operations. Z &
Existing implementations use a relatively small node size to achieve ol | | | | | | | | ‘

fast point operations at the cost of range operation throughput.

We present the BP-tree, a variant of the B-tree, that overcomes
the decades-old point-range operation tradeoff in traditional B-trees.
In the BP-tree, the leaf nodes are much larger in size than the inter-
nal nodes to support faster range scans. To avoid any slowdown in
point operations due to large leaf nodes, we introduce a new insert-
optimized array called the buffered partitioned array (BPA) to
efficiently organize data in leaf nodes. The BPA supports fast inser-
tions by delaying ordering the keys in the array. This results in much
faster range operations and faster point operations at the same time
in the BP-tree.

Our experiments show that on 48 hyperthreads, on workloads
generated from the Yahoo! Cloud Serving Benchmark (YCSB), the
BP-tree supports similar or faster point operation throughput (be-
tween .94 X —1.2X faster) compared to Masstree and OpenBw-tree,
two state-of-the-art in-memory key-value (KV) stores. On a YCSB
workload with short scans, the BP-tree is about 7.4x faster than
Masstree and 1.6X faster than OpenBw-tree. Furthermore, we ex-
tend the YCSB to add large range workloads, commonly found in
database applications, and show that the BP-tree is 30X faster than
Masstree and 2.5x faster than OpenBw-tree.

We also provide a reference implementation for a concurrent B*-
tree and find that the BP-tree supports faster (between 1.03x—1.2X
faster) point operations when compared to the best-case configu-
ration for B*-trees for point operations while supporting similar
performance (about .95X as fast) on short range operations and faster
(about 1.3X faster) long range operations.

PVLDB Reference Format:

Helen Xu, Amanda Li, Brian Wheatman, Manoj

Marneni, and Prashant Pandey. BP-tree: Overcoming the Point-Range
Operation Tradeoff for In-Memory B-trees. PVLDB, 16(11): 2976 - 2989, 2023.
doi:10.14778/3611479.3611502

This work is licensed under the Creative Commons BY-NC-ND

4.0 International License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/
to view a copy of this license. For any use beyond

those covered by this license, obtain permission by emailing info@vldb.org. Copyright
is held by the owner/author(s). Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611502

28 99 910 9ll 912 913 514 915 916

Node size (bytes)

Figure 1: Normalized performance compared to the fastest
configuration (for each operation) in a concurrent B*-tree
with 48 hyperthreads.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/wheatman/concurrent-btrees.

1 INTRODUCTION

The B-tree (or B*-tree!) [7] has been the fundamental access path
structure in databases and storage systems for over five decades [20,
33]. B-trees are a generalization of self-balancing binary search trees
to arbitrary fanouts (with more than two children per node). They
store elements in each node in a sorted array. Given a cache-line size
Z [1], a B-tree with N elements and node size B = ©(Z) supports
the point operations insert and find in O(logg(N)) cache-line
transfers in the I/O model [1].

B-trees are one of the top choices for in-memory indexing [81]
due to their cache efficiency though they were initially introduced
for indexing data stored on disk [7]. B-trees are especially popu-
lar in databases and file systems because they support logarithmic
point operations (inserts and finds) and efficient range operations
(range queries and scans) that read blocks of data [45, 69]. They
are also extensively used as the in-memory index in many popu-
lar databases such as MongoDB [54], CouchDB [24], ScyllaDB [71],
PostgreSQL [64], and SplinterDB [21].

There is an inherent tradeoff between point and range operations
in practice for B-trees as the optimal node size is quite different for
these two classes of workload. For range queries, the B-tree requires
O(logg(N) + k/B) cache-line transfers, where k is the size of the
range. For long range queries, the k/B factor is the higher-order

1A B*-tree is a scan-optimized variant of B-trees that stores all data records in the
leaves and only pivot keys in the internal nodes. The B*-tree is widely implemented in
real-world applications as it supports faster range scans [21, 24, 44, 44, 54, 64, 71,78, 79]
compared to the traditional B-tree. In this paper, we refer to B*-tree as the B-tree.

https://doi.org/10.14778/3611479.3611502
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611502
https://github.com/wheatman/concurrent-btrees

term, so increasing the node size improves range query performance.
However, the performance of point insertions does not improve and
may even suffer with larger nodes because the cost of keeping the
items ordered in the nodes grows with the size of the node.

Figure 1 illustrates the empirical? point-range operation tradeoff
with varying node size in a reference concurrent B-tree. Prior work
showed that setting the node size much larger than the cache-line
size can improve both point and range operations [19, 36]. Similarly,
we found that the optimal node size for point operations was 21
bytes in the tested B-tree. In contrast, the range query performance
improves with the node size as the nodes grow past 2!° bytes in
size. However, it starts to stagnate beyond 216 bytes. Large nodes
improve range queries because they convert random cache accesses
to sequential ones by reading more contiguous data. However, as
the node size grows, insertion performance suffers because more
elements are shifted around to maintain order upon each insert.

Point and range operations in key-value stores. One of the
core use cases for B-trees is to support key-value (KV) stores [53],
a ubiquitous method of storing data as a collection of records, or
key-value pairs. KV stores are used extensively in systems such as
Dynamo [25], Redis [43], and Memcached [28, 61].

KV stores have traditionally been optimized and benchmarked for
point operations (e.g., get and put) that underlie online transaction
processing (OLTP) applications such as those in the Yahoo! Cloud
Serving Benchmark (YCSB) [22]. The original YCSB workloads cen-
ter around point operations such as point insertions and queries.
They contain range queries, but only in a limited capacity because
range operations are not as common as point operations in OLTP.

However, emerging real-time analytics applications increasingly
require both fast point and range operations (e.g., range queries
and maps) in the same in-memory KV store [6, 14]. Range queries
from transactional workloads are often short (i.e. they involve only
afew elements) — the default configuration in YCSB generates range
queries with a maximum length of 100. In contrast, range queries
from analytical workloads may be much longer and access a constant
fraction of the data (e.g., 1% or 10%) [63]. To address this issue, prior
work has focused on efficiently supporting both transactional and
analytic processing applications on disk [18, 29, 35, 63, 67]. Recently,
there has also been significant effort towards optimizing large range
queries for in-memory KV stores [6, 14, 16, 26, 27, 74]. These works
are motivated by in-memory workloads from databases [14, 51]
and graph analytics [26, 58, 59] that require long scans. This paper
focuses on the case of in-memory KV stores.

Systems optimized for either point operations or range operations
may suffer on the other type of workload. For example, prior work
showed that state-of-the-art KV stores such as Cassandra [17], RAM-
Cloud [56], and RocksDB [68] perform poorly on long range queries
because they were designed for point and short queries [62, 63].
Furthermore, HBase [37] integrates support for point and range
operations but has been shown to underperform on point lookups
compared to other KV stores.

Overcoming the point-range tradeoff in B-trees. The goal of
this paper is to overcome the inherent point-range tradeoff in B-trees
by making the nodes bigger to support fast range operations without

2 Section 6 contains all details about the experimental setup and method.

compromising on point insert performance. As shown in Figure 1,
simply making the nodes bigger while keeping the same sorted-array
data structure in the nodes does not solve the problem because it
improves range operations at the cost of point operation throughput.

To design a B-tree that achieves high performance for both point
and range operations, we base our design on two insights about data
layouts fromIdreos et al. [40]: 1) that the internal nodes and leaf nodes
inaB-tree do not have to be the same size, and 2) that the elements ina
B-tree node are not necessarily sorted. This paper builds on these ob-
servations to achieve high throughput for both point and range opera-
tions in B-trees with optimized data structure design in B-tree nodes.

Overcoming the point-range tradeoff by making the leaf nodes
large (for faster range operations) requires cleverly organizing data
records inside leafnodes to support efficient updates. Naively increas-
ing the size of only the leaves does not solve the problem because it
improves range operation throughput at the cost of point operation
throughput®. Furthermore, simply relaxing the sortedness constraint
in the nodes by using a hash-based organization (as in [40]) does not
solve the issue because hash tables do not efficiently support ordered
range queries, which are a key component of scan-based workloads
such as the ones generated by YCSB [22].

To improve range operation performance while maintaining fast
point operations, we introduce a new insert-optimized array-based
data structure called the buffered partitioned array (BPA) that
we incorporate into B-tree leaf nodes to allow them to grow in size
without sacrificing point insert throughput.

The BPA is faster for inserts than a traditional array for two main
reasons. First, it buffers insertions to avoid shifting elements on every
insert, drawing inspiration from write-optimized data structures [32].
Next, it partitions the array into blocks and leaves empty spaces in
the blocks to further avoid shifting elements upon buffer flushes,
emulating the Packed Memory Array (PMA) data structure [10, 42].

We use the BPA to create the BP-tree, a variant of the traditional
B-tree that uses the BPA in the leaves and sets the leaf size to be
much larger than the internal node size. This optimized B-tree design
focuses on the leaves because the internal nodes are rarely updated
in the steady state of the B-tree.

The BP-tree is optimized for long range queries that traverse mul-
tiple leaves in the B-tree but does not give up on point operation
performance. It improves long range queries by avoiding pointer in-
directions that would have occurred with smaller leaf nodes, thereby
converting random reads into sequential ones. Furthermore, the
insert-optimized BPA ensures that there is no impact on the perfor-
mance of point operations. In fact, it speeds up the point operations
in some benchmarks.

Results summary. We implemented a concurrent BP-tree using
the state-of-the-art TLX B-tree [12] and an optimistic concurrency
control scheme [46] as the starting point. We include the baseline
concurrent version of the TLX B-tree with 1024-byte nodes in the
evaluation because this is the best node size for concurrent point
operations on the machine. Additionally, we compare the BP-tree
to Masstree [52] and OpenBw-tree [75], two state-of-the-art con-
current in-memory KV stores. To test all systems on both point and

3We found that only changing the leaf size in B-trees results in similar trends to those
in Figure 1.

range operations, we generated workloads from the YCSB [22] using
both uniform-random and Zipfian distributions.

As we shall see in Section 6, the BP-tree achieves similar or better
(between .95x-7.4x faster) performance on range operations from
the original YCSB workloads while supporting similar point opera-
tion performance (between .94x—1.2X faster) when compared with
the other systems. Specifically, the BP-tree is between 1 X —1.2X
faster than the baseline B-tree on point operations and achieves
similar (.95x as fast) performance on short range queries from YCSB.
Furthermore, the BP-tree is slightly slower (within .94X as fast) on
point operations but about 7.4X faster on short range queries when
compared to Masstree. Finally, the BP-tree is about 1.2x faster on
point operations and 1.6X faster on short range operations when
compared to OpenBw-tree.

Since the BP-tree is optimized for long range queries, we also
tested all systems on long range query workloads by extending the
YCSB workloads. The BPA enables the BP-tree to support faster range
operations with large* leaves. We found that the BP-tree is about 1.3x
faster than the concurrent B-tree, about 30X faster than Masstree,
and about 2.5X faster than OpenBw-tree on large range queries.

Contributions

Specifically, the paper’s contributions are as follows:

e An empirical evaluation of the impact of the node size on various
B-tree operations in a concurrent setting.

e Overcoming the decades-old point-range operation tradeoff in
B-trees with the BP-tree, a variant of the B-tree that incorporates
the BPA in the leaves.

o Thedesign and implementation (in C++) of the buffered partitioned
array (BPA), an insert-optimized data structure that reduces el-
ement moves compared to a sorted array.

e An evaluation of the BP-tree compared to a traditional B-tree,
Masstree, and OpenBw-tree on workloads from YCSB that demon-
strates that BP-tree supports faster range operations with similar
or better point operation performance.

2 PRELIMINARIES

This section provides necessary background to understand the data
structure improvements in this paper. First, we introduce the clas-
sical “Disk-Access Machine (DAM) model” and a refinement to the
DAM model called the “affine model” Next, we review details about
B-trees, their operations, and optimistic concurrency control.

Memory models. The Disk-Access Machine (DAM) model [1] cap-
tures algorithm cost in hierarchical memory by taking into account
non-uniform access times in different levels of memory. It models
two levels of memory: a small fixed-size cache and an unbounded-
size slow memory. Any data must first be in the cache before it is
processed. Data is transferred between the two levels in cache lines
of size Z. An algorithm’s cost is measured in cache-line transfers.
The affine model [3, 8, 9, 70] refines the DAM model to explicitly
account for the cost of random vs contiguous memory access. In
the affine model, an I/O of x words has cost 1+ax, where a < 1 is
a hardware parameter. The 1 represents the normalized setup cost

4The default configuration for the BP-tree sets Binterna=1024 bytes and Bje,r=17408
bytes.

of doing an indirection (or seek, on disk) and « is the normalized
bandwidth cost.

B-tree structure and operations. B-trees generalize self-balancing
binary trees to arbitrary fanouts to take advantage of the speed of
contiguous memory access [7]. Just like binary trees, B-trees store
elements in sorted order. Traditionally, B-trees store B=0(Z) ele-
ments per node in a sorted contiguous array. The height of a B-tree
with N elements and node size B is O(logg(N)).

A B-tree exposes four operations.

e insert(k, v):insertsakey-value pair (k, v).

e find(k): returns a pointer to the element with the smallest key
that is at least x.

e iterate_range(start, length, f) applies the function f to
length elements in order (by key) starting with the element with
the smallest key that is at least start.

e map_range(start, end, f): applies the function f to all ele-
ments with keys in the range [start, end).

This paper considers both range iteration and map because the
importance of ordered iteration in the scan depends on the use case.
For example, the YCSB requires range iteration to simulate an appli-
cation example of threaded conversations [22]. On the other hand,
some applications may not necessarily need to access the keys in
order. For example, graph-processing systems [5, 72], feature storage
for machine learning [38, 50, 60], and file system metadata manage-
ment [66, 69]. Cassandra [17] supports range iterations natively,
while HBase’s range query API [37] supports range maps natively.

B-tree theoretical bounds. We will now review the asymptotic
bounds for the four main operations on a B-tree with N elements
and node size B=0(Z).

The B-tree supports the point operations insert and find in
O(logg(N)) cache-line transfers. To find an element in a B-tree, we
traverse the internal nodes and follow the pivots (elements at inter-
nal nodes) to find the leaf that the target element might reside in.
This procedure takes O(1) cache-line transfers at each level of the
tree for a total cost of O(logg (N)) cache-line transfers. Inserts begin
with a find for the correct leaf to insert the element into. To maintain
elements in sorted order, we shift elements in the array in the target
leaf to make space and place the element in the correct position. If
the leaf becomes full, it splits into two leaves and the midpoint is
promoted to become a pivot in the internal nodes. This promotion
procedure proceeds up the tree, if necessary.

The B-tree supports the range operations iterate_range and
map_range in O(logg(N) + k/B) cache-line transfers where k is
the number of elements in the range. A range operation in a B-
tree is comprised of a find for the smallest element with a key
that is at least start, which takes O(logg(N)) cache-line transfers.
Since the B-tree stores elements in sorted order, it implements both
iterate_range and map_range with a forward scan from the start-
ing element, which takes ©(k/B) cache-line transfers.

2.1 Concurrency control

This section describes the optimistic concurrency control mecha-
nism [46] used in the B-tree and BP-tree in this paper to support simul-
taneous operations (i.e., concurrent inserts, finds, and range queries).

Each node is locked with a read/write lock, where multiple readers
are allowed to access the node concurrently if no write lock is held.

The operations below use hand-over-hand locking [39] to traverse
the tree. Hand-over-hand locking is a concurrency control mecha-
nism where each thread holds at most two locks at a time. In hand-
over-hand locking, a worker acquires the lock on a successor node
(e.g., the lock on the child node) prior to releasing a lock on its pre-
decessor (e.g., the lock on the parent node). To prevent deadlock, we
maintain that locks are acquired in top-down”, then left to right order.

Insert. Insertions first make an optimistic descent by taking hand-
over-hand read locks from the root down to the leaf, then taking the
write lock on the leaf. If we are able to insert into the leaf without
causing a split, then we successfully insert into the leaf and release
all locks. If inserting into the leaf would cause a split, we check if the
parent can handle an additional element. If the parent can handle
the additional insert, the change will not propagate farther up the
tree and we just need to acquire the write lock on the parent of the
leaf. We first try to upgrade the current read lock on the parent to a
write lock, which can only be done if no other threads hold the read
lock on the parent. If the lock can be upgraded, we can complete the
insert. If the parent of the leaf cannot be upgraded, since some other
thread is trying to read or write the parent, we release all locks and
restart the insertion operation with a pessimistic second descent. In
the second descent, we take write locks from the root down to the
leaf. Then we lock the leaf and the new right leaf (from the split),
insert into the appropriate leaf, and propagate the midpoints back
up the tree, unlocking as we go.

Find. Finds take read locks in a hand-over-hand fashion from the
root down to the leaf, then take the read lock on the leaf and search
for the key within the leaf.

Range query. Range queries first perform a find on the start key
to locate the starting leaf of the query, then take read locks from
left-to-right as needed in a hand-over-hand fashion starting from
the leaf that resulted from the find.

3 BUFFERED PARTITIONED ARRAY: OPTIMIZ-
ING LARGE B-TREE LEAVES FOR INSERTS

This section describes the buffered partitioned array (BPA) data struc-
ture that enables the BP-tree to maintain large leaf nodes without
sacrificing updatability. It then describes how the BPA supports the
operations described in Section 2.

The main idea behind the BPA is to create a data structure for B-
tree nodes that uses a larger contiguous block of memory compared
to traditional B-tree node sizes to enable fast scans while maintaining
fastinserts. As demonstrated in Section 1, simply increasing the node
size significantly degrades B-tree insert performance. Furthermore,
the leaf node size determines overall performance because most of
the writes affect only the leaves in the steady state. Therefore, we
design a new data structure specifically for B-tree leaves.

At a high level, the BPA increases the size of the leaves by collaps-
ing the last directory level of a B-tree and its children into a single

5Two—phase locking [11], a classical concurrency control mechanism in databases, also
grabs locks in a top-down fashion. However, it differs from hand-over-hand locking
in that it 1) phases the acquiring and releasing of locks and 2) allows workers to hold
more than two locks at a time.

contiguously allocated region of memory. However, it also employs
additional optimizations to support fast insertions.

The BPA improves insertion throughput when compared to a
sorted array by reducing data movement in two ways. First, the BPA
buffers inserts to amortize data movement across operations. Next, it
maintains empty spaces in the data structure in a “blocked structure”
to avoid element shifting as much as possible even when the buffer
becomes full. Finally, it does not maintain the elements in sorted
order across the array. Specifically, the items inside blocks are not
stored in order, which allows new inserts to be placed at the ends of
blocks instead of requiring element shifts.

We omit the discussion of deletions for simplicity, but deletions
are symmetric to insertions (by using tombstones).

Layout. The BPA uses a contiguous array to store its data, but par-
titions that array into three sections called the “log,” the “header,”
and the “blocks,” as illustrated in Figure 2a. It is parametrized by the
following values:

e log_size: the maximum number of buffered inserts.

e num_blocks: the number of blocks in the data structure.

e block_size: the maximum number of elements per block.

The log encompasses the first log_size slots (i.e., locations
[0,log_size) and is used to buffer inserts that will later propagate
to the rest of the data structure. The log coalesces multiple L1 fetches
by ensuring that most inserts only read the first few cache lines of
each BPA even if the overall size of the BPA is large (i.e., several Kb
or more). The header uses the next num_blocks slots (i.e., locations
[log_size, log_size + num_blocks)) to partition the rest of the
data structure by range. Each slot in the header holds the minimum
element (or a block marker) in the corresponding block. The ele-
ments in the header are sorted. Finally, there are num_blocks blocks
of block_size slots each. Each block’s elements fall in the range
denoted by the corresponding header element. That is, the elements
in block i fall in the range denoted by the elements at positions
[log_size+i,log_size+i+1). The i-th block’s elements start at
position block_start =1og_size+num_blocks+ixblock_size.
The i-th block encompasses the cells in positions
[block_start,block_start+block_size).In contrast to the ele-
ments in the header, elements in the log and each individual block
may not be sorted.

Just as in other buffered data structures such as the B®-tree [32],
there may be two copies of an element in a BPA: one in the log and
one in the blocks. However, if an element is present in both the log
and the blocks, the copy in the log must have been the one that
arrived later and is therefore the one returned during queries.

Insert. The BPA is an insert-optimized data structure that supports
fast inserts by buffering inserts and storing elements in a contiguous
array partitioned into fixed-size blocks with empty spaces. The BPA
maintains the invariant that there is always at least one empty cell
in the log and in each block after an insertion has been completed.

Suppose we want to insert a key-value pair (k, v) into the BPA.
The BPA first scans all elements in the log. If any of the elements in
the log have k as their key, the BPA replaces that element with (k,
v) and returns. Otherwise, it appends the element to the end of the
log. There are two cases after adding the new element to the log:
Case 1: There is at least one empty cell left in the log.

Log Header Blo/t\:ks
I Il 1 1 1
2s]8] | [7]ts[1ofsof1a[a] [17 T [|a2[so] | [esfes] T |
Insert(22) 2 : : : : :
25[8[22] [7]15[19[sof13]8] [[17] | [[82][s0] [[e3[es] | |
Insert(27) ' ' ' ' '
Sort log and clount how many new elemepts are destinlsd for each bllock:
[8]22]25]27 7 [15][19]e0[13[8 [| [17] [[[s2[s0] [[ea[es] [|
X "240-2 ' 1+40=0 ' 2+3=5 ' 2+0=2
v v X v

Sort and redistribute all elements evenly because at least one block overflowed:
LT 1] ! 7 |17|25\50! 8[13] | !19]22\ [!27]32\ [!59]93|95| |

(a) An example of insertions in a BPA. The log has enough space
to hold the first insertion, but the second one overflows the log
and causes a flush to the blocks. Flushing to the block causes a
redistribute because it overflows at least one of the blocks.

iterate_range(start = 7, length = 2, f)
Log Header Bl%ks

I I) |))
[25]8] | !7|15|19|39!13|s| [!17| [] !32|5o| [!93|95| []

Sort the log and first relevant block, initialize the pointers:

] 1 1 1]
[8]2s] | !7|15|19|89!8|13| [!17| [] !32|50| [!93|95| []

log_ptr blocks_ptr
Advance the pointers to perform sorted iteration:

[8]2s] | i7|15|19|89i8|13| [i17| [] i32|50| [i93|95| []
log_ptr blocks_ptr

[8]2s] | i7|15[19|89is|13| [i17| [] i32|5o| [i93|95| []
%og,ptr v zl(ocks,ptr

(b) An example of a call to iterate_range in a BPA. The BPA sorts
parts of the data structure as needed. To perform the ranged
iteration, the BPA executes a two-finger merge through the
relevant (and now sorted) parts of the BPA.

Figure 2: Insertion and range operation in the BP-tree.

The insertion is complete. The first insert in Figure 2a illustrates
appending an element at the end of the buffer.
Case 2: There are no empty cells left in the log.

To maintain the invariant that there are empty cells in the log
before any insert, the BPA sorts and then flushes, or moves, the ele-
ments to the rest of the data structure based on the partitioning given
in the header. If this is the first time elements are being flushed from
the log (e.g., near the beginning of the lifetime of the BPA) and there
are no elements yetin the header, the log is ordered and simply moved
to the header. Otherwise, if there are elements in the header, the BPA
first counts up how many elements are in each block and stores the
resultin an array called count_per_block that stores how many ele-
ments are currently in each block. It then determines how many new
elements (excluding duplicates) are destined for each block (based
on the partitioning from the header) and stores the result in an array
called new_destined_per_block. There are two possible cases:

Case 2a: For all i=0,1,....,num_blocks—1, count_per_block[i]
+ new_destined_per_block[i] < block_size.

In this case, each block has enough space to accomodate elements
from the log while still maintaining the invariant that there is at least
one empty space in each block. The BPA flushes elements from the
log to a block by 1) replacing any elements in the header/block with
the same key as an element in the log with the newer version from
the log and 2) moving all other elements in the log destined for the
block into that block. If there are currently elements in the block,
the BPA appends any relevant elements from the log to the end of
those elements.

After the flush, the BPA completes the insertion by clearing the log.

Case 2b:Forsomei=0,1,...,num_blocks—1,count_per_block[i]
+ new_destined_per_block[i] > block_size.

The second insert in Figure 2a illustrates this case of possibly
filling one of the blocks upon a flush.

If there is not enough space in at least one of the blocks to flush ele-
ments from the log, the BPA sorts each block and merges all elements
(from the log, header, and blocks) into a separate array, removing
duplicate keys (i.e., if there are elements with the same key in the log

and the header/blocks) along the way. At the end of the merge, all el-
ements in the data structure are stored in sorted order in the separate
array. The BPA then performs a redistribute® that chooses a new
header that split elements as evenly as possible amongst the blocks.

After the redistribute, the BPA completes the insertion by clearing
the log.

Find. Point queries in a BPA first check the log, then the header, and
then finally the blocks. If the key is found in the inserts in the log,
the BPA returns that element. If the key is not found in the log, the
BPA checks the header to see if the element is in the header. If the
element is in the header, the BPA returns that element. If it is not
in the header, the BPA uses the header to determine the block that
the target element might possibly reside in. Finally, the BPA checks
all elements in the relevant block and returns the element with the
matching key, if there is one. Otherwise, it returns null because
there was no element with a matching key.

Range iteration. Although the BPA is not globally sorted, it sup-
ports sorted iteration in a range (iterate_range) by sorting el-
ements as necessary and then processing the elements in sorted
order. Suppose the user calls the procedure iterate_range(start,
length, f).The BPA first sorts the inserts in the log and the block
that the startkey wouldreside in. It then initializes two pointers: 1) a
log_ptr which starts at the smallest element in the log that is greater
thanorequal to start,and 2)ablocks_ptr which starts at the small-
est element in the header/blocks that is greater than orequal to start.
The BPA then performs a co-iteration with the two pointers to pro-
cess length elements and applies the function f to those elements
while advancing the pointers as necessary. If the query is not finished
buttheblocks_ptrreachesthe end ofits current block, the BPA sorts
the next block (if there is one) and moves the blocks_ptr to the start
of that block. If either of the pointers reaches the end of their respec-
tive sections (the log or the blocks) and fewer than length elements

®The redistribute procedure is inspired by the Packed Memory Array (PMA) data
structure [10, 42], but the PMA is distinct in that it may perform local redistributes that do
notinclude all of the blocks, while the BPA only performs global redistributes of all blocks.

107 — = 5
g GG~ = 107 . f*fk’:f:*””'/"“‘*i - B e e

R E) R
p 10 S o ; 10
s —e— Array actual BPA actual =t —e— Array actual BPA actual s N Array actual BPA actual

10! +| —<— Array prediction BPA prediction 10! | | —<— Array prediction BPA prediction 10 —— Array prediction BPA prediction

10° 10 108 101 10° 10
Size (bytes) Size (bytes) Size (bytes)
(a) Find (b) Insert (c) Scan

Figure 3: Predicted and actual times for operations on parallel copies of a sorted array and a BPA.

have been processed, the BPA advances the remaining pointer until
it reaches the correct number of elements or runs out of elements.

As an additional optimization to avoid unnecessary sorting, the
BPA keeps a bit vector of length num_blocks that denotes whether
the elements in each block are currently sorted. It sorts a block during
arange query if and only if the corresponding bit in the bit vector is
unset. If the BPA sorts a block as part of a redistribute or sorted range
query, it sets the corresponding bit. If there are elements flushed to a
block during an insert, the BPA unsets the corresponding bit because
the elements in the block may have become unsorted.

Figure 2b presents a worked example of a sorted range query.

Range map. The procedure for range maps in the BPA is similar to
the one for range iteration except that maps do not need to perform
atwo-finger co-iteration. The map first copies all elements in the log
into a separate array and sorts it to avoid scanning through the entire
log during the map for each block. It then scans through the inserts in
the log and applies the function f to all elements that fall within the
range. The BPA then scans through the relevant blocks, skipping all
elements that are not in the range or that have a duplicate in the log.

4 PERFORMANCE
PREDICTION USING THE AFFINE MODEL

In this section, we use the affine model 8] to theoretically analyze
the performance of a sorted array and BPA data structure. To isolate
the performance difference between the sorted array and the BPA,
we only consider the array data structures to model the performance
of the tree as both the B-tree and BP-tree have the same internal
structure (including the size of internal nodes) and only differ in
the representation and the size of the leaf nodes. We then perform
experiments to show how closely the theoretical models fits the ex-
perimental performance. Finally, we consider other empirical factors
that are not included in the original affine model.

The goal of this section is to demonstrate that the BPA achieves
a better insert-scan tradeoff than the sorted array (that is, the insert
performance degrades slower as a function of size in the BPA than
the sorted array). This makes the BPA appropriate to represent leaf
nodes in the B-tree to achieve an better overall insert-scan tradeoff.

We find that the affine model closely predicts the performance of
inserts and scans in memory. For finds, the prediction follows the
same curve as the empirical performance but with a higher magni-
tude. We attribute this to the fact that find incurs random cache line
accesses and it is harder to determine the base case due to memory-
level parallelism and prefetching in the system.

Methodology. The main components of the in-memory affine model
are Z, the size of a cache line, @, the relative cost of a sequential cache-
line access, r, the cost of reading a random location in DRAM, and
w, the cost of writing to a random location in DRAM.

We empirically measure a and r using the following scan test’.
At a high level, this test allocates a large contiguous chunk of mem-
ory of N bytes and reads (and sums) the entire chunk in parallel in
randomly-ordered fixed-size blocks of size £ (using the same systems
setup and pthreads as described in Section 6). All times are the aver-
age of 10 trials. Although the total number of bytes read is constant
regardless of the setting of ¢, the total time of the experiment de-
creases with increasing ¢ because each block involves reading more
contiguous memory. By setting £=Z, we can compute the latency
of reading a random cache line in DRAM by dividing the total time
by the number of lines read. Furthermore, we can compute « by
increasing ¢ and calculating the relative cost of reading consecutive
cache lines compared to reading random cache lines. We set N =2%3
and set ¢ as powers of 2 from 23 to 220,

To measure the performance differences between a sorted array
and the BPA, we perform a parallel copies test. We now describe the
experiment for sorted arrays for simplicity, but the test for the BPA
has the same structure. We insert and process n total elements in ¢
distinct sorted arrays with s slots each (where n>>s). We generate s
uniform random key-value pairs (of 8 byte keys and values, for a total
of 16 bytes per element). We first insert half of the s key-value pairs
into the ¢ copies without timing them to simulate the steady state of
a B-tree where the leaves are at least half full. To time the insertions,
we iterate serially over the remaining s/2 elements. We insert each
element into all ¢ copies in a random order in parallel. Therefore,
the total number of timed insertions is n/2. To test worst-case finds,
we iterate serially over s elements not present in the data structures
and in parallel try to find each of those elements in the ¢ copies (in a
random order of copies) to simulate reading leaves in a B-tree search
that are unlikely to be in cache. Finally, in parallel, we perform a
sum in all of the copies. We perform the same experiment for copies
of the BPA where the number of slots is the number of slots in the
blocks (not counting those in the log and header). We set n=228 and
vary the number of slots s from 22 to 212,

Empirical parameters. Using the scan test described above, we
find =0.3 and r =1.95 ns. The machine has a cache-line size Z =64
bytes and w=2r.

"The code for the scan test can be found at https://github.com/wheatman/scan_test.

https://github.com/wheatman/scan_test

Let Az be the size of the array in cache lines. Let L be the size
of the log, Hz be the size of the header, and Bz be the size of blocks
(all in terms of cache lines).

Find prediction. To analytically measure the cost of a find in a
sorted array, we compute the number of random cache misses due to
a binary search as 1g(Az) using the cache-line size as the base case
for the recursion. To find the total latency per find, we multiply the
number of cache misses by r, the latency of a random read in DRAM.

To analytically measure the cost of a find in a BPA, we compute
the number of cache-line reads in the affine model to search in log,
the header, and blocks. We compute the cost to search a log of L
bytes (in cache-line reads) as r(1+a(Lz/2—1)) because the log is
half-full on average. We model the cost of reading the header without
arandom access because the log and header are contiguous (i.e. as
r(aHz/2)). Since we fill the BPA, we compute the cost of reading
the relevant block as r(1+a(Bz/2-1).

Figure 3a shows that the BPA is empirically slower than the sorted
array for finds, but that the affine model predicts that the BPA should
be faster for point finds once the arrays are sufficiently large. The
affine model is more accurate for BPA finds because they involve se-
quential reads, while the sorted array finds perform random accesses
in a binary search.

Insert prediction. To predict the insert cost in a sorted array, we
build upon the analytical cache misses for find. An insertion consists
of a find and item shifts to make space for the new item. On average,
half of the elements are moved upon each insert since the inputs are
uniform random. Therefore, the latency of moving elements in the
affine model upon each insert is waAz /2.

Each insertion iterates through the elements in the log to check
for duplicates. If there is not a duplicate and there is enough space
in the log, it places the new element at the end of the log. Therefore,
since the log is half full on average, the average latency to iterate
through the log and append to the end is r(1+a(L;/2—1))+aw. The
BPA incurs this cost upon every insert.

The total cost of an insert in a BPA is amortized because the BPA
flushes the elements to the blocks when the log is full. The first step
in a flush is to read the header to determine which blocks elements
are destined for, which has latency raH,. To determine how many
blocks will be flushed to, we use a balls-and-bins analysis to compute
the expected number of empty bins when b balls are tossed into b
bins uniformly at random [23]. The expected number of empty bins
is X =b(1—1/b)?. Given b blocks in the BPA, the number of bins
touched during the flush is T=b—X. The next step is to search every
block for duplicates of the elements in the log. Since each block is on
average half full, this search incurs latency Tr(1+a(Bz/2—1) per
block. Appending to the end of all block has an additional expected
latency Taw. The cost of this flush is amortized over the number of
elements in the log.

Finally, since the input is uniform random, there is 1 expected
global redistribute. We omit this cost since it is several orders of
magnitude smaller than the total time to perform all insertions.

Figure 3b demonstrates that the affine model captures the empir-
ical insert results: the insertion latency in a BPA grows more slowly
as a function of the array size when compared with a sorted array.

—— Slowdown
Extra bytes read
—e— L3 cache misses

Distance from best

Block size (bytes)

Figure 4: Relative slowdown (time), L3 cache misses, and
bytes read during the scan test.

Scan prediction. We use the affine model to model the number of
cache misses to scan over the entire array and BPA. Just as in the
classical I/O model, the affine model only accounts for cache-line
transfers and does not measure the cost of additional computational
overhead once the data is brought into cache (e.g., due to sorting).
Given an array with Az cache lines, the cost in the affine model to
scan it (in cache lines) is 1+a(Az —1). Similarly, the cost to scan a
BPA in the affine model is 1+ a(Lz + Hz + Lz Bz —1). We omit the
additional computational processing cost of a BPA scan because the
affine model only counts cache misses.

Figure 3c shows that the scan cost of both the sorted array and
BPA decreases with the size of the size of the arrays. Furthermore,
the affine model provides an accurate prediction of BPA scan per-
formance by accounting for cache misses.

Reasoning about scan performance. We use the cache line and
the DRAM memory controller (MC) to reason about the trends that
drive the BP-tree design and performance. Although the MC is not
included in the original affine model, we perform empirical mea-
surements® to explain the performance trends seen in Figure 1 and
report the results in Figure 4.

As demonstrated by Figure 1, modern processors include adjacent
cache-line prefetchers to speed up contiguous access of even a few
cache lines [41]. Although the cache-line size is 64 bytes, the affine
model captures the fact that prefetching makes contiguous access
faster. Therefore, the goal of the BPA is to take advantage of the
speed of contiguous access.

Although the cache-line prefetcher does not cross page bound-
aries [41], we continue to observe performance improvements in
the scan test with larger block sizes than the page size (a scan with
a block size of 4Kb is about 1.1x slower than the best scan with a
block size of 64Kb). The number of L3 cache misses does not improve
significantly when the block size is greater than 4Kb.

We hypothesize that the improvements in scan performance for
block sizes larger than a page shown in Figure 1 stem from the DRAM
row buffers. Data is loaded in an interleaved fashion into DRAM row
buffers of 8Kb each (one per bank). When data is accessed in DRAM,
the entire row is brought into the row buffer for the corresponding
bank. Figure 4 shows that block sizes smaller than 64Kb results in
extra bytes read by the DRAM memory controller. For block sizes
larger than 4Kb, the scan performance correlates exactly with the
extra bytes read.

8We used the Intel Performance Counter Monitor (https://github.com/intel/pcm) on
the scan test run serially.

https://github.com/intel/pcm

5 BP-TREE:INTEGRATING
THE BPA INTO B-TREE LEAVES

This section introduces the BP-tree, a modified version of the con-
current B-tree described in Section 2 that uses large leaf nodes to
optimize range operations without slowing down point operations.
It uses the BPA from Section 3 in the leaf nodes and standard sorted
arrays in the internal nodes. Next, this section describes how to
implement the B-tree operations outlined in Section 2 in the BP-tree.

Structure. The BP-tree replaces the sorted array in the leaves of a
B-tree with the BPA. The leaf nodes in the BP-tree do not have to
be the same size as the internal nodes, and often are much larger
because of the specialized BPA data structure.

Traditional B-trees keep track of exactly how many elements
are in each leaf to determine when a leaf becomes too full during
insertions. Since the BPA may contain duplicates of elements due to
buffering, each leaf'in a BP-tree keeps track of its num_elts, or the
number of elements in each leaf (including duplicates), to determine
how full the leaf node is. Although the count num_elts in the BP-tree
may be an overestimate of the number of elements with different
keys, it is at most 1og_size away from the correct count.

Concurrency control. As described in Section 2, the optimistic con-
currency control mechanism in the BP-tree uses reader-writer locks
on each node. To ensure thread-safety, the BP-tree acquires either
the reader or the writer lock on the nodes depending on whether
the node needs to be updated. The locks taken in the BP-tree are
almost identical to those in the B-tree as described in Section 2. As we
shall detail later in this section, the only difference is that the B-tree
takes only read locks during range iterations, while the BP-tree may
occasionally write to the leaves (and therefore occasionally take the
write lock on the leaves) during a range iteration.

Insert. Like inserts in the plain B-tree, inserts in the BP-tree first
traverse down to the correct leaf by following the root-to-leaf path
and then check if the target leaf is full (i.e., the count num_elts is
equal to the number of slots in the BPA).

If the leaf is not full, we call insert on the BPA and increment the
num_elts in the leaf. If the leaf is full, we first flush the log in the BPA
in that leaf and then perform a split. A split creates a new “right” leaf
and divides the elements as evenly as possible between the current
leaf and the new leaf. Since log_size is much smaller than the size
of the BPA, there are always enough elements in the BPA to perform
avalid split even if all of the elements in the log are duplicates. The
split moves the upper half of the full BPA’s elements in sorted order
into a new BPA structure. After a split, the current leaf contains the
first half of elements in sorted order, and the new right leaf contains
the new BPA with the remaining half of the elements. The BP-tree
then checks which leaf the new element should be inserted into, and
calls insert on that BPA.

Find. Finds in the BP-tree first traverse down to the leaf where the
key would be located, then use the BPA’s find functionality.

Range iteration. BP-tree range iterations use the iterate_range
functionality in the BPA to process elements in sorted order at the
leaves. Given a call to iterate_range(start, length, f) inthe
BP-tree, the first step is to traverse down to the leaf where the start

key would be located. The BP-tree then calls the iterate_range on
the BPA (as described in Section 3) with the same parameters. The
BPA reports the number of elements found in the query. If the re-
ported number of elements found equals the length of the query, the
query isfinished. Otherwise, the BP-tree keeps track ofhow many ele-
ments have been processed so far. It then continues onto the next leaf
and calls i terate_range on the BPA in this new leaf with the remain-
ing number of elements in the query and adjusts the count of elements
processed so far accordingly. This is repeated until the total number
of elements processed is equal to length, or no next leaf exists.

The function iterate_range in the BPA may require taking the
write lock on the leaf, since the iteration may need to sort the log
and at least one of the blocks.

We implemented an additional optimization to reduce the num-
ber of times that a leaf’s write lock is taken, which is necessary to
avoid contention on the write lock when the input distribution is
skewed. When processing a leaf, the BP-tree first takes the read lock
on that leaf and checks whether 1) the log is sorted, and 2) the rele-
vant blocks are sorted (using the bit vector described in Section 3). If
both conditions are met, the iteration can proceed with just the read
lock because the relevant data is already sorted. If either is not true,
however, the worker releases the read lock and acquires the write
lock to sort the target data.

Range map. Range maps in a BP-tree are similar to range iterations,
except that they use the map_range functionality in the BPA. Since
range maps may require the write lock to sort the log, we employ
a similar optimization to first take the read lock and only upgrade
it to a write lock if necessary.

6 EVALUATION

This section demonstrates that the BP-tree improves long range op-
erations without giving up point operation performance on a suite of
microbenchmarks as well as on workloads generated from YCSB [22].
We try several node-size configurations of the concurrent B-tree
and BP-tree and report the results in Section 6.1. We choose default
configurations for the B-tree and BP-tree based on the results in Sec-
tion 6.1 and compare them to Masstree [52] and OpenBw-tree [75],
two state-of-the-art concurrent comparison-based in-memory KV
stores, on a suite of workloads from the YCSB [22]. Section 7 reviews
related work in KV stores and explains the choice of systems in this
evaluation. We do not compare against hash-based approaches, since
they do not support efficient range iteration.

The microbenchmarks demonstrate that the BP-tree supportslong
range operations up to 1.5X faster when compared with the best-case
B-tree configuration for inserts. Furthermore, the BP-tree achieves
slightly faster (about 1.05x faster) performance on point operations
compared to the B-tree. The BP-tree achieves similar performance
(about 1.04x faster) compared to the B-tree on short range operations.

Using the best configuration for inserts in the BP-tree and B-tree,
we evaluate the BP-tree, B-tree, Masstree, and OpenBw-tree on point
and range operations from the Yahoo! Cloud Serving Benchmark
(YCSB) [22]. We found that the BP-tree supports similar point opera-
tion throughput (between .94 x—1.2X) compared to other data struc-
tures. On the default YCSB workload with short scans, the BP-tree is
about 7.4 faster than Masstree and 1.6 faster than OpenBw-tree.
Furthermore, we extend the YCSB to add long-range workloads and

find that the BP-tree is 30X faster than Masstree and 2.5% faster than
OpenBw-tree for large range queries.

Systems setup. All experiments were run on a 48-core 2-way hy-
perthreaded Intel® Xeon® Platinum 8275CL CPU @ 3.00GHz with
189 GB of memory from AWS [2]. The machine has 1.5MiB of L1
cache, 48 MiB of L2 cache, and 71.5 MiB of L3 cache across all of the
cores. To avoid non-uniform memory access (NUMA) issues across
sockets, we ran all experiments on a single socket with 24 physical
cores and 48 hyperthreads.
All times are the median of 5 trials after one warm-up trial.

Data structures setup. We used the B-tree [20] from the TLX li-
brary [12] with 64-bit elements in map mode (i.e. with keys and
values) as the starting point for our implementation. We then imple-
mented the optimistic concurrency control scheme described in Sec-
tion 2 on top of the main operations. We ran the operations concur-
rently using pthreads [55]. Finally, we implemented the BP-tree by
replacing the arrays in the B-tree leaves with the BPA from Section 3.

We test various node sizes in two different types of blocked trees:
1) the standard B-tree which sets the internal and leaf node sizes to
be the same, and 2) the BP-tree with BPAs in the leaf nodes. We also
tried a variant of B-trees that only grows the leaf nodes and keeps
the size of the internal nodes fixed, but found that the performance
was similar to the traditional B-tree because the leaf nodes are the
most affected during operations.

The B-tree takes a parameter node_size (in bytes) for both the
internal and leaf nodes. We tested different (power of 2) node sizes
ranging from 28 up to 216

The BP-tree takes several parameters as described in Section 3:
internal_size, header_size,and block_size. We tested various
settings of all of the parameters and report results with a fixed’
internal_size = 1024 bytes and various leaf sizes.

The default configuration for the B-tree sets node_size =1024
bytes. The default BP-tree sets internal_size = 1024 bytes, and
header_size =block_size = 32 slots (for a total of 17408 bytes in
each leaf.) We chose these configurations because they achieve the
best insertion performance for the B-tree and BP-tree.

6.1 Evaluation on microbenchmarks

Workloads setup. We concurrently insert 100M uniform random
elements in the range [1,264 — 1] into a tree that already has 100M uni-
form random elements. We then performed finds (point queries) for
1M of those elements. Finally, we tested range queries with varying
maximum lengths. For each maximum length max_len tested, we
performed 1M range iterations with lengths distributed uniformly
randomly in the interval [0, max_len]. We saved the start and end
points of each of these queries and used them to perform 1M range
maps on the same ranges.

Furthermore, to test the case of sequential insertions (i.e. inser-
tions with monotonically increasing keys), we conducted an addi-
tional experiment of adding 100M monotonically increasing keys.
Each thread sequentially inserts a set of monotonically increasing

9We found that varying the size of the internal nodes did not have much of an effect
on the performance, so we report results for a fixed internal node size.

/(,}\ ¢ v
PEEEE S e T T
w
&
Z 10° |
=
2
<
oD R
2 —— B-tree insert B-tree find
B! —e— BP-tree insert BP-tree find
=00
10 + +
103 104
Leaf'size (bytes)

Figure 5: Point operation throughput as a function of leaf size.

keys that is disjoint from any other thread’s set. The threads proceed
concurrently with respect to each other.

Inserts. Figure 5 shows that the BP-tree achieves similar (1.04x
faster) insertion throughput on random inputs when compared to the
best-case insertion throughput of the baseline B-tree (at node_size
= 1024). However, as shown in Table 1, the BP-tree is over 4.5x
faster for inserts when compared to a B-tree with similar-sized leaf
nodes. Figures 1 and 5 illustrates the decline in insertion throughput
in the B-tree as the leaf size grows.

Although the default BP-tree has large leaf nodes (over 16k bytes),
it achieves high insertion throughput because the optimized BPA
data structure amortizes element moves across inserts. In the tradi-
tional B-tree, each insertion shifts existing elements within a leaf’s
sorted array to make space for the new element. Therefore, the inser-
tion performance in B-trees with sorted arrays in the leaves degrades
withincreasing leaf size because the number of element moves grows
proportionally with the leaf size. In contrast, the BPA relaxes the
sortedness of the leaves and buffers insertions in the log. It flushes
elements to the blocks only when the log is full, amortizing accesses
to the blocks across inserts.

We also found that the concurrent BP-tree achieves similar!®
(.96%) performance on sequential (monotonically increasing) inser-
tions when compared to the B-tree. Sequential insertions are the
worst case for the BP-tree because they maximize element redis-
tributions in the BPA. In contrast, they are the best case for the
B-tree because they minimize element moves in an array. However,
the performance in both trees is similar because the log in the BPA
amortizes the work of redistributes across insertions.

Finds. Figure 5 shows that the BP-tree supports finds about 1.06x
faster than the default B-tree. Finding an element in a BPA avoids
looking at the entire data structure via the header. In contrast, finding
an element in an array requires a scan when the node size is small
(up to 256 bytes) or a binary search when the node size is large.

As shown in Figure 1, the find throughput does not change as
much as the insert throughput as a function of node size in a B-tree.
When the nodes are sufficiently large, finds can be implemented in
the B-tree with a binary search, which only requires looking at a
logarithmic number of elements in each node (in contrast to a linear
number of element moves upon an insert).

19The BP-tree achieved 2.11E7 inserts/s and the B-tree achieved 2.03E7 inserts/s on
sequential inserts.

Table 1: Throughput (thr., in operations per second) and normalized performance of point operations in the B-tree and BP-tree.
Point operation throughput is reported in operations/s. We use N.P. to denote the normalized performance in the B-tree (BP-tree)
compared to the best B-tree (BP-tree) configuration for that operation (1.0 is the best possible value).

B-tree BP-tree
Insert Find Insert Find
Node size Thr NP Thr NP Header size Block size Total size Thr NP Thr NP
(bytes) (elts) (elts) (bytes)
256 8.72E6 0.47 2.66E7 0.92 4 4 384 1.05E7 0.54 2.96E7 0.94
512 1.56E7 0.84 2.81E7 0.97 4 8 640 1.42E7 0.73 2.96E7 0.94
1024 1.86E7 1 286E7 0.98 8 8 1280 1.63E7 0.84 3.05E7 0.96
2048 1.74E7 0.93 2.84E7 0.98 8 16 2304 1.83E7 0.94 3.09E7 0.98
4096 1.34E7 0.72 291E7 1 16 16 4608 1.87E7 0.97 3.16E7 1.00
8192 8.04E6 0.43 2.60E7 0.89 16 32 8704 1.87E7 0.97 3.12E7 0.99
16384 4.27E6 0.23 1.59E7 0.55 32 32 17408 1.94E7 1.00 3.02E7 0.96
32768 2.20E6 0.12 1.50E7 0.52 32 64 33792 1.84E7 0.95 2.97E7 0.94
65536 1.12E6 0.06 1.40E7 0.48 64 64 67584 1.73E7 0.89 1.73E7 0.55
_ 100t .
2 P =2 5 3 O — & S0 .
- - Ko o — \ 'Jb:‘b/-\ X %
3w =5 2 5 | X
ST~ 5~ 10 >
£z Zz
2T 10° | = 5
o 5 L
= Q on = X
= o o B
B —x— B-tree short scan B-tree long scan 5 a X
< —&— BP-tree short scan BP-tree long scan e 10%% | | X B-tree m BP-tree
109 1 1 1 1 1 1 1 1
103 10 1092 1004 10%¢ 1098 107 1072
Leaf size (bytes) Insert throughput (ops/s)

Figure 6: Range iteration throughput as a function of leaf
size. The short scan has max_len =100 and the long scan has
max_len=100,000.

Range operations. Figure 6 reports the throughput of short and
long range iterations with growing node sizes in the B-tree and the
BP-tree. We find that given a similar leaf size in the B-tree and BP-
tree, the B-tree is about 1.5X faster for range scans because it does
not incur the computational overhead of the BPA. However, Figure 7
shows that the B-tree must give up on insertion performance to
match the range performance of the default BP-tree configuration.

The BP-tree achieves about 1.5% speedup on large range itera-
tions when compared to the default B-tree configuration because
the large leaves in the BP-tree reduce data movement as shown
in Section 4. Furthermore, we find that the default BP-tree is slightly
(1.04x) faster for short range iterations when compared to the default
B-tree because the range fits within the B-tree leaf. The large leaves
in the BP-tree make the BP-tree better suited to machines with the
HugePage optimization as it performs long sequential scans that can
fit in huge pages compared to the B-tree.

As mentioned in Section 2, we also evaluate range maps, which
processes elements in a range in any order. The BP-tree is about .8%
as fast on short range maps and about 1.7 faster on long range maps
compared to the B-tree. The BP-tree achieves similar throughput for
long range maps and iterations, but slower (about .6x) performance
on short range maps because of the relative cost of copying the log.
Additionally, range maps are slightly slower (up to .9X) compared to
range iterations in a B-tree (which stores elements sorted) because

Figure 7: Point and long range iteration throughput in various
configurations of the B-tree and BP-tree.

of the difference in the range API, which leads to different compiler
optimizations around unrolling.

6.2 Evaluation on YCSB workloads

We also evaluate the B-tree, BP-tree, Masstree, and Opean-treell.
on workloads from YCSB [77] and report the results in Figures 8
and 9 and Table 3.

Experimental setup. Table 3 presents details of the core workloads
from YCSB [77]. We tested workloads!? A, B, C, and E from the core
YCSB workloads by adapting the YCSB driver from RECIPE [47].
Running a workload in YCSB has two consecutive phases: 1) the
load phase, which adds elements to the data structure, and 2) the run
phase, which performs operations specified by the workload. For
each workload, we generated 100M elements to insert in the load
phase and 100M operations to perform in the run phase. We ran all
100M operations in each phase concurrently.

We tested both uniform random and zipfian distributions in the
run phase using the generator from RECIPE [47]. In the uniform
workload, the elements in both the load and run phases are gener-
ated from a uniform distribution. In the zipfian workload, the load

The implementation of Masstree is from https://github.com/kohler/masstree-beta,
and the implementation of OpenBw-tree is from https://github.com/wangziqi2013/
BwTree.git.

12\e omit workload D from YCSB because it benchmarks the read-latest operation,
which is not the focus of this work.

https://github.com/kohler/masstree-beta
https://github.com/wangziqi2013/BwTree.git
https://github.com/wangziqi2013/BwTree.git

Table 2: Throughput (thr., in expected elements per second) of range queries of varying maximum lengths (max_len) in the B-tree
and BP-tree. We also report the normalized performance (N.P.) compared to the best-case performance for each operation (up

to 1.0).
B-tree BP-tree
Short (max_len = 100) Long (max_len = 100,000) Short (max_len = 100) Long (max_len = 100,000)
Map Iterate Map Iterate Map Iterate Map Iterate
Nodesize . py Np T NP Thr NP The Np Tleadersize Blocksize folalsize - p ypp Np o NP The NP
(bytes) (elts) (elts) (bytes)
256 8.56E8 0.77 9.48E8 0.72 1.88E9 0.25 2.16E9 0.29 4 4 384 4.76E8 0.53 7.15E8 0.59 7.32E8 0.14 1.20E9 0.22
512 9.58E8 0.86 1.05E9 0.80 2.12E9 0.28 243E9 0.32 4 8 640 6.86E8 0.76 8.93E8 0.73 1.32E9 0.25 1.71E9 0.32
1024 1.01E9 091 1.13E9 0.85 2.69E9 036 3.13E9 0.42 8 8 1280 7.91E8 0.88 9.45E8 0.78 1.72E9 0.32 1.85E9 0.35
2048 1.08E9 0.97 1.20E9 0091 4.23E9 056 4.51E9 0.60 8 16 2304 8.98E8 1.00 1.07E9 0.88 246E9 046 2.54E9 047
4096 1.11E9 1.00 1.26E9 095 5.18E9 0.69 5.33E9 0.71 16 16 4608 8.99E8 1.00 1.13E9 0.93 3.17E9 0.59 3.22E9 0.60
8192 1.10E9 0.99 1.28E9 0.97 597E9 080 6.36E9 0.85 16 32 8704 8.86E8 0.99 1.22E9 1.00 4.19E9 0.78 4.25E9 0.79
16384 1.08E9 0.98 1.29E9 0.98 6.60E9 0.88 7.00E9 0.93 32 32 17408 8.14E8 091 1.17E9 0.96 4.75E9 0.89 4.75E9 0.89
32768 1.08E9 0.97 1.30E9 098 7.18E9 096 7.36E9 0.98 32 64 33792 6.73E8 0.75 1.05E9 0.87 5.21E9 0.97 5.16E9 0.96
65536 1.09E9 0.98 1.32E9 1.00 7.50E9 1.00 7.49E9 1.00 64 64 67584 5.74E8 0.64 9.83E8 0.81 5.35E9 1.00 5.35E9 1.00

Table 3: Throughput (in operations/s) of the BP-tree (BPT), B-tree (B*T), Masstree (MT), and OpenBw-tree (BWT) on uniform

random and zipfian workloads from YCSB.

Uniform Zipfian
- BT/ MT/ BWT/ .. BT/ MT/ BWT/
Workload Description BPT B'T BPT MT BPT BWT BPT BPT B'T BPT MT BPT BWT BPT
A 50% finds, 50% inserts _ 2.91E7 2.33E7 0.80 3.07E7 106 247E7 085 3.00E7 2.78E7 093 3.20E7 107 256E7 085
B 95% finds, 5% inserts ~ 4.70E7 4.46E7 095 479E7 102 398E7 085 5.63E7 4.84E7 0.86 5.82E7 103 474E7 0.84
c 100% finds 499E7 481E7 096 5.18E7 104 421E7 084 601E7 599E7 100 640E7 106 5.10E7 0.85
95% short iterati
E Sshortrangeiterations —, cop, o 7yps 405 349E6 014 154E7 060 32587 335E7 1.03 396E6 012 170E7 0.52
(max_len = 100), 5% inserts
100% 1 iterati
X 00% long range iterations ¢ gops ¢ g0ps 078 2744 003 3.60E5 040 10586 7.96E5 076 276E4 003 3655 035
(max_len =10,000)
100% 1
00%longrangemaps o epe (4sps 070 274E4 003 363E5 040 108E6 744E5 069 276B4 003 371E5 034

(max_len =10,000)

phase elements are generated from a uniform distribution, while the
elements in the run phase are generated from a zipfian distribution
with the default YCSB zipfian constant (i.e., theta [34] of 0.99).

The YCSB experiments use the insert (put), find (get), and
iterate_range (scan) operations defined in Section 2. To gener-
ate scan operations, the YCSB workload generator takes as input a
max_len parameter and generates range iteration operations with
lengths uniformly distributed in the range [0,max_len].

The core YCSB workloads focus mostly on point operations and
short range operations. To illustrate the strenghts of the BP-tree,
we added two new workloads: 1) workload X, which performs long
range iterations, and 2) workload Y which performs long range maps.
Both have max_len = 10,000. Although the original YCSB workloads
do not include range mapsl3, we include them in addition to the
provided workloads to illustrate how the different systems perform
on operations from other application areas.

Finds and inserts. The BP-tree achieves similar (within .94x —1.2X)
performance compared to the other systems on the workloads con-
taining point operations (workloads A, B, and C). The BP-tree is

3 Masstree does not provide an API for range maps, so we use the range iteration
throughput for both workloads X and Y. OpenBw-tree provides a distinct API for both
range iterations and maps.

! ! ! !
| |0 BP-tree B B-tree @ Masstree B Bwtree

—_
(2]

e
S T,

Normalized
performance

(=]

A B C E X Y
Workload

Figure 8: Relative performance compared to the BP-tree on
uniform random workloads generated from YCSB.

optimized for long range operations but is between 1x—1.2x faster
than the best-case B-tree for point insertions despite the much larger
leaves in the BP-tree because of the insert-optimized BPA in the
leaves. Furthermore, the BP-tree is slightly slower (within .94X) on
point operations compared to Masstree but about 1.2x faster on
point operations when compared to OpenBw-tree.

Range operations. We test both short and long range queries to
illustrate the benefits of the BP-tree. The BP-tree is optimized for

|
B-tree Masstree B Bwtree

|
L5 7’ O BP-treefl

Normalized
performance

A B C E X Y
Workload

Figure 9: Relative performance compared to the BP-tree on
zipfian workloads generated from YCSB.

long range operations : the BP-tree is about 1.3X faster than the con-
current B-tree, about 30x faster than Masstree, and about 2.5 faster
than OpenBw-tree on workloads X and Y. For short range operations
(workload E), the BP-tree isabout 7.4 faster than Masstree and about
1.6X faster than OpenBw-tree. However, the BP-tree is about .95x
as fast as the B-tree on short range iterations (workload E) because
the benefits of improved locality do not outweigh the computational
overhead in the BP-tree when the range size fits in one node.

Effect of input distribution. We found that all systems were faster
on the zipfian dataset than the uniform dataset because there are
fewer unique elements, so there is more temporal locality in the
operations. The relative performance between systems is similar
across both input distributions.

7 RELATED WORK

This section reviews related work on KV stores to explain the choice
of systems in the evaluation. It then discusses the relationship be-
tween the BP-tree and buffer trees.

In-memory KV stores. This paper focuses on comparison-based
concurrent in-memory KV stores for concreteness, so the evalua-
tion includes Masstree [52] and OpenBw-tree [75]. The literature
on KV stores includes many other works, but we omit them because
they are not directly comparable. For example, the hybrid B+-tree
only provides API support for point operations [80], and Google’s
B-tree is not thread-safe for concurrent writes [31]. Several range-
optimized data structures [6, 15, 16] appear in the literature but are
implemented in Java, so we omit them to avoid performance differ-
ences due to the underlying language. Finally, recent works have
introduced non-comparison-based indexes such as ART [48] and
HOT [13]. Future work includes exploring the potential for the BPA
to speed up non-comparison-based indexes.

Disk-based KV stores. The log-structured merge (LSM) tree [57]
is another hierarchical structure used frequently in disk-based key-
value stores such as LevelDB [49] and RocksDB [68]. At a high level,
the LSM tree contains multiple levels of tree-like structures of in-
creasing size. The BPA has the potential to improve the smallest level
of the LSM tree that resides in-memory (i.e., the Memtable) because
it must support concurrent point and range operations.

The BP-tree design takes inspiration from buffer trees, an exten-
sion of blocked trees optimized for minimizing writes in external
memory [4, 32], but differs in terms of the tree structure and node
organization. At a high level, buffer trees (e.g., the B¢-tree [32]) have

the same pointer-based structure as B-trees but have a buffer at each
node (both internal and leaf nodes). In contrast, the BP-tree only
buffers elements in the leaf nodes to optimize for the in-memory
case. Existing buffer trees are designed (and implemented) for ex-
ternal memory [4, 21] where each block fetch has a high fixed cost.
However, in the in-memory setting, internal nodes high in the tree
are likely to be maintained in close caches, so the in-memory BP-tree
buffers elements only in the leaves, which are most likely not be in
cache. Furthermore, traditional buffer trees store the non-buffered
elements in sorted arrays, while the BP-tree stores elements in the
block structure described in Section 3 for reduced data movement.

8 CONCLUSION

This paper overcomes the decades-old point-range operation trade-
off in B-trees by developing an insert-optimized leaf-specific data
structure. Traditionally, a user could decide to make B-tree nodes
smaller to achieve the best possible point operation performance, or
make the nodes larger to improve range operations but sacrifice point
operations. This paper introduces the BP-tree, which overcomes this
tradeoff by replacing the sorted array in traditional B-tree leaves
with a specialized data structure called the buffered partitioned array.

The BP-tree is an ideal candidate for emerging applications that
serve both range and point operations with the same data store.

On a suite of workloads generated from YCSB, the BP-tree sup-
ports short range queries between 1.6X-7.4x faster and long range
queries between 2.5X-30X when compared to Masstree and OpenBw-
tree, two state-of-the-art KV stores. The BP-tree is optimized for
range queries but achieves similar or better (between .94 x —1.2X)
point operation throughput compared to Masstree and OpenBw-tree.

Future work includes integrating the BPA into the leaves of an
enterprise B-tree-based key-value store such as MongoDB [54] or
CouchDB [24]. Furthermore, although this paper implements and
evaluates the BPA in the leaves of a B-tree for concreteness, the
higher-level technique of replacing sorted arrays in the nodes of a
blocked structure to overcome the empirical point-range tradeoff can
be used in other blocked data structures such as CSB trees [36, 65],
LSM trees [57], and cache-optimized skiplists [30, 73, 76, 82].

ACKNOWLEDGMENTS

We would like to thank Charles E. Leiserson for helpful discussions.
Research was sponsored in part by the United States Air Force Re-
search Laboratory and the Department of the Air Force Artificial
Intelligence Accelerator and was accomplished under Cooperative
Agreement Number FA8750-19-2-1000. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the Department of the Air Force or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation herein. Also, research was sponsored in part by the Ad-
vanced Scientific Computing Research (ASCR) program within the
Office of Science of the Department of Enery (DOE) under contract
number DE-AC02-05CH11231, the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

REFERENCES

(1]

[10

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18

[19

[20]

[21

Alok Aggarwal and Jeffrey S. Vitter. 1988. The input/output complexity of sorting
and related problems. Commun. ACM 31, 9 (Sept. 1988), 1116-1127.

Amazon. [n.d.]. Amazon Web Services. https://aws.amazon.com/. Last accessed
11/1/2022.

Matthew Andrews, Michael A. Bender, and Lisa Zhang. 2002. New algorithms
for disk scheduling. Algorithmica 32, 2 (2002), 277-301.

Lars Arge. 2005. The buffer tree: A new technique for optimal I/O-algorithms.
In Algorithms and Data Structures: 4th International Workshop, WADS’95 Kingston,
Canada, August 16—18, 1995 Proceedings. Springer, 334-345.

Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. Linkbench: a database benchmark based on the facebook
social graph. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. 1185-1196.

Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar
Hillel, Idit Keidar, and Moshe Sulamy. 2020. KiWi: A Key-Value Map for Scalable
Real-Time Analytics. ACM Trans. Parallel Comput. 7, 3, Article 16 (jun 2020),
28 pages. https://doi.org/10.1145/3399718

Rudolf Bayer and Edward M. McCreight. 1972. Organization and Maintenance
of Large Ordered Indexes. Acta Informatica 1,3 (1972), 173-189.

Michael A. Bender, Alex Conway, Martin Farach-Colton, William Jannen, Yizheng
Jiao, Rob Johnson, Eric Knorr, Sara McAllister, Nirjhar Mukherjee, Prashant
Pandey, et al. 2019. Small refinements to the DAM can have big consequences for
data-structure design. In The 31st ACM Symposium on Parallelism in Algorithms
and Architectures. 265-274.

Michael A. Bender, Alex Conway, Martin Farach-Colton, William Jannen, Yizheng
Jiao, Rob Johnson, Eric Knorr, Sara McAllister, Nirjhar Mukherjee, Prashant
Pandey, Donald E. Porter, Jun Yuan, and Yang Zhan. 2021. External-memory
Dictionaries in the Affine and PDAM Models. ACM Trans. Parallel Comput. 8,
3(2021), 15:1-15:20. https://doi.org/10.1145/3470635

Michael A. Bender, Erik D Demaine, and Martin Farach-Colton. 2005. Cache-
oblivious B-trees. SIAM J. Comput. 35, 2 (2005), 341-358.

Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman, et al. 1987. Concurrency
control and recovery in database systems. Vol. 370. Addison-Wesley Reading.
Timo Bingmann. 2018. TLX: Collection of Sophisticated C++ Data Structures,
Algorithms, and Miscellaneous Helpers. https://panthema.net/tlx. Last accessed
10/7/2020.

Robert Binna, Eva Zangerle, Martin Pichl, Giinther Specht, and Viktor Leis. 2018.
HOT: A height optimized trie index for main-memory database systems. In
Proceedings of the 2018 International Conference on Management of Data. 521-534.
Lucas Braun, Thomas Etter, Georgios Gasparis, Martin Kaufmann, Donald
Kossmann, Daniel Widmer, Aharon Avitzur, Anthony Iliopoulos, Eliezer Levy,
and Ning Liang. 2015. Analytics in Motion: High Performance Event-Processing
AND Real-Time Analytics in the Same Database. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (Melbourne, Victoria,
Australia) (SIGMOD °15). Association for Computing Machinery, New York, NY,
USA, 251-264. https://doi.org/10.1145/2723372.2742783

Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. 2010. A
practical concurrent binary search tree. ACM Sigplan Notices 45, 5 (2010), 257-268.
Trevor Brown and Hillel Avni. 2012. Range queries in non-blocking k-ary search
trees. In Principles of Distributed Systems: 16th International Conference, OPODIS
2012, Rome, Italy, December 18-20, 2012. Proceedings 16. Springer, 31-45.
Cassandra. [n.d.]. https://cassandra.apache.org/_/index.html. Last accessed
10/20/2022.

Guogiang Jerry Chen, Janet L. Wiener, Shridhar Iyer, Anshul Jaiswal, Ran
Lei, Nikhil Simha, Wei Wang, Kevin Wilfong, Tim Williamson, and Serhat
Yilmaz. 2016. Realtime Data Processing at Facebook. In Proceedings of the 2016
International Conference on Management of Data (San Francisco, California,
USA) (SIGMOD °16). Association for Computing Machinery, New York, NY, USA,
1087-1098. https://doi.org/10.1145/2882903.2904441

Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. 2001. Improving index
performance through prefetching. ACM SIGMOD Record 30, 2 (2001), 235-246.
Douglas Comer. 1979. Ubiquitous B-tree. ACM Computing Surveys (CSUR) 11,
2(1979), 121-137.

Alexander Conway, Abhishek Gupta, Vijay Chidambaram, Martin Farach-Colton,
Richard Spillane, Amy Tai, and Rob Johnson. 2020. SplinterDB: Closing the
Bandwidth Gap for NVMe Key-Value Stores. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 49-63.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143-154.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3rd ed.). MIT Press.

CouchDB. [n.d.]. https://couchdb.apache.org/. Last accessed 10/20/2022.
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. 2007. Dynamo: Amazon’s highly available key-value store.
ACM SIGOPS operating systems review 41, 6 (2007), 205-220.

[26

[27

[28

[29]

N
=

[42]

[43

[44

[45

[46]

[47]

[51

Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun. 2022. Pac-trees:
Supporting parallel and compressed purely-functional collections. In Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. 108-121.

Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. 2019. Persistent
non-blocking binary search trees supporting wait-free range queries. In The 31st
ACM Symposium on Parallelism in Algorithms and Architectures. 275-286.

Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux journal 2004,
124 (2004), 5.

Anil K. Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis, Scott MacLean,
Franz Farber, Francis Gropengiesser, Christian Mathis, Thomas Bodner, and
Wolfgang Lehner. 2015. Towards Scalable Real-Time Analytics: An Architecture
for Scale-out of OLxP Workloads. Proc. VLDB Endow. 8, 12 (aug 2015), 1716-1727.
https://doi.org/10.14778/2824032.2824069

Daniel Golovin. 2010. The B-Skip-List: A Simpler Uniquely Represented
Alternative to B-Trees. arXiv:1005.0662 [cs.DS]

Google. [n.d.]. BTree implementation for Go. https://pkg.go.dev/github.com/
google/btree. Last accessed 3/1/2023.

Goetz Graefe. 2004. Write-optimized B-trees. In Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30. 672-683.

Goetz Graefe. 2010. A survey of B-tree locking techniques. ACM Transactions
on Database Systems (TODS) 35, 3 (2010), 1-26.

Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J. Wein-
berger. 1994. Quickly generating billion-record synthetic databases. In Proceedings
of the 1994 ACM SIGMOD international conference on Management of data. 243-252.
Rui Han, Zhen Jia, Wanling Gao, Xinhui Tian, and Lei Wang. 2015. Benchmarking
Big Data Systems: State-of-the-Art and Future Directions. arXiv:1506.01494 [cs.PF]
Richard A Hankins and Jignesh M Patel. 2003. Effect of node size on the perfor-
mance of cache-conscious B+-trees. In Proceedings of the 2003 ACM SIGMETRICS in-
ternational conference on measurement and modeling of computer systems. 283-294.
HBase. [n.d.]. https://hbase.apache.org/. Last accessed 10/20/2022.

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the eighth international workshop on
data mining for online advertising. 1-9.

Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. 2020. The
art of multiprocessor programming. Newnes.

Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester,
and Demi Guo. 2018. The data calculator: Data structure design and cost
synthesis from first principles and learned cost models. In Proceedings of the 2018
International Conference on Management of Data. 535-550.

Intel. [n.d.]. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual. https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-
architectures-optimization-manual.pdf. Last accessed 3/1/2023.

Alon Itai, Alan G. Konheim, and Michael Rodeh. 1981. A sparse table
implementation of priority queues. In ICALP. 417-431.

Vijay Janapa Reddi, Benjamin C. Lee, Trishul Chilimbi, and Kushagra Vaid. 2010.
Web search using mobile cores: quantifying and mitigating the price of efficiency.
ACM SIGARCH Computer Architecture News 38, 3 (2010), 314-325.

William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet,
Yizheng Jiao, Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh,
Michael A. Bender, Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. 2015. BetrFS: A Right-Optimized Write-Optimized
File System. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST 2015, Santa Clara, CA, USA, February 16-19, 2015, Jiri
Schindler and Erez Zadok (Eds.). USENIX Association, 301-315. https:
//www.usenix.org/conference/fast15/technical-sessions/presentation/jannen
Donald E. Knuth. 1998. The Art of Computer Programming (3rd ed.). Fundamental
Algorithms, Vol. 1. Addison Wesley Longman Publishing Co., Inc. (book).

H.T. Kung and John T. Robinson. 1981. On optimistic methods for concurrency
control. ACM Transactions on Database Systems (TODS) 6, 2 (1981), 213-226.

Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay
Chidambaram. 2019. RECIPE: Converting Concurrent DRAM Indexes to
Persistent-Memory Indexes. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP ’19). Ontario, Canada, 462-477.

Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 38-49.

LevelDB. [n.d.]. http://ccrma.stanford.edu/jos/bayes/bayes.html. Last accessed
10/20/2022.

Cheng Li, Yue Lu, Qiaozhu Mei, Dong Wang, and Sandeep Pandey. 2015.
Click-through prediction for advertising in twitter timeline. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1959-1968.

Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: Efficient isolated execution of hybrid OLTP+ OLAP workloads for
interactive applications. In Proceedings of the 2017 ACM International Conference
on Management of Data. 37-50.

https://aws.amazon.com/
https://doi.org/10.1145/3399718
https://doi.org/10.1145/3470635
https://panthema.net/tlx
https://doi.org/10.1145/2723372.2742783
https://cassandra.apache.org/_/index.html
https://doi.org/10.1145/2882903.2904441
https://couchdb.apache.org/
https://doi.org/10.14778/2824032.2824069
https://arxiv.org/abs/1005.0662
https://pkg.go.dev/github.com/google/btree
https://pkg.go.dev/github.com/google/btree
https://arxiv.org/abs/1506.01494
https://hbase.apache.org/
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen
https://www.usenix.org/conference/fast15/technical-sessions/presentation/jannen
http://ccrma.stanford.edu/ jos/ bayes/bayes.html

[52]
[53]
[54]
[55]

[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]
[65]

[66]

[67]

Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th ACM european
conference on Computer Systems. 183-196.

Andreas Meier and Michael Kaufmann. 2019. Nosql databases. In SQL & NoSQL
databases. Springer, 201-218.

MongoDB. [n.d.]. https://www.mongodb.com/. Last accessed 10/20/2022.
Bradford Nichols, Dick Buttlar, Jacqueline Farrell, and Jackie Farrell. 1996. Pthreads
programming: A POSIX standard for better multiprocessing. " O’Reilly Media, Inc.".
John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Lev-
erich, David Maziéres, Subhasish Mitra, Aravind Narayanan, Diego Ongaro, Guru
Parulkar, et al. 2011. The case for RAMCloud. Commun. ACM 54,7 (2011), 121-130.
Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351-385.
Prashant Pandey, Yinjie Gao, and Carl Kingsford. 2021. VariantStore: an index
for large-scale genomic variant search. Genome biology 22, 1 (2021), 1-25.
Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. 2021. Terrace:
A hierarchical graph container for skewed dynamic graphs. In Proceedings of the
2021 International Conference on Management of Data. 1372-1385.

Apostolos N. Papadopoulos, Spyros Sioutas, Christos Zaroliagis, and Nikolaos
Zacharatos. 2019. Efficient distributed range query processing in apache spark.
In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE, 569-575.

Jure Petrovic. 2008. Using memcached for data distribution in industrial environ-
ment. In Third International Conference on Systems (icons 2008). IEEE, 368-372.
Markus Pilman, Kevin Bocksrocker, Lucas Braun, Renato Marroquin, and Donald
Kossmann. 2017. Fast scans on key-value stores. Proceedings of the VLDB
Endowment 10, 11 (2017), 1526-1537.

Pouria Pirzadeh, Junichi Tatemura, Oliver Po, and Hakan Hacigiimiis. 2012.
Performance evaluation of range queries in key value stores. Journal of Grid
Computing 10, 1 (2012), 109-132.

PostgreSQL. [n.d.]. https://www.postgresql.org/. Last accessed 10/20/2022.

Jun Rao and Kenneth A. Ross. 2000. Making B+- Trees Cache Con-
scious in Main Memory. SIGMOD Rec. 29, 2 (may 2000), 475-486.
https://doi.org/10.1145/335191.335449

Kai Ren and Garth Gibson. 2013. TABLEFS: Enhancing Metadata Efficiency in
the Local File System. In 2013 USENIX Annual Technical Conference (USENLIX ATC
13). 145-156.

Vincent Reniers, Dimitri Van Landuyt, Ansar Rafique, and Wouter Joosen. 2017.
On the State of NoSQL Benchmarks. In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering Companion (L’Aquila, Italy)
(ICPE °17 Companion). Association for Computing Machinery, New York, NY,
USA, 107-112. https://doi.org/10.1145/3053600.3053622

RocksDB. [n.d.]. http://rocksdb.org/. Last accessed 10/20/2022.

Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-tree
filesystem. ACM Transactions on Storage (TOS) 9, 3 (2013), 1-32.

[76

(77

(78]

[79]

(80]

(81]

(82

Chris Ruemmler and John Wilkes. 1994. An introduction to disk drive modeling.
Computer 27,3 (1994), 17-28.

ScyllaDB. [n.d.]. https://www.scylladb.com/. Last accessed 10/20/2022.

Julian Shun and Guy E. Blelloch. 2013. Ligra: a lightweight graph processing
framework for shared memory. In Proceedings of the 18th ACM SIGPLAN
symposium on Principles and practice of parallel programming. 135-146.

Stefan Sprenger, Steffen Zeuch, and Ulf Leser. 2016. Cache-sensitive skip list:
Efficient range queries on modern cpus. In Data Management on New Hardware.
Springer, 1-17.

Yihan Sun, Daniel Ferizovic, and Guy E. Blelloch. 2018. PAM: parallel augmented
maps. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 290-304.

Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael
Kaminsky, and David G Andersen. 2018. Building a bw-tree takes more than just
buzz words. In Proceedings of the 2018 International Conference on Management
of Data. 473-488.

Zhongle Xie, Qingchao Cai, HV Jagadish, Beng Chin Ooi, and Weng-Fai
Wong. 2016. PI: a Parallel in-memory skip list based Index. arXiv preprint
arXiv:1601.00159 (2016).

YCSB. [n.d.]. Core Workloads. https://github.com/brianfrankcooper/YCSB/wiki/
Core-Workloads. Last accessed 2/15/2023.

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala,
Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Leif Walsh, Michael A. Bender,
Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E. Porter.
2016. Optimizing Every Operation in a Write-optimized File System. In 14th
USENIX Conference on File and Storage Technologies, FAST 2016, Santa Clara, CA,
USA, February 22-25, 2016, Angela Demke Brown and Florentina I. Popovici (Eds.).
USENIX Association, 1-14. https://www.usenix.org/conference/fast16/technical-
sessions/presentation/yuan

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala,
Kanchan Chandnani, Pooja Deo, Zardosht Kasheff, Leif Walsh, Michael A. Bender,
Martin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul, and Donald E. Porter.

2017. Writes Wrought Right, and Other Adventures in File System Optimization.
ACM Trans. Storage 13,1 (2017), 3:1-3:26. https://doi.org/10.1145/3032969

Huanchen Zhang, David G. Andersen, Andrew Pavlo, Michael Kaminsky, Lin
Ma, and Rui Shen. 2016. Reducing the storage overhead of main-memory OLTP
databases with hybrid indexes. In Proceedings of the 2016 International Conference
on Management of Data. 1567-1581.

Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang. 2015.
In-memory big data management and processing: A survey. IEEE Transactions
on Knowledge and Data Engineering 27,7 (2015), 1920-1948.

Jingtian Zhang, Sai Wu, Zeyuan Tan, Gang Chen, Zhushi Cheng, Wei Cao,
Yusong Gao, and Xiaojie Feng. 2019. S3: a scalable in-memory skip-list index
for key-value store. Proceedings of the VLDB Endowment 12,12 (2019), 2183-2194.

https://www.mongodb.com/
https://www.postgresql.org/
https://doi.org/10.1145/335191.335449
https://doi.org/10.1145/3053600.3053622
http://rocksdb.org/
https://www.scylladb.com/
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://www.usenix.org/conference/fast16/technical-sessions/presentation/yuan
https://www.usenix.org/conference/fast16/technical-sessions/presentation/yuan
https://doi.org/10.1145/3032969

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Concurrency control

	3 buffered partitioned array: Optimizing large B-tree leaves for inserts
	4 Performance prediction using the affine model
	5 BP-tree: Integrating the BPA into B-tree leaves
	6 Evaluation
	6.1 Evaluation on microbenchmarks
	6.2 Evaluation on YCSB workloads

	7 Related work
	8 Conclusion
	Acknowledgments
	References

