Vector Quotient Filters: Overcoming the
Time/Space Trade-Off 1in Filter Design

Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender,
Martin Farach-Colton, Rob Johnson

&% Rutcers QsewBoo ymware

University

Filter data structure

A filter 1s an approximate representation of a set.

membership(a):
membership(b):
membership(c): ¢

false

membership(d): " 4 positive

A filter supports approximate membership queries on S.

A filter guarantees a false-positive rate €

ifg € S,return o/ with probability 1 true positive

(x with probability [11 - & true negative
if g & S, return <

L / with probability <& false positive

one-sided
errors

False-positive rate enables filters to be compact

space > nlog(1/e) space = (}(nlog|U|)

q

'

Filter Dictionary

False-positive rate enables filters to be compact

space > nlog(1/e) space = (}(nlog|U|)

q

I

Filter Dictionary

For most practical purposes:
€ = 2%, a filter requires = 8 bits/item

Filters are ubiquitous

Streaming applications Networking

Databases

Mysal , . ORACLE , + SOl server

Computational biolo Storage systems
p gy | J \) X) ge sy

TGATCGTAGCTGATCGATGCA"G& f \

A ‘ o
o) ‘ m’\
._.n' Gi(\Acorcnvcclo) m“@\1‘\\\ \(

® Wi W'

CTGATCGATGCATGR

Filter design objectives

Optimal

Space (bits) ~n log(l/e) + Q(n)
CPU cost O(1)
Data locality| O(1) probes

Types of filters

e Bloom filters Bloom 70]

. [Pagh et al. <05, Dillinger et al. ‘09, Bender et al.
o QUOtlent ﬁlters ‘12, Einziger et al. *15, Pandey et al. *17]
® CuCkOO / Morton ﬁlters [Fan et al. ‘14, Breslow & Jayasena ‘1

e Others

o Mostly based on perfect hashing and/or linear algebra
o Mostly static

o e.g., Xor filters [Graf & Lemire ‘20]

Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

@ —=X—— Quotient filter
- ——&—— Cuckoo filter
- ——— Morton filter

w
o
|

N
o
1

e

Throughput (Millions/sec)

Load factor

Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

@ —=X—— Quotient filter
- ——a—— Cuckoo filter
——— Morton filter

w
o
1

N
o
1

e

16X
drop

Throughput (Millions/sec)

T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Load factor

10

Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

@ —=X—— Quotient filter
% - ——a—— Cuckoo filter
oF; 7] ! —»—— Morton filter
Q e
4 W
2] @
c @
o) .
= 20 -
= |7 .
e
S @
_8- > S o
[@)] @
3 10
(@] 3
| .
= \X\‘N
= " I
|
2
0 T T T T T T T T T T T T T T T T

T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Load factor

11

In this talk

o —#—— Vector quotient filter (no sc)
e —m—— \ector Quotient filter (insert sc)
. —=—— Quotient filter
& ——&—— Cuckoo filter
® ——— Morton filter

Throughput (Millions/sec)
‘
4

Load factor

[Pandey et al. “17]

Quotient filter performance

Optimal Quotient filter

Space (bits) |~ n log(1/e) +Q(n) | ~n log(l/e)+2.125n
CPU cost 0(1) O(1) expected

Data locality O(1) probes 1 probe + scan

13

Why quotient filters slow down

Quotient filters use Robin-Hood
hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of
runs.

To insert item Xx:
1. Find its run.

2. Shift other items down by 1 slot.

3. Store f(x).

h(x)

log(1/¢) bits/slot

_fszz

- n slots

\
\

\

\

\
\
\

\

‘_

14

Cuckoo filter performance

[Fan et al. ‘14]

Optimal

Cuckoo filter

Space (bits)

~ n log(1/€) + Q(n)

~n log(1l/e) + 3n

CPU cost

0(1)

up to 500

Data locality

O(1) probes

random probes

15

Why cuckoo filters slow down

s = 0O(1) slots/block (e.g., s=4)

>

log(2s/¢) bits/slot /\: A

X n/s

To insert item Xx: \
h (x)
]

1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.

16

Why cuckoo filters slow down

To insert item Xx:

X
1. Compute /,(x) and £ (x). h (x) AR,
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.

17

Why cuckoo filters slow down

To insert item Xx:

X
1. Compute 4 (x) and / (x). h (x) £ £ £ £

Kick
2. Insert f(x) into emptier block. 8 ick fg
3. Kick an item 1f needed.

18

Why cuckoo filters slow down

Jis | fa | s
w’ S S| g
. . x
To insert item x:
1. Compute h ,(x) and h (). h (x) Ay
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.
Jo | S | Ju

Note: 7 (x) and / ,(x) need to be
dependent to support kicking.

19

Why cuckoo filters slow down

h (%) Lo | |

/

X

To insert item Xx:
1. Compute /,(x) and £ (x). h (x) Ll s s
2. Insert f{x) into emptier block. *
3. Kick an item if needed.

Jo | S | Ju | Sy

Note: 7 (x) and / ,(x) need to be
dependent to support kicking.

20

Vector quotient filter [Fandey etal. “21]

21

Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64)

< >

A

22

Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64)

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
n/s

23

Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64)

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
n/s
To 1nsert item x:
1. Compute £ (x) and £ (x). v

2. Insert f(x) into emptier block.

24

Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64)

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
X \ n/ S
h,(x)

To 1nsert item x:
1. Compute £ (x) and £ (x). v

2. Insert f(x) into emptier block.

25

Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64)

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
X \ n/ S
h,(x)

To 1nsert item x:
1. Compute £ (x) and £ (x). v

2. Insert f(x) into emptier block.

26

Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64)

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
)~
X n/s

o

To 1nsert item x:
1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.

27

Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64)

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
)~
X n/s

o

To 1nsert item x:
1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.

Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64)

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
)~
n/s

X
o

To 1nsert item x:
1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.

29

A vectorizable min1 quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are
stored together.

We keep a bit vector of bucket

boundaries.
001010011 f4 ﬁs

n slots >

Insert x, where S(x)=0. ‘

oo R 1

Implemented
using PSHUFB or
VCMPB

Implemented
using PDEP

30

A vectorizable mini quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are

s}arpd tonoether

3 Operations take constant time in a vector model of
l computation for vectors of size o(log log n) [Bellloch 90
Example, using AVX-512 instructions.

~

Insert x, where S(x)=0.

\
N

oo R, 1,

Implemented

Space efficiency is
o Implemented
maximized when b=s/In2. using PDEP

VCMPB

using PSHUFB or

31

Vector quotient filter (VQF) performance

Optimal VQF

Space (bits) |~ n log(1/e) + Q(n) | ~n log(1/e) +2.91n
CPU cost O(1) O(1)
Data locality | O(1) probes 2 probes

32

Evaluation: insertion

-‘L —#—— Vector quotient filter (no sc)
=5 ® —m—— Vector Quotient filter (insert sc)
O ° —=%—— Quotient filter
g e ——&—— Cuckoo filter
= - . ——— Morton filter
0 &
C .
_9 T = = m =E =B S “
= 20- fo ¥
4—‘ —N
S @
-8- Ja > > »
m @
g 10
o k]
B o=
-
2
@
@
0 | | | | | .

T T T T T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Load factor

33

Evaluation: lookups

35
*® @ S & ® & & B @ 5 & &
_ o @ & 2 @ @ @ & - - o
@)
Q
n
~~
C
2
Z
et
g_ 15 ¥
B W
(o) . .
3 qpd |T—F— Vector quotient filter (no sc) 4
o —m=—— Vector Quotient filter (insert sc)
I-E —=—— Quotient filter
54 | —@- Cuckoo filter
——— Morton filter
0 | | | | | | | | | | | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Load factor

34

Evaluation: concurrency

N w H (6]
o o o o
| | | |

Throughput (Million/sec)

o

=

Num Threads

35

Conclusion

The vector quotient filter outperforms current state of the art.

VQFs don’t have time/space tradeoft.

https://github.com/splatlab/vqf

36

https://github.com/splatlab/vqf

