Vector Quotient Filters: Overcoming the Time/Space Trade-Off in Filter Design

Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, Martin Farach-Colton, Rob Johnson

Filter data structure

A filter is an *approximate* representation of a set.

A filter supports *approximate* membership queries on *S*.

False-positive rate enables filters to be compact

space $\geq n \log(1/\epsilon)$

space
$$= \Omega(n \log |U|)$$

Filter

Dictionary

False-positive rate enables filters to be compact

Filters are ubiquitous

	Optimal
Space (bits)	$pprox n \ \log(1/\epsilon) + \Omega(n)$
CPU cost	O(1)
Data locality	O(1) probes

Types of filters

- Bloom filters ^[Bloom '70]
- Quotient filters [Pagh et al. '05, Dillinger et al. '09, Bender et al. '12, Einziger et al. '15, Pandey et al. '17]
- Cuckoo/Morton filters [Fan et al. '14, Breslow & Jayasena '18]

- Others
 - Mostly based on perfect hashing and/or linear algebra
 - Mostly static
 - e.g., Xor filters ^[Graf & Lemire '20]

Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

Applications must choose between space and speed.

Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

Applications must choose between space and speed.

Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

Update intensive applications maintain filters close to full.

In this talk

The vector quotient filter offers high performance at all load factors.

Quotient filter performance [Pandey et al. '17]

	Optimal	Quotient filter
Space (bits)	$pprox n \; \log(1/\epsilon) + \Omega(n)$	$pprox n ~ \log(1/\epsilon) + 2.125 n$
CPU cost	O(1)	O(1) expected
Data locality	O(1) probes	1 probe + scan

Why quotient filters slow down

Quotient filters use Robin-Hood hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of runs.

To insert item *x*:

- 1. Find its run.
- 2. Shift other items down by 1 slot.

3. Store f(x).

As the QF fills, inserts have to do more shifting.

Cuckoo filter performance [Fan et al. '14]

	Optimal	Cuckoo filter
Space (bits)	$lpha pprox n \ \log(1/\epsilon) + \Omega(n)$	$pprox n \ \log(1/\epsilon) + 3n$
CPU cost	O(1)	up to 500
Data locality	O(1) probes	random probes

Note: $h_0(x)$ and $h_1(x)$ need to be dependent to support kicking.

As the CF fills, inserts have to do more kicking.

Note: $h_0(x)$ and $h_1(x)$ need to be dependent to support kicking.

Vector quotient filter [Pandey et al. '21]

 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

Each block is a small quotient filter with false-positive rate $\varepsilon/2$ and capacity *s*.

 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

Each block is a small quotient filter with false-positive rate $\varepsilon/2$ and capacity *s*.

 $s = \omega(\log \log n)$ slots/block (e.g., s=64)

To insert item *x*:

- 1. Compute $h_0(x)$ and $h_1(x)$.
- 2. Insert f(x) into emptier block.
- 3. Kick an item if needed.

Kick an item if needed.

2.

Kick an item if needed.

2.

No kicking $\Rightarrow h_0(x)$ and $h_1(x)$ can be independent for insert-only workload.

A vectorizable mini quotient filter

Each block has *b* logical buckets.

Fingerprints of each bucket are stored together.

We keep a bit vector of bucket boundaries.

A vectorizable mini quotient filter

Each block has *b* logical buckets.

Fingerprints of each bucket are stored together

Operations take constant time in a vector model of computation for vectors of size ω(log log n) ^[Bellloch '90]. Example, using AVX-512 instructions.

Vector quotient filter (VQF) performance

	Optimal	VQF
Space (bits)	$pprox n \ \log(1/\epsilon) + \Omega(n)$	$pprox n ~ \log(1/\epsilon) + 2.91 n$
CPU cost	O(1)	O(1)
Data locality	O(1) probes	2 probes

Evaluation: insertion

Evaluation: lookups

Evaluation: concurrency

Conclusion

The vector quotient filter outperforms current state of the art. VQFs don't have time/space tradeoff.

https://github.com/splatlab/vqf