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Filter data structure

A filter 1s an approximate representation of a set.

membership(a):
membership(b):
membership(c): ¢

false

membership(d): " 4 positive

A filter supports approximate membership queries on S.



A filter guarantees a false-positive rate €

ifg € S,return o/ with probability 1 true positive

(x with probability [11 - &  true negative
if g & S, return <

L / with probability <& false positive

one-sided
errors




False-positive rate enables filters to be compact

space > nlog(1/e) space = (}(nlog|U|)

q

'

Filter Dictionary



False-positive rate enables filters to be compact

space > nlog(1/e) space = (}(nlog|U|)
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Filter Dictionary

For most practical purposes:
€ = 2%, a filter requires = 8 bits/item



Filters are ubiquitous

Streaming applications Networking

Databases

Mysal , . ORACLE , + SOl server

Computational biolo Storage systems
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Filter design objectives

Optimal

Space (bits) ~n log(l/e) + Q(n)
CPU cost O(1)
Data locality|  O(1) probes




Types of filters

e Bloom filters Bloom 70]

. [Pagh et al. <05, Dillinger et al. ‘09, Bender et al.
o QUOtlent ﬁlters ‘12, Einziger et al. *15, Pandey et al. *17]
® CuCkOO / Morton ﬁlters [Fan et al. ‘14, Breslow & Jayasena ‘1

e Others

o Mostly based on perfect hashing and/or linear algebra
o Mostly static

o e.g., Xor filters [Graf & Lemire ‘20]



Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

@ —=X—— Quotient filter
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w
o
|

N
o
1

e

Throughput (Millions/sec)

Load factor




Current filters have a problem..

Performance suffers due to high-overhead of collision resolution

@ —=X—— Quotient filter
- ——a—— Cuckoo filter
——— Morton filter

w
o
1

N
o
1

e

16X
drop

Throughput (Millions/sec)

T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Load factor

10



Current filters have a problem..
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In this talk

o —#—— Vector quotient filter (no sc)
e —m—— \ector Quotient filter (insert sc)
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[Pandey et al. “17]

Quotient filter performance

Optimal Quotient filter

Space (bits) |~ n log(1/e) +Q(n) | ~n log(l/e)+2.125n
CPU cost 0(1) O(1) expected

Data locality O(1) probes 1 probe + scan
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Why quotient filters slow down

Quotient filters use Robin-Hood
hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of
runs.

To insert item Xx:
1. Find its run.

2. Shift other items down by 1 slot.

3. Store f(x).

h(x)

log(1/¢) bits/slot

_fszz

- n slots
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Cuckoo filter performance

[Fan et al. ‘14]

Optimal

Cuckoo filter

Space (bits)

~ n log(1/€) + Q(n)

~n log(1l/e) + 3n

CPU cost

0(1)

up to 500

Data locality

O(1) probes

random probes
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Why cuckoo filters slow down

s = 0O(1) slots/block (e.g., s=4 )

>

log(2s/¢) bits/slot /\: A

X n/s

To insert item Xx: \
h (x)
]

1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.
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Why cuckoo filters slow down

To insert item Xx:

X
1. Compute /,(x) and £ (x). h (x) AR,
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.
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Why cuckoo filters slow down

To insert item Xx:

X
1. Compute 4 (x) and / (x). h (x) £ £ £ £

Kick
2. Insert f(x) into emptier block. 8 ick fg
3. Kick an item 1f needed.
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Why cuckoo filters slow down

Jis | fa | s
w’ S S| g
. . x
To insert item x:
1. Compute h ,(x) and h (). h (x) Ay
2. Insert f(x) into emptier block.
3. Kick an item 1f needed.
Jo | S | Ju

Note: 7 (x) and / ,(x) need to be
dependent to support kicking.
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Why cuckoo filters slow down

h (%) Lo | |

/

X

To insert item Xx:
1. Compute /,(x) and £ (x). h (x) Ll s s
2. Insert f{x) into emptier block. *
3. Kick an item if needed.

Jo | S | Ju | Sy

Note: 7 (x) and / ,(x) need to be
dependent to support kicking.
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Vector quotient filter [Fandey etal. “21]
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Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64 )

< >

A
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Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
n/s
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Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
n/s
To 1nsert item x:
1. Compute £ (x) and £ (x). v

2. Insert f(x) into emptier block.
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Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
X \ n/ S
h,(x)

To 1nsert item x:
1. Compute £ (x) and £ (x). v

2. Insert f(x) into emptier block.
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Vector quotient filter design
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Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
X \ n/ S
h,(x)

To 1nsert item x:
1. Compute £ (x) and £ (x). v

2. Insert f(x) into emptier block.

26



Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
)~
X n/s

o

To 1nsert item x:
1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.
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Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
)~
X n/s

o

To 1nsert item x:
1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.




Vector quotient filter design

s = 0(log log n) slots/block (e.g., s=64 )

Each block is a small -« >
quotient filter with ‘ 4
false-positive rate €/2 and
capacity s.
)~
n/s

X
o

To 1nsert item x:
1. Compute £ (x) and £ (x).
2. Insert f(x) into emptier block.
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A vectorizable min1 quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are
stored together.

We keep a bit vector of bucket

boundaries.
001010011 f4 ﬁs

n slots >

Insert x, where S(x)=0. ‘

oo R 1

Implemented
using PSHUFB or
VCMPB

Implemented
using PDEP
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A vectorizable mini quotient filter

Each block has b logical buckets.

Fingerprints of each bucket are

s}arpd tonoether

3 Operations take constant time in a vector model of
l computation for vectors of size o(log log n) [Bellloch 90
Example, using AVX-512 instructions.

~

Insert x, where S(x)=0.

\
N

oo R, 1,

Implemented

Space efficiency is
o Implemented
maximized when b=s/In2. using PDEP

VCMPB

using PSHUFB or
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Vector quotient filter (VQF) performance

Optimal VQF

Space (bits) |~ n log(1/e) + Q(n) | ~n log(1/e) +2.91n
CPU cost O(1) O(1)
Data locality |  O(1) probes 2 probes
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Evaluation: insertion
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Evaluation: lookups
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Evaluation: concurrency

N w H (6]
o o o o
| | | |

Throughput (Million/sec)

o

=

Num Threads
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Conclusion

The vector quotient filter outperforms current state of the art.

VQFs don’t have time/space tradeoft.

https://github.com/splatlab/vqf
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