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Filter data structure

a
c

b

d

A filter is an approximate representation of a set.

A filter supports approximate membership queries on S.

membership(a): 

membership(b):

membership(c):

membership(d): false 
positive

S
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A filter guarantees a false-positive rate ε

if q ∈ S, return            with probability 1  

                                     with probability ﹥ 1 - ε 
if q ∉ S, return 
                                     with probability  ≤ ε false positive

true negative

true positive

one-sided 
errors
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False-positive rate enables filters to be compact

DictionaryFilter
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False-positive rate enables filters to be compact

DictionaryFilter

Small

Large

For most practical purposes: 
ε = 2%, a filter requires ≈ 8 bits/item
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Filters are ubiquitous

Storage systems

NetworkingStreaming applications

Computational biology

Databases
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Filter design objectives

Optimal

Space (bits)

CPU cost

Data locality
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Types of filters
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● Bloom filters [Bloom ‘70]

● Quotient filters 

● Cuckoo/Morton filters [Fan et al. ‘14, Breslow & Jayasena ‘18]

● Others

○ Mostly based on perfect hashing and/or linear algebra

○ Mostly static

○ e.g., Xor filters [Graf & Lemire ‘20]

[Pagh et al. ‘05, Dillinger et al. ‘09, Bender et al. 
‘12, Einziger et al. ‘15, Pandey et al. ‘17] State of the art in 

practical dynamic 
filters.



Performance suffers due to high-overhead of collision resolution 
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Current filters have a problem..

Applications must choose between space and speed.
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Performance suffers due to high-overhead of collision resolution 
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Current filters have a problem..

Applications must choose between space and speed.



Performance suffers due to high-overhead of collision resolution 
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Current filters have a problem..

Update intensive applications maintain filters close to full.

Performance 
only matters at 

high load factors



In this talk
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The vector quotient filter offers high performance at all load factors.



Quotient filter performance [Pandey et al. ‘17]
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Optimal Quotient filter

Space (bits)

CPU cost

Data locality



Why quotient filters slow down
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Quotient filters use Robin-Hood 
hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of 
runs.

To insert item x:
1. Find its run.
2. Shift other items down by 1 slot.
3. Store f(x).

f1 f2 f3 f4 f5 f6

x
h(x) log(1/ε) bits/slot

fx f1 f2 f3 f4 f5 f6

n slots

shift

As the QF fills, inserts 
have to do more shifting.



Cuckoo filter performance [Fan et al. ‘14]
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Optimal Cuckoo filter

Space (bits)

CPU cost

Data locality



Why cuckoo filters slow down
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s = O(1) slots/block (e.g., s=4 )

n/sx
h0(x)

h1(x)

log(2s/ε) bits/slot

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Why cuckoo filters slow down
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f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Why cuckoo filters slow down
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f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Kick f8 



Why cuckoo filters slow down
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f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Kick f8 

Kick f12 

Note: h0(x) and h1(x) need to be 
dependent to support kicking.



Why cuckoo filters slow down
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f13 f14 f15 f12

f1 f2 f3 f4

f5 f6 f7 fx

f9 f10 f11 f8

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

As the CF fills, inserts 
have to do more kicking.

Note: h0(x) and h1(x) need to be 
dependent to support kicking.



Vector quotient filter [Pandey et al. ‘21]
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Robin Hood 
hashing

2-choice 
hashing

AVX-512



Vector quotient filter design
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data



Vector quotient filter design
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.



Vector quotient filter design
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Vector quotient filter design
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Vector quotient filter design
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 



Vector quotient filter design
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 

But we still 
need it to 

support deletes.



Vector quotient filter design
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 

But we still 
need it to 

support deletes.

By Vöcking, variance 
in block occupancy is 
a lower order term.



Vector quotient filter design
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s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 

But we still 
need it to 

support deletes.

By Vöcking, variance 
in block occupancy is 
a lower order term.

No kicking ⇒ 
easier concurrency



A vectorizable mini quotient filter
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Each block has b logical buckets.

Fingerprints of each bucket are 
stored together.

We keep a bit vector of bucket 
boundaries. 001010011 f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is 
maximized when b=s/ln2.

Implemented 
using PDEP

Implemented 
using PSHUFB or

VCMPB



A vectorizable mini quotient filter
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Each block has b logical buckets.

Fingerprints of each bucket are 
stored together.

We keep a bit vector of bucket 
boundaries. 001010011 f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is 
maximized when b=s/ln2.

Implemented 
using PDEP

Operations take constant time in a vector model of 
computation for vectors of size ⍵(log log n) [Bellloch ‘90]. 

Example, using AVX-512 instructions. 

Implemented 
using PSHUFB or

VCMPB



Vector quotient filter (VQF) performance
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Optimal VQF

Space (bits)

CPU cost

Data locality



Evaluation: insertion
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Evaluation: lookups
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Evaluation: concurrency
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Conclusion
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The vector quotient filter outperforms current state of the art.

VQFs don’t have time/space tradeoff.

Robin Hood 
hashing

2-choice 
hashing

AVX-512

https://github.com/splatlab/vqf

https://github.com/splatlab/vqf







