
Vector Quotient Filters: Overcoming the 
Time/Space Trade-Off in Filter Design

Prashant Pandey, Alex Conway, Joe Durie, Michael A. Bender, 
Martin Farach-Colton, Rob Johnson



Filter data structure

a
c

b

d

A filter is an approximate representation of a set.

A filter supports approximate membership queries on S.

membership(a): 

membership(b):

membership(c):

membership(d): false 
positive

S

2



A filter guarantees a false-positive rate ε

if q ∈ S, return            with probability 1  

                                     with probability ﹥ 1 - ε 
if q ∉ S, return 
                                     with probability  ≤ ε false positive

true negative

true positive

one-sided 
errors

3



False-positive rate enables filters to be compact

DictionaryFilter

4



False-positive rate enables filters to be compact

DictionaryFilter

Small

Large

For most practical purposes: 
ε = 2%, a filter requires ≈ 8 bits/item

5



Filters are ubiquitous

Storage systems

NetworkingStreaming applications

Computational biology

Databases

6



Filter design objectives

Optimal

Space (bits)

CPU cost

Data locality

7



Types of filters

8

● Bloom filters [Bloom ‘70]

● Quotient filters 

● Cuckoo/Morton filters [Fan et al. ‘14, Breslow & Jayasena ‘18]

● Others

○ Mostly based on perfect hashing and/or linear algebra

○ Mostly static

○ e.g., Xor filters [Graf & Lemire ‘20]

[Pagh et al. ‘05, Dillinger et al. ‘09, Bender et al. 
‘12, Einziger et al. ‘15, Pandey et al. ‘17] State of the art in 

practical dynamic 
filters.



Performance suffers due to high-overhead of collision resolution 

9

Current filters have a problem..

Applications must choose between space and speed.



16X 
drop4X 

drop

Performance suffers due to high-overhead of collision resolution 

10

Current filters have a problem..

Applications must choose between space and speed.



Performance suffers due to high-overhead of collision resolution 

11

Current filters have a problem..

Update intensive applications maintain filters close to full.

Performance 
only matters at 

high load factors



In this talk

12

The vector quotient filter offers high performance at all load factors.



Quotient filter performance [Pandey et al. ‘17]

13

Optimal Quotient filter

Space (bits)

CPU cost

Data locality



Why quotient filters slow down

14

Quotient filters use Robin-Hood 
hashing (a variant of linear probing)

QFs use 2 bits/slot to keep track of 
runs.

To insert item x:
1. Find its run.
2. Shift other items down by 1 slot.
3. Store f(x).

f1 f2 f3 f4 f5 f6

x
h(x) log(1/ε) bits/slot

fx f1 f2 f3 f4 f5 f6

n slots

shift

As the QF fills, inserts 
have to do more shifting.



Cuckoo filter performance [Fan et al. ‘14]

15

Optimal Cuckoo filter

Space (bits)

CPU cost

Data locality



Why cuckoo filters slow down

16

s = O(1) slots/block (e.g., s=4 )

n/sx
h0(x)

h1(x)

log(2s/ε) bits/slot

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Why cuckoo filters slow down

17

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Why cuckoo filters slow down

18

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Kick f8 



Why cuckoo filters slow down

19

f13 f14 f15

f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

Kick f8 

Kick f12 

Note: h0(x) and h1(x) need to be 
dependent to support kicking.



Why cuckoo filters slow down

20

f13 f14 f15 f12

f1 f2 f3 f4

f5 f6 f7 fx

f9 f10 f11 f8

x
h0(x)

h1(x)
To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.

As the CF fills, inserts 
have to do more kicking.

Note: h0(x) and h1(x) need to be 
dependent to support kicking.



Vector quotient filter [Pandey et al. ‘21]

21

Robin Hood 
hashing

2-choice 
hashing

AVX-512



Vector quotient filter design

22

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data



Vector quotient filter design

23

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.



Vector quotient filter design

24

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Vector quotient filter design

25

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed.



Vector quotient filter design

26

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 



Vector quotient filter design

27

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 

But we still 
need it to 

support deletes.



Vector quotient filter design

28

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 

But we still 
need it to 

support deletes.

By Vöcking, variance 
in block occupancy is 
a lower order term.



Vector quotient filter design

29

s = ⍵(log log n) slots/block (e.g., s=64 )

n/s

Meta
data

Each block is a small 
quotient filter with 

false-positive rate ε/2 and 
capacity s.

x
h0(x)

h1(x)

To insert item x:
1. Compute h0(x) and h1(x).
2. Insert f(x) into emptier block.
3. Kick an item if needed. No kicking ⇒ h0(x) and 

h1(x) can be independent for 
insert-only workload. 

But we still 
need it to 

support deletes.

By Vöcking, variance 
in block occupancy is 
a lower order term.

No kicking ⇒ 
easier concurrency



A vectorizable mini quotient filter

30

Each block has b logical buckets.

Fingerprints of each bucket are 
stored together.

We keep a bit vector of bucket 
boundaries. 001010011 f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is 
maximized when b=s/ln2.

Implemented 
using PDEP

Implemented 
using PSHUFB or

VCMPB



A vectorizable mini quotient filter

31

Each block has b logical buckets.

Fingerprints of each bucket are 
stored together.

We keep a bit vector of bucket 
boundaries. 001010011 f1 f2 f3 f4 f5

n slots

shift

0001010011 f1 f2 fx f3 f4 f5

Insert x, where β(x)=0.

Space efficiency is 
maximized when b=s/ln2.

Implemented 
using PDEP

Operations take constant time in a vector model of 
computation for vectors of size ⍵(log log n) [Bellloch ‘90]. 

Example, using AVX-512 instructions. 

Implemented 
using PSHUFB or

VCMPB



Vector quotient filter (VQF) performance

32

Optimal VQF

Space (bits)

CPU cost

Data locality



Evaluation: insertion

33



Evaluation: lookups

34



Evaluation: concurrency

35



Conclusion

36

The vector quotient filter outperforms current state of the art.

VQFs don’t have time/space tradeoff.

Robin Hood 
hashing

2-choice 
hashing

AVX-512

https://github.com/splatlab/vqf

https://github.com/splatlab/vqf







